
ar
X

iv
:1

21
0.

61
76

v2
 [

cs
.D

S]
 1

 M
ay

 2
01

3

New algorithms for binary jumbled pattern

matching

Emanuele Giaquinta1 and Szymon Grabowski2

1 Department of Computer Science, University of Helsinki, Finland
emanuele.giaquinta@cs.helsinki.fi

2 Lodz University of Technology, Institute of Applied Computer Science, Al.
Politechniki 11, 90–924 Lódź, Poland sgrabow@kis.p.lodz.pl

Abstract. Given a pattern P and a text T , both strings over a binary
alphabet, the binary jumbled string matching problem consists in telling
whether any permutation of P occurs in T . The indexed version of this
problem, i.e., preprocessing a string to efficiently answer such permuta-
tion queries, is hard and has been studied in the last few years. Currently
the best bounds for this problem are O(n2/ log2 n) (with O(n) space and
O(1) query time) [10] and O(r2 log r) (with O(|L|) space and O(log |L|)
query time) [3], where r is the length of the run-length encoding of T
and |L| = O(n) is the size of the index. In this paper we present new
results for this problem. Our first result is an alternative construction
of the index by Badkobeh et al. [3] that obtains a trade-off between the
space and the time complexity. It has O(r2 log k + n/k) complexity to
build the index, O(log k) query time, and uses O(n/k+ |L|) space, where
k is a parameter. The second result is an O(n2 log2 w/w) algorithm (with
O(n) space and O(1) query time), based on word-level parallelism where
w is the word size in bits.

1 Introduction

The umbrella term “approximate string matching” comprises a plethora of match-
ing models; one of them, the so-called jumbled string matching [5,6], does not
distinguish between permutations of the pattern string. This problem, in its de-
cision version, consists in telling if any permutation of a pattern P occurs in
a text T , both strings over a finite alphabet. In the literature, the binary ver-
sion of this problem, i.e., the one in which the alphabet for P and T is binary,
has been given most attention, and the present article is also restricted to this
case. More formally, the binary jumbled string matching problem can be stated
as follows: We are given a text T of length n over the alphabet Σ = {0, 1}, the
length m of a pattern over the same alphabet, and the number k of symbols 1
in the pattern. The task is to answer efficiently if there exists a substring of T
of length m containing exactly k 1’s. The pattern is usually represented as the
pair (m− k, k), called a Parikh vector.

The online version of this problem can be trivially solved with a O(n) time
algorithm for a single pattern. It is more interesting, however, to build an index

http://arxiv.org/abs/1210.6176v2

for T making it possible to answer queries much faster, even in constant time.
The query pattern lengths are arbitrary (can be any values from 1 up to n). Each
index-based algorithm can be described by a triple 〈(f(n), h(n)), g(n)〉, where
f(n) is the preprocessing time, h(n) is the preprocessing space (which is usually
also the size of the resulting index), and g(n) is the query time. We assume the
word-RAM model of computation.

A fundamental observation concerning the binary jumbled string matching
is an interval property:

Lemma 1 ([6]) If, for a given text T and a pattern length m, the answer is

positive for some (m−k1, k1) and (m−k2, k2), where k1 < k2, it is positive also

for all (m− k, k) such that k1 < k < k2.

A practical consequence of this lemma is that it is enough to find the mini-
mum and the maximum number of 1’s for a given pattern length m, to be able
to give the answers for all k for this m. To avoid a complex notation, we shall
identify these values simply as minOne and maxOne, respectively.

The first index for binary jumbled string matching, which exploits a connec-
tion with the (min,+) convolution and whose complexity is 〈(O(n2/ logn), O(n)), O(1)〉,
has been independently discovered by two different groups of researchers [9,4].
Currently the best results for this problem are 〈(O(n2/ log2 n), O(n)), O(1)〉 by
Moosa and Rahman [10] and 〈(O(r2 log r), O(|L|)), O(log |L|)〉 by Badkobeh et
al. [3], where r is the length of the run-length encoding of T and |L| = O(n) is
the size of their index structure. Recently, an interesting result was presented by
Cicalese et al. [7]. They showed how to build an index for all Parikh vectors of
a binary string in O(n1+η) time, for any η > 0, which leaves a chance for false
positives, i.e., may report a Parikh vector not occurring in the string.

In this article we present two novel results. First, we show that the index
from [3] can be easily modified to become an 〈(O(r2 log k + n/k), O(n/k +
|L|)), O(log k)〉 solution, where k is a trade-off parameter. In particular, for
k = O(1) we obtain an index with 〈(O(r2 + n), O(n)), O(1)〉 complexity. While
the index space is increased, we think that such a trade-off is often preferable (a
more detailed comparison of the results is given in the corresponding section).
Our result improves over the Moosa-Rahman solution if r = o(n/ log1+ε n), for
any ε > 0, and over the solution by Badkobeh et al. if

√

n/k = o(r
√
log r) and

k = rO(1).
The second result is an algorithm, based on word-level parallelism, with

〈(O(n2 log2 w/w), O(n)), O(1)〉 complexity, where w is the word size in bits.
It dominates over the O(n2/ log2 n) algorithm from [10] if, roughly speaking,
w = Ω(log2+ε n), for any ε > 0. Although this bound does not hold in practice
on current architectures with 64-bit word, we believe that it is relevant theo-
retically. In particular, occurrences of the so-called wide word assumption date
back to 1995 [1].

Our algorithms, like all the others for this problem, are based on the interval
property. We note that for each interval size it is enough to present a procedure
only for finding maxOne, since minOne is equal to maxOne on negated input,

i.e., where 0’s become 1’s and vice versa. Throughout the paper we assume that
all logarithms are in base 2.

2 Basic notions and definitions

Let Σ denote a finite alphabet and Σm the set of all possible sequences of length
m over Σ. |S| is the length of string S, S[i], i ≥ 0, denotes its (i+1)-th character,
and S[i . . . j] its substring between the (i + 1)-st and the (j + 1)-st characters
(inclusive). For a binary string S over the alphabet {0, 1} we denote with |S|0 and
|S|1 the number of 0’s and 1’s in S, respectively. The Parikh vector of S is the pair
(|S|0, |S|1). We say that a Parikh vector (x, y) occurs in a string S if there exists
a substring of S such that its Parikh vector is equal to (x, y). The run-length
encoding of a binary string S is the sequence 〈a1, b1, a2, b2 . . . , aℓ, bℓ〉 of non-
negative integers such that ai > 0 for i = 2, . . . , ℓ, and bi > 0 for i = 1, . . . , ℓ− 1,
and S = 0a11b10a21b2 . . . 0aℓ1bℓ . The length r of the run-length encoding of S is
then 2ℓ− 2 ≤ r ≤ 2ℓ. The maximal substrings of a binary string containing only
0’s (1’s) are called 0-runs (1-runs).

3 A variant of the Badkobeh et al. index

Let T be a binary string of length n over Σ = {0, 1} and whose run-length en-
coding has length r. In this section we present an alternative method to build the
Corner Index by Badkobeh et al. [3] for T that has 〈(O(r2 log k+n/k), O(n/k+
|L|)), O(log k)〉 complexity, where k is a parameter. While our construction re-
quires more space, it obtains better preprocessing and query time. In particular,
for k = O(1) it improves the preprocessing time by a logarithmic factor and
yields constant query time. We briefly recall how the Corner Index works. Let
G(i) and g(i) denote the minimum and maximum number of 1’s in a substring
of T containing i 0’s, respectively. The following result is a corollary of Lemma
1:

Lemma 2 (cf. [3]) Given a Parikh vector (x, y) and a binary string T with

associated functions G and g, (x, y) occurs in T iff G(x) ≤ y ≤ g(x).

Hence, to be able to know whether any Parikh vector occurs in T it suffices to
compute the functions G and g. Since G and g are monotonically increasing,
they can be encoded by storing only the points where they increase. Let LG and
Lg be the sets of such points for G and g, respectively. The Corner Index of T is
the pair (LG, Lg). In accordance with the notation from [3], let us use the symbol
L denoting the whole Corner Index, and obviously we have |LG| + |Lg| = |L|.
From now on we consider the construction of LG only, since the case of Lg is
analogous and has the same space and time bounds. The set LG is defined as

LG = {(i, G(i)) | G(i) < G(i + 1)} .

The function G can be reconstructed from LG based on the relation G(x) =
G(r(x)), where

r(x) = min{i | i ≥ x ∧ (i, G(i)) ∈ LG} .
Let Πrle(T) be the set of Parikh vectors of all the substrings of T beginning and
ending with full 0-runs. The authors of [3] showed that, in order to build LG, it is
enough to compute Πrle(T), as LG ⊆ Πrle(T). Formally, the set LG corresponds
to the set of maximal elements of the partially ordered set (Πrle(T), ⊲), where
the relation ⊲ is defined as

(x, y) ⊲ (x′, y′) ⇐⇒ (x, y) 6= (x′, y′) ∧ x ≥ x′ ∧ y ≤ y′ .

If (x, y) ⊲ (x′, y′), (x, y) is said to dominate (x′, y′). The set Πrle(T) can be
computed efficiently on the run-length encoding of T in time O(r2). The total
time complexity of the procedure to build the Corner Index is O(r2 log r), since
for each such Parikh vector the algorithm performs one lookup and at most
one insertion and deletion in a balanced tree data structure whose size is at
most r2. We now show how to achieve a trade-off between the space and time
complexity. We divide the interval [1, |T |0] into sub-intervals of k elements, such
that length i is mapped to the ⌊i/k⌋-th interval, for i = 1, . . . , |T |0. For each
interval Ij = [(j−1) ·k+1, j ·k], for j = 1, . . . , ⌈|T |0/k⌉, we maintain a balanced
binary search tree (BST) in which we store the set of maximal elements of
(Πrle(T), ⊲) with first component in Ij . If this set is empty, we store the element
((j−1) ·k+1, y), where y is the second component of the element in the previous
interval with largest first component. The value of G on a given point can then
be computed in time O(log k) by doing a lookup in the tree of the corresponding
interval. The size of this index is O(n/k+ |L|), as we add at most one redundant
pair per (empty) interval.

We now describe how this index can be built in time O(r2 log k + n/k). The
construction is divided into two similar steps. We use an array V of ⌈n/k⌉ point-
ers, where each slot points to a BST. During the first step, we insert each element
(x, y) from Πrle(T) into the BST pointed by V [⌊y/k⌋] if it is not dominated by
any existing pair and, after an insertion, we also remove all the existing elements
dominated by it. This procedure is analogous to the one used in the original Cor-
ner Index to add an element to the index. In this phase we conceptually divide
the interval [1, |T |1] into sub-intervals (1-intervals) and partition the pairs ac-
cording to their second component. At the end of this step, in each BST we have
a superset of the set of maximal elements of (Πrle(T), ⊲) of the corresponding
1-interval. In particular, all the pairs that are dominated by a pair that belongs
to a different 1-interval are not removed. The second step of the preprocessing
removes these elements and builds the final index. To this end, we use another
array V ′ defined as V . We iterate over V from left to right maintaining in an
integer xmax the maximum first component of any pair belonging to the BSTs
already processed. For each j = 1, . . . , ⌈|T |1/k⌉, we insert all the elements (x, y)
of the BST V [j] such that x > xmax into the BST V ′[⌊x/k⌋].

It remains to prove that all the dominated pairs are removed using this
procedure. Let (x, y) and (x′, y′) be two elements of Πrle(T) such that (x, y) ⊲

(x′, y′). We distinguish two cases: if the two elements map onto the same 1-
interval, then only (x, y) remains at the end of the first pass; otherwise we have
y < y′ and so we process (x, y) before (x′, y′) during the second pass. Hence,
when we process (x′, y′) it must hold that xmax ≥ x, so (x′, y′) is skipped.

Clearly, by definition of the ⊲ relation, the size of any tree is bounded by k in
both phases. Hence, the total procedure can be performed in time O(r2 log k +
n/k) on the run length encoding of T . To handle the case of trees that are empty,
it suffices to keep track, during the second pass, of the element with largest first
component for each non-empty interval. Then, we perform a subsequent pass
over the intervals, in time O(n/k), and each time we visit an empty interval Ij
we add to it the element ((j − 1) · k + 1, y), where y is the second component
of the largest element in the last non-empty interval visited. We thus obtain the
following theorem:

Theorem 1 Given a binary string of length n and whose run-length encod-

ing has length r, we can build an index for jumbled pattern matching in time

O(r2 log k+n/k) using O(n/k+|L|) space which answers queries in time O(log k),
for any parameter 1 ≤ k ≤ n, where |L| = O(n).

Observe that, for k = O(1), we obtain an index with 〈(O(r2+n), O(n)), O(1)〉
complexity, as promised at the beginning of this section; instead, for k = logn,
we get 〈(O(r2 log logn+n/ logn), O(n/ logn+ |L|)), O(log logn)〉, i.e., a smaller
index with sublogarithmic query time. Note that for k = n we obtain the original
Corner Index.

Concerning the index build time, our result dominates over the Moosa-
Rahman solution if r = o(n/ log1+ε n), for any ε > 0, and over the solution
by Badkobeh et al. if

√

n/k = o(r
√
log r) and k = rO(1).

It is also possible to replace the balanced binary search trees with a more ad-
vanced data structure to achieve even better query time. In particular, the expo-
nential search tree [2] is a search data structure that requiresO(log logn log logU

log log logU
)

time for all the operations, where U is an upper bound on the largest key. If,
for each interval Ij , we represent a pair (x, y) in the interval using the key
x− ((j− 1) · k+1), then it holds that the largest key is k and we thus obtain an

index with 〈(O(r2 (log log k)2

log log log k
+ n/k), O(n/k + |L|)), O((log log k)2

log log log k
)〉 complexity.

4 An algorithm based on word-level parallelism

In this section we present an algorithm based on word-level parallelism. Each
interval size is processed separately, and the (packed) text is scanned from left
to right in chunks of w bits, where w is the machine word size. The text is first
packed in O(n logw/w) words so that each symbol (0 or 1) is represented with
f = 1 + logw bits. We will refer to such sequences of bits encoding a symbol
as fields. The packed text can be easily computed by setting, for each position i
in T , the value of the field with index (i mod k) in the ⌊i/k⌋-th chunk to T [i].
Let k = ⌊w/f⌋ be the number of symbols in a chunk. We denote with C[i] the

i-th symbol of chunk C. Given a length 1 ≤ l ≤ n, the idea is to slide a window
of length l over the packed text, i.e., spanning ⌈l/k⌉ chunks, and compute the
number of 1’s in each alignment. We assume that l ≥ k since, if l < k, we can
compute maxOne for l by working with chunks of l symbols rather than k (with
a negligible overhead). Note that if l does not divide k, the window spans only
the prefix of length l mod k of the last chunk, which can be obtained by masking
the rightmost k − l mod k fields with a bitwise and. For simplicity, we assume
that l divides k. To begin with, we compute the maximum number of 1’s in the
first alignment, i.e., in the first l/k chunks of the text. We then slide the window
over the packed text by extending the window by one chunk to the right and
reducing it by one chunk from the left, i.e., for a window beginning at position i
we perform a transition from T [i . . . i+ l− 1] to T [i+ k . . . i+ k+ l− 1]. At each
iteration of this process, we compute the maximum number of 1’s among the k
new shifts of the window in time O(logw) and update maxOne if needed. When
the current window is moved to the right by one chunk (i.e., by k symbols), two
text chunks are affected, the one including the symbols that fall off the window
and the one with the symbols that enter it. Let us denote these chunks with
C1 and C2, respectively. It is not hard to see that the maximum number of
1’s among the new shifts is equal to ones + maxh{

∑h−1
i=0 C2[i] −

∑h−1
i=0 C1[i]},

for h = 1, . . . , k, where ones is the number of 1’s in the chunks spanned by the
previous alignment. Hence, to update maxOne, we should know if there is at least
one prefix of length h such that the difference between the sums of C2[0 . . . h−1]
and C1[0 . . . h−1] is positive and, if the answer is affirmative, what the maximum
difference of sums over such equal-length prefixes of C2 and C1 is. Note that we
do not have to know the prefix length that maximizes this difference. We now
show how to compute this value for two chunks of k symbols in time O(logw)
by exploiting the relation with the problem of computing the prefix sums of a
sequence of size k of f -bit numbers. We proceed as follows: first, we compute, in
constant time, a new word C′ such that

C′[i] = C2[i] + 1− C1[i] ,

for i = 0, . . . , k − 1, by first adding to C2 a word where all the fields have
value 1 and then subtracting C1. The word C′ holds the differences between the
fields in C1 and C2 with equal position augmented by one unit. Observe that
we defined C′ in this way so as to not let the fields obtain negative values, i.e.,
all the values in C′ are non-negative (0, 1, or 2). To this end, the addition must
also be performed before the subtraction. We avoid negative numbers because
their encoding is dependent on the model used by the machine. In particular, in
the most common two-complement arithmetic, a negative value in a field would
result in changes to other fields, thereby making the result incorrect.

Then, we compute the prefix sums of the k symbols of C′ in time O(logw)
by adapting the algorithm by Hillis and Steele [8] to compute the prefix sums of
an array in parallel. The adaption is straightfoward: we perform ⌈log k⌉ passes

over C′ where the i-th pass computes the value

C′′

i =

{

C′′

i−1 + (C′′

i−1 ≪ (2i × f)) if i > 0

C′ otherwise

Note that ≪ is a logical shift. Observe that this step can be computed with a
constant number of words of space. Moreover, no overflow can occur since the
largest sum has value 2k, while we have 1 + logw bits to store each number.
In this way we almost obtain in the word C′′ the prefix sums of the differences.
More precisely, we have

C′′[h] =

h
∑

i=0

(C2[i]− C1[i]) + h+ 1 ,

for h = 0, . . . , k−1, i.e., the h-th difference is off by a value of h+1 with respect
to the actual value. To fix them, we observe that any value C′′[h] that is smaller
than h + 1 is not interesting, as the real difference is negative in this case. In
what follows, care must be taken not to let the fields obtain negative values. We
generate a word of increments I with the following field values: 1, 2, . . . , k. We
find in parallel the maxima of the pairs of corresponding fields from C′′ and I,
using the technique from [11] that works in constant time. The idea is to compute
a word in which the top bit of each field h is 1 if max(C′′[h], I[h]) = C′′[h] and
0 otherwise, for h = 0, . . . , k − 1, and then use it to extract the correct fields
from both words. This is why the fields have exactly 1 + logw bits. As a result,
the new value of C′′ has some fields taken from the “old” C′′, and some from I.
Finally we subtract I from C′′; clearly, no field will obtain a negative value, and
zeros will appear in the fields corresponding to prefix sum differences less than
or equal to zero.

The final phase is to find quickly the maximum field value in the whole word.
Note that we can spend O(logw) time for this step without changing the overall
time complexity. We can obtain the desired time complexity with the following
algorithm: we logically divide C′′ in two halves and initialize two words with
the first and last k/2 fields of C′′, respectively. Then, we compute in parallel
the maxima between the two words in constant time, using again the procedure
from [11]. Note that the resulting word logically contains k/2 fields only. We
recursively repeat this process up to ⌈log k⌉ = O(logw) passes. The last word
will contain exactly one field, the maximum difference.

We spend O(logw) time to process k symbols of the input data, hence the
speed-up over the naive algorithm is by factor Θ(w/ log2 w), which gives overall
O(n2 log2 w/w) time complexity. We thus obtain the following theorem:

Theorem 2 Given a binary string of length n, we can build an index for jumbled

pattern matching in time O(n2 log2 w/w), in the word-RAM model, using O(n)
space which answers queries in constant time.

This result dominates over the O(n2/ log2 n) algorithm from [10] if, roughly
speaking, w = Ω(log2+ε n), for any ε > 0.

5 Acknowledgments

We thank the anonymous reviewers for helpful comments.

References

1. A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? In
F. T. Leighton and A. Borodin, editors, STOC, pages 427–436. ACM, 1995.

2. A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees.
J. ACM, 54(3):13, 2007.

3. G. Badkobeh, G. Fici, S. Kroon, and Z. Lipták. Binary jumbled string matching:
Faster indexing in less space. CoRR, abs/1206.2523, 2012.

4. P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták. On table arrangements, scrabble
freaks, and jumbled pattern matching. In P. Boldi and L. Gargano, editors, FUN,
volume 6099 of Lecture Notes in Computer Science, pages 89–101. Springer, 2010.

5. A. Butman, R. Eres, and G. M. Landau. Scaled and permuted string matching.
Inf. Process. Lett., 92(6):293–297, 2004.

6. F. Cicalese, G. Fici, and Z. Lipták. Searching for jumbled patterns in strings. In
J. Holub and J. Žďárek, editors, Proceedings of the Prague Stringology Conference

2009, pages 105–117, Czech Technical University in Prague, Czech Republic, 2009.
7. F. Cicalese, E. S. Laber, O. Weimann, and R. Yuster. Near linear time construction

of an approximate index for all maximum consecutive sub-sums of a sequence.
In J. Kärkkäinen and J. Stoye, editors, CPM, volume 7354 of Lecture Notes in

Computer Science, pages 149–158. Springer, 2012.
8. W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Commun. ACM,

29(12):1170–1183, 1986.
9. T. M. Moosa and M. S. Rahman. Indexing permutations for binary strings. Inf.

Process. Lett., 110(18-19):795–798, 2010.
10. T. M. Moosa and M. S. Rahman. Sub-quadratic time and linear space data struc-

tures for permutation matching in binary strings. J. Discrete Algorithms, 10:5–9,
2012.

11. W. Paul and J. Simon. Decision trees and random access machines. In ZUERICH:

Proc. Symp. Logik und Algorithmik, pages 331–340, 1980.

	New algorithms for binary jumbled pattern matching

