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A gossip protocol is a procedure for spreading secrets among a group of agents, 
using a connection graph. In each call between a pair of connected agents, the two 
agents share all the secrets they have learnt. In dynamic gossip problems, dynamic 
connection graphs are enabled by permitting agents to spread as well the telephone 
numbers of other agents they know. This paper characterizes different distributed 
epistemic protocols in terms of the (largest) class of graphs where each protocol is 
successful, i.e. where the protocol necessarily ends up with all agents knowing all 
secrets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Gossip protocols are procedures for spreading secrets among a group of agents, using a connection graph.1

This connection graph denotes which agents know the telephone numbers of who, and so which telephone 
calls can be made. During each call, say ab from a to b, the two agents a and b share all the secrets they 
know at the time of the call (initially, each agent only knows its own secret). In the original set-up, where 
a totally connected graph was assumed, the main question was to find a sequence of calls making all agents 
knew all secrets (henceforth, successful) with a minimal number of calls; this minimum length turns out 
to be 2n − 4 in a totally connected graph with n > 3 agents, see Tijdeman [22] or Hurkens [17]. Consider 
the totally connected graph with four agents, and the successful call sequence ab; cd; ac; bd in the following 
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picture (where dashed arrows denote knowledge of telephone number, and solid arrows denote who knows 
whose secrets; note we do not draw the reflexive edges corresponding to the fact that agents always know 
their own secret and telephone number).

Graphs that are not totally connected were also studied by different authors; [14] is a survey of results 
on the gossip problem, including the following minimum bounds on the length of successful sequences: for 
any (undirected) connected graph, there is a successful call sequence of length 2n − 3 for n > 3 agents; 
moreover, if the graph contains a 4-cycle (as in totally connected graphs), then the minimum is again 2n −4
calls. Consider for example the following connection graph:

In the connection graph above, the call sequence ac; bd; ab; bd; ac can be improved if we permit the agents 
to exchange, during each call, both the secrets and the telephone numbers. In this setting, called dynamic 
gossip in some previous work [24], we can recover the 2n − 4 minimum length for the above gossip graph.

In all of the examples above, a way to ensure that minimum length solutions will be found is to assume a 
central authority who, knowing the initial network topology, designs the desired call sequence and commu-
nicates it to the agents. In distributed computing, in contrast, one is interested in procedures that do not 
need outside regulation, even if this comes at the price of non-optimal call sequences. Among distributed 
protocols that might find the above solutions one can mention

Any Call While not every agent knows all secrets, randomly select a pair xy such that x knows y’s 
number and let x call y.

or, with less redundancy (since the sequence ac; ac; bd; ab; cd is not permitted), the protocol

Learn New Secrets While not every agent knows all secrets, randomly select a pair xy such that x
knows y’s number but not her secret and let x call y.

The following execution bc; ab of the Learn New Secrets protocol is unsuccessful in the next graph:

One can observe that after the second call ab, in the above sequence bc; ab, agents a and b know that 
it surely makes sense to make a new call ac or bc, since agent c would then learn something, namely, the 
initial secret from a. One protocol to address this is

Known Information Growth While not every agent knows all secrets, randomly select a pair xy such 
that x knows y’s number and there is a z such that x knows that either x or y doesn’t know z’s secret; 
let x call y.
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Assume (for now) that the calls are synchronous (i.e. it is common knowledge that one call is made after 
each clock-tick and the number of calls made is common knowledge2). The above situation can be solved 
by the Known Information Growth protocol with an extra call bc:

This protocol is based on high-order knowledge, namely on what b knows that c knows (beyond mere 
possession of her own secrets). Knowledge of other agent’s knowledge cannot be as straightforwardly related 
to a graph property. In the same example, initially agent a does not know whether someone has her telephone 
number, so from a’s perspective the graph could be either of the following, after the initial bc call (the call 
history is written on top of each graph):

We say in this case that a cannot distinguish the two graphs, and for such an indistinguishability relation 
we write ≈a (or ∼a in the case of asynchronous calls, see below).

After the first two calls bc; ab, agents a and b do not consider any graph possible other than the actual 
one. So the ≈a and ≈b possible worlds simply consist of:

An agent knows something about a graph if it is true in all indistinguishable graphs. Agents a and b
therefore now know that c does not know a’s secret; therefore either of them can call c according to the 
Known Information Growth protocol above, and thus successfully terminate the protocol.

The above assumption on the synchronicity of calls is crucial, since without it (denoted ∼), the protocol 
does not successfully terminate. Informally, we say that calls are asynchronous if at each time there is no 
upper bound on the number of calls that could already have taken place according to any agent. Under 
this assumption, we have that after bc; ab, the agents a and b consider other possibilities besides the actual 
world. The following picture shows some of those possibilities from the point of view of the actual world 
(depicted in the center):

This paper is a follow-up study of [24]. The main difference lies in the gossip protocols, which are 
knowledge-based, and the new semantic models which endow gossip scenarios with notions of knowledge 
for synchronous and asynchronous calls. Our choice of protocols for making calls is mainly motivated by 
simplicity and the immediate goal of learning secrets: typically, a protocol will require that the caller knows 
(or at least considers it possible) that the next call will make herself or the callee to learn some new 
secret; these expectations after the call can be expressed as distributions of secrets before the call. Further 
distinctions among our protocols are: the direction of the learning of secrets (the caller intends to learn 
new secrets from the callee, or to transmit her new secrets, or both), the origin of the secrets aimed to be 

2 Therefore, if there are only 3 agents, the two agents in a call are correctly identified by the remaining agent.
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learnt (the secret of caller or callee vs. of any agent), and finally, the de dicto/de re distinction w.r.t. the 
identification of the secrets that will be learnt in the next call. In all these protocols, the preconditions for 
calls can be expressed by simple epistemic formulas of modal depth one, namely propositional formulas in 
the scope of a modality for the caller, effectively making these protocols distributed.

All in all, we aimed to study protocols that are simple and intuitive to grasp for human gossip agents. Our 
main goal is the characterization of the protocols under study, that is, to identify the class of graphs where 
all (or some) executions of a given protocol successfully terminate. Of course, our framework is expressive 
enough to capture many other protocols with higher-order epistemic conditions.

Outline of the paper The paper is divided as follows: in Section 2, we introduce the epistemic framework – 
gossip graphs, knowledge in (a)synchronous calls, protocols – and recall some general results used throughout 
the paper. After this, in Section 3 we review results on some basic protocols from [24] to be used later for 
comparison. The epistemic protocols studied in this paper start in Section 4, with some distributed protocols 
where learning a secret is possible, according to the caller of the next call. Then in Section 5 we study 
non-redundant distributed protocols: learning a secret is known necessary, before the call, according to the 
caller. Finally, in Section 6 we compare these protocols in terms of their sets of executions in given gossip 
scenarios. The paper concludes with a review of the related work, in Section 7, a summary of contributions 
and a list of directions for further research, in Section 8.

2. Basic concepts

Consider a finite set of agents A = {a, b, . . .}, each with access to a set of other agents, and each carrying 
a unique secret, called the agent’s secret. For these agents to reach the goal of knowing (all of them) all the 
secrets, they will call each other and exchange all the telephone numbers and secrets they know. The two 
call modes considered in this paper are: synchronous, where agents not involved in the current call at least 
know that a call is being made, and asynchronous, where those agents are not even aware of the current 
existence of this call. Despite this ignorance on the present, future calls might help an agent to identify the 
current call: the secrets that one receives at each call provide information on possible call histories. All this 
will be made precise in the epistemic accessibility relation corresponding to each call mode.

Rather than letting the agents randomly call each other, one can define distributed protocols executing 
fewer redundant calls. Sometimes this comes at a price, namely that the protocol is not successful in all 
possible initial configurations. The main results in this paper consist in characterizing the class of gossip 
graphs where each protocol is necessarily (or possibly) successful. The protocols studied here are definable 
in terms of the knowledge of agents at the time they are initiating a call.

2.1. Gossip graphs

Given a finite set of agents (or nodes) A = {a, b, . . .}, we represent a gossip graph G with telephone 
numbers and secrets as a triple (A, N, S) with N, S ⊆ A × A. That is, the agents A are the vertices and 
N, S are binary relations on A, with Nxy (for (x, y) ∈ N) expressing that x knows the (telephone) number 
of y, and Sxy expressing that x knows the secret of y.

Let us first introduce standard graph terminology, given a carrier set A and binary relations like N and S. 
We let IA = {(a, a)}a∈A be the identity relation on A, and converse relation N−1 = {(x, y) | Nyx}. We 
write Nx for {y ∈ A | Nxy}. (We may further write ¬Nxy for (x, y) /∈ N and anyway write xy for a pair 
(x, y), such as for the calls defined below.) Relation N ◦ S = {(x, y) | there is a z such that Nxz and Szy}
is the composition of N and S, and using that we define N1 = N , N i+1 = N i ◦ N , and N∗ =

⋃
i≥1 N

i. 
Relation N is complete iff N = A2, it is weakly connected if for all x, y ∈ A there is an (N ∪N−1)-path from 
x to y, and it is strongly connected if for all x, y ∈ A there is an N -path from x to y.
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Definition 1 (Gossip graph). A gossip graph is a triple G = (A, N, S) with N ⊆ A2 and S ⊆ A2. An initial 
gossip graph is a gossip graph with S = IA ⊆ N . Agent x is an expert if Sx = A. An agent or node is terminal
iff Nx = {x}. Gossip graph G is complete, weakly (strongly) connected if the graph (A, N) is, respectively, 
complete, weakly (strongly) connected. The complete initial gossip graph with n agents is denoted Kn.

In an initial gossip graph each agent only knows its own secret and at least knows its own number. When 
we employ common graph terminology when referring to a gossip graph, this applies to the number relation, 
not to the secret relation, as above.

A call from x to y is a pair (x, y) for which we write xy. The call xy in G merges the secrets and the 
numbers of x and y. The expression xy stands for ‘xy or yx’.

Definition 2 (Call; call-induced gossip graph). Let G = (A, N, S) and x, y ∈ A. We say that the call xy is 
valid in G if Nxy, and in such case the call xy maps G to the call-induced gossip graph Gxy = (A, Nxy, Sxy), 
defined by

Nxy
z =

{
Nx ∪Ny if z ∈ {x, y}
Nz otherwise

and Sxy
z =

{
Sx ∪ Sy if z ∈ {x, y}
Sz otherwise

Definition 3 (Call sequence). A call sequence σ is a finite or infinite sequence of calls. The empty sequence 
is ε. We write σ; τ for the concatenation of a finite call sequence σ and a call sequence τ .

Given a finite call sequence σ, we define Gσ by induction on σ: Gε = G and Gxy;σ = (Gxy)σ.
Given a sequence σ with at least n calls, we denote by σn the n-th call in σ (starting from 1), and σ|n

is the prefix of σ consisting of the first n calls, so that we have that σ|0 = ε and σ|n = σ1; . . . ; σn. We will 
denote that σ is a (proper) prefix of τ by σ � τ (resp. σ � τ). A call sequence σ is valid in G iff for each n, 
σn+1 is valid in Gσ|n.

For a valid infinite call sequence σ, we define Gσ = (A, 
⋃

n N
σ|n, 

⋃
n S

σ|n).3
Finally, for x ∈ A, σx is the subsequence of calls containing x, i.e., εx = ε, (σ; zw)x = σx if x /∈ {z, w}, 

and (σ; zw)x = σx; zw otherwise. If σ is finite, we denote by σn the sequence σ; . . . ; σ (n times). If σ is 
finite, we denote by σω the sequence σ; σ; . . . (σ is repeated infinitely many times).

Fact 4. [24] For any initial gossip graph G and any finite valid call sequence σ, the resulting gossip graph 
Gσ = (A, Nσ, Sσ) satisfies Sσ ⊆ Nσ.

Therefore, provided that S ⊆ N (as in our case: S = IA ⊆ N), it does not matter whether the goal is to 
learn all the secrets, or both all secrets and all numbers. By Fact 4, the first is not possible without the 
second.

Lemma 5. [24] If G = (A, N, S) is an initial gossip graph and σ is a finite valid call sequence for G, then 
Sσ ◦N ⊆ Nσ where Gσ = (A, Nσ, Sσ).

It is shown in [24] that for any valid call sequence σ in a gossip graph G,

G is weakly connected iff Gσ is weakly connected.

3 Note that a protocol execution (see Definition 13) defines how to generate the next call, which gives all of its finite call 
sequences. For the characterization results, though, the protocol extensions need to contain the infinite sequences as well, i.e. 
the result of executing a protocol indefinitely. The restriction to finite sequences is only applied to the following concepts: gossip 
states (Definition 7), accessibility relations (Definitions 9–10), gossip models (Definition 12), the semantics (Definition 15) and 
model-checking.
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Fig. 1. Update of the indistinguishable gossip graphs for agent c after a call ab.

As a consequence, the goal of all agents being expert can never be reached in graphs that are not weakly 
connected.

Corollary 6. [24] If G is not weakly connected, then for any finite valid call sequence σ, no one is expert 
in Gσ.

2.2. Knowledge

In both the asynchronous and synchronous call modes, the agents may not know what secrets other 
agents know at a given moment. Formally, this is encoded with the help of possible call histories in initial 
gossip graphs.

Definition 7 (Gossip state). A gossip state is a pair (G, σ) where G is an initial gossip graph and σ is a finite 
valid call sequence in G.

A gossip state (G, σ) contains more information than the corresponding induced gossip graph Gσ — see 
Example 8 below. With the help of gossip states, the knowledge of an agent will be represented as a set of 
possible call histories, i.e. a set of initial gossip states and call sequences (upon them) that are compatible 
with both this agent’s initial knowledge (contact list) and her learning through the calls made or received 
so far.

Example 8. We consider a synchronous scenario with three agents a, b and c, from the viewpoint of agent c. 
The number relation for c is given by: ¬Nca, Ncb, Ncc. Fig. 1 (left) depicts the possible initial gossip graphs 
for agent c (the knowledge of agents a, b is not represented). (Right) depicts the possible gossip graphs for 
agent c after a call ab occurs. With 3 agents only, as c is not involved in the first call, c will know that Nab

or Nba and that the call is in fact an ab call.

Note that in Fig. 1 some initial possibilities, namely G2, G3, G8, G9, are discarded after the transition 
ε 	→ ab. After a call ab only two gossip states are possible, namely G′

0, G
′
1:
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G′
0 = Gab

0 = Gba
0 = Gab

1 = Gba
1 = Gba

4 = Gba
5 = Gab

6 = Gab
7 = Gab

10 = Gba
10 = Gba

12

G′
1 = Gab

11 = Gba
11 = Gba

13

even if as gossip states these are pairwise different (but indistinguishable by c in the synchronous call mode):

(G0, ab) �= (G0, ba) �= (G1, ab) �= · · · �= (G12, ba) and (G11, ab) �= (G11, ba) �= (G13, ba)

In comparison, under the asynchronous call mode, the update with a call ab of Fig. 1 would result in the 
union of all the gossip graphs in this figure, as agent c would consider it also possible that no call was made.

The sequence σ is not explicitly represented in call-induced gossip graph Gσ, the latter is merely the 
gossip graph G′ resulting from executing σ in G.

The first call mode considered in this paper is asynchronous: if an agent is not involved in a call (by 
making or receiving it), then she is not aware that a call has been made. Since the agents do not have 
internal clocks, any finite number of calls can be imagined to take place between any pair of actual calls.

Definition 9 (Asynchronous accessibility relation). Let G = (A, N, S) and H = (A, O, T ) be initial gossip 
graphs, x ∈ A. We define (G, σ) ∼x (H, τ) on the set of gossip states for A by induction on the sum of the 
lengths of finite call sequences σ and τ , valid in respectively G and H,

1. (G, ε) ∼x (H, ε) if Nx = Ox;
2. For all (σ, τ) �= (ε, ε), (G, σ) ∼x (H, τ) if

either (a) σ = σ′; yz, x /∈ {y, z} and (G, σ′) ∼x (H, τ);
or (b) τ = τ ′; yz, x /∈ {y, z} and (G, σ) ∼x (H, τ ′);
or (c) x ∈ {y, z}, σ = σ′; yz, τ = τ ′; yz, Sσ′

y = T τ ′
y , Sσ′

z = T τ ′
z , Nσ′

y = Oτ ′
y , Nσ′

z = Oτ ′
z and 

(G, σ′) ∼x (H, τ ′).

(Note that in Definition 9(c) the conditions for agent x ∈ {y, z}, i.e. Sσ′
x = T τ ′

x and Nσ′
x = Oτ ′

x , already 
follow from (G, σ′) ∼x (H, τ ′). The same comment applies to Definition 10.)

In the synchronous mode of calls, every time a call is made the agents know that (but only that, not 
the identity of the two agents on the telephone). This call mode can be described by telephone networks 
that only allow for a single call at any given time, so the availability of the telephone system is common 
knowledge. Although less realistic than the asynchronous mode, it will be very instructive to compare each 
gossip protocol under the two call modes.

Definition 10 (Synchronous accessibility relation). Let G = (A, N, S) and H = (A, O, T ) be initial gossip 
graphs, and x ∈ A. We define ≈x by induction on finite call sequences σ and τ valid, resp., in G and H:

1. (G, ε) ≈x (H, ε) if Nx = Ox;
2. For all (σ, τ) �= (ε, ε), (G, σ) ≈x (H, τ) if σ = σ′; yz, τ = τ ′; uv and

(a) either x /∈ {y, z, u, v}, Nσ′
yz, Oτ ′

uv and (G, σ′) ≈x (H, τ ′);
(b) or x ∈ {y, z}, y = u, z = v, Sσ′

y = T τ ′
y , Sσ′

z = T τ ′
z , Nσ′

y = Oτ ′
y and Nσ′

z = Oτ ′
z and (G, σ) ≈x (H, τ).

The accessibility relations in Definitions 9 and 10 are equivalent to those found in Attamah et al. [2] for 
the original (non-dynamic) gossip problem. All these definitions are based on the learn-then-merge model 
of calls, where the two agents in a call first learn what the other knows, and then merge this with their own 
knowledge. An alternative model of calls is that of merge-then-learn, in Apt et al. [1], where the information 
from the two agents is first sent to a server and merged into a set, and then the agents learn this new set. 
This model of calls induces less fine-grained accessibility relations, see the Related Work for more details.



8 H. van Ditmarsch et al. / Journal of Applied Logic 20 (2017) 1–31
The following is easily proved by induction on the length of σ and τ .

Proposition 11. For each pair of gossip graphs G = (A, N, S) and H = (A, O, T ), and each pair of finite 
call sequences σ and τ , the following implications hold for any x ∈ A:

(1) (G, σ) ≈x (H, τ) ⇒ (G, σ) ∼x (H, τ) ⇒ σx = τx,
(2) the accessibility relations ∼x and ≈x are equivalence relations.

Definition 12 (Gossip model). Given a set of agents A, the asynchronous gossip model and the synchronous 
gossip model are respectively the triples

G∼ = (G, 〈∼a〉a ∈A, 〈 ab−−→〉a,b ∈A) and G≈ = (G, 〈≈a〉a ∈A, 〈 ab−−→〉a,b ∈A)

where:

• G is the set of all gossip states (G, σ) for the set of agents A.
• ∼a and ≈a are relations defined in Definitions 9 and 10;
• each ab−−→: G → G is a partial function representing the dynamic transitions between G-states

(G, σ) ab−−→ (G, σ; ab) defined on the set of gossip states in G where the call ab is valid.

Under this definition, each gossip model G∼ or G≈ (with at least two agents) has an infinite number of 
states: (G, ε) �= (G, ab) �= (G, ab; ab) �= . . . .

2.3. Protocols

In a distributed setting for gossip, each agent u executes an algorithm of the form:

repeat forever
select agent v ∈ A such that condition ϕ(u, v) is satisfied
execute call uv

where ϕ(u, v) is a condition for the call uv to be executed. Under the joint execution of these agent-based 
gossip algorithms, the agents will keep calling each other forever. However, for our characterization results, 
we are only interested in the executions of gossip protocols up to the point where all agents become expert 
(even if they do not know this). Thus, we decide to use a global algorithm that artificially stops once the 
agents are experts, defined next.

Definition 13 (Gossip protocol). A gossip protocol P is a non-deterministic algorithm of the form

Let an initial gossip graph G = (A, N, S) be given. As long as not all agents are experts and there are 
u, v ∈ A such that ϕ(u, v), choose u, v ∈ A such that the condition ϕ(u, v) is satisfied and the call uv
is valid, and execute this call uv.

where, given a call sequence σ, uv is valid in Gσ iff Nσuv, and ϕ(x, y) is a property such that for any 
u, v ∈ A, ϕ(u, v) is a formula in the language of Definition 14.

Note that due to the as long as not all agents are experts condition, we need three agents in G (not 
two) in order to have infinitely-many gossip states reachable in the execution of a protocol P (like ANY): 
(G, ab), (G, ab; ab), . . .; for the two-agent case, if ab is valid, then ab is a successful sequence (see Definition 17) 
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and so ab; ab is not P-permitted: the last call ab cannot be made because agents are already experts after 
the first call ab (see Definition 16).

Definition 14 (Language L). For a given finite set of agents A, the language L of (instantiated) protocol 
conditions for epistemic gossip is given by the following BNF:

ϕ := S(a, b) | N(a, b) | C(ab, c) | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ

where a, b, c range over A. The abbreviations ϕ1 → ϕ2 := ¬(ϕ1 ∧ ¬ϕ2), ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2), 
ϕ1 ↔ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) and K̂aϕ := ¬Ka¬ϕ will also be used.

The construction S(a, b) reads agent a has the secret of b. N(a, b) reads agent a has the number of agent b. 
C(ab, c) reads ab is a call in the list of calls involving agent c. Thus, if c /∈ {a, b}, C(ab, c) is always false, 
while formulas C(ab, a) and C(ab, b) are true in (G, σ) if a call ab has already been made, i.e. if ab is in σ. 
Kaϕ reads agent a knows that φ is true, and finally K̂aϕ reads agent a considers it possible that φ is true.

Definition 15 (Semantics). Let G∼ be the asynchronous gossip model for a set of agents A. For any (G, σ) ∈
G∼ and any formula ϕ in L, we define G∼, (G, σ) |= ϕ by induction on ϕ as follows:

G∼, (G, σ) |= � iff always
G∼, (G, σ) |= N(a, b) iff Nσab

G∼, (G, σ) |= S(a, b) iff Sσab

G∼, (G, σ) |= C(ab, c) iff ab ∈ σc

G∼, (G, σ) |= ¬ϕ iff not G∼, (G, σ) |= ϕ

G∼, (G, σ) |= (ϕ1 ∧ ϕ2) iff G∼, (G, σ) |= ϕ1 and G∼, (G, σ) |= ϕ2
G∼, (G, σ) |= Kaϕ iff for all (H, τ) ∈ G, if (G, σ) ∼a (H, τ) then G∼, (H, τ) |= ϕ

We define G≈, (G, σ) |= ϕ similarly: just replace ∼a with ≈a in the clause for Kaϕ.

The corresponding condition for K̂a is the following: G∼, (G, σ) |= K̂aϕ iff there is (H, τ) ∈ G such that 
(G, σ) ∼a (H, τ) and G∼, (H, τ) |= ϕ.

The condition φ(x, y) in a gossip protocol is of the form Kxψ(x, y) or K̂xψ(x, y). Note that the agent 
always considers the actual state (G, σ) as possible but she need not know which is the actual state. 
Informally, each of the agents executing a protocol P stores a list of secrets already learnt, a list of numbers 
known and the list of calls she was involved in. In the synchronous case, the agent also stores the number 
of clock ticks. This information enables each agent a to identify her actual ≈a or ∼a-equivalence class of 
possible gossip states. Given a gossip state (G, σ) in this equivalence class, before attempting a call ab to 
agent b, agent a checks if (G, σ) |= ϕ(a, b).

Definition 16 (Permitted call; extension). Let P be a protocol given by condition ϕ(x, y) and G be an initial 
gossip graph.

• A call ab is P∼-permitted in (G, σ) if G∼, (G, σ) |= ϕ(a, b), call ab is valid in Gσ and not all agents are 
expert in Gσ.

• A call sequence σ is P∼-permitted in G if each call σn+1 is P∼-permitted in (G, σ|n).
• The extension P∼

G (of protocol P in G) is the set of P∼-permitted sequences in G.

The definitions of P≈-permitted calls and the extension P≈
G for the synchronous case are analogous. For 

readability, we omit the superscript ≈ and ∼: we write PG for P∼
G or P≈

G.
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We say that σ is a P-maximal sequence on G iff it is a maximal sequence in PG (that is, a sequence σ in 
PG such that either it is infinite or for all calls ab, the sequence σ; ab is not in PG).

For a fixed set of agents A, we define the extensions of a protocol P to be the sets of pairs (including 
gossip states but also pairs with infinite sequences):

P∼ =
{

(G, σ) : G = (A,N, S) is an initial gossip graph
and σ is P∼-permitted in G

}
and

P≈ =
{

(G, σ) : G = (A,N, S) is an initial gossip graph
and σ is P≈-permitted in G

}
.

Definition 17 (Successful, fair). Given an initial gossip graph G and protocol P, a finite call sequence σ ∈ PG

is successful if in Gσ all agents are experts. Call sequence σ ∈ PG is fair iff σ is finite or, whenever σ is 
infinite, then for all xy: if for all i ∈ N there is a j ≥ i such that xy is P-permitted on Gσ|j , then for all 
i ∈ N there is a j ≥ i such that σj = xy.

• P is strongly successful on G if all maximal σ ∈ PG are successful.
• P is fairly successful on G if it is strongly successful on the restriction of PG to fair call sequences.
• P is weakly successful on G if there is a sequence σ ∈ PG that is maximal and successful.
• P is unsuccessful on G if there is no sequence σ ∈ PG that is successful.

Given a collection I of initial gossip graphs, P is (strongly, fairly, weakly, un-) successful on I iff P is 
(strongly, fairly, weakly, un-) successful on every G ∈ I.

A finite call sequence is fair by definition. If a protocol is fairly successful, then all fair sequences in the 
extension are finite. Let us observe that strongly successful implies fairly successful and the latter implies 
weakly successful (see [24] for more details).

Definition 18 (Gossip problem). Given a collection I of gossip graphs and a protocol P, the gossip problem is: 
is P (not, weakly, fairly, strongly) successful on I?

2.4. Assumptions on knowledge

The results proved in this paper assume several properties on the knowledge or ignorance of the gossiping 
agents. These properties, listed next, are encoded in Definitions 9 and 10.

• Common knowledge of the number of agents |A|. That is, all possible gossip states contain the actual 
number of agents. This prevents agents from stopping or pausing the protocol execution because of a 
belief that there are no more agents to gossip with.4

• Common knowledge of the reliability of the network. It is common knowledge that after a call ab is 
initialized, it is always completed, that is, all known telephone numbers and secrets are exchanged (i.e. 
equations Sab

a = Sa ∪ Sb and Nab
a = Na ∪Nb are common knowledge).

• Common knowledge of group ignorance of others’ initial telephone contacts. It is common knowledge 
that each agent does not know what numbers are initially known by any other agent.

4 For simplicity, we also assume common knowledge of the agents’ identities, i.e. of A. This is not strictly needed though: each 
agent could learn each others’ names together with their numbers, and assign random names before that. Either option gives rise 
to the same gossip graphs, if in the latter option we label the gossip graphs with agent variables {a, b, . . .}, e.g. reading a = “the 
agent with name a, whatever is called by each agent”.
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• Common knowledge that agents only know their own secret initially.
• Common knowledge of group ignorance of others’ protocols. It is common knowledge that any agent a

considers that the actual sequence σ could be any valid sequence σ′ such that σa = σ′
a. That is, agents 

do follow the same protocol P but they do not know it (Definitions 9 and 10 do not depend on a specific 
protocol).

2.5. Impact of conditions on extensions

In this subsection, we study the relations between syntactic restrictions on the conditions of protocols 
and their corresponding extensions.

Lemma 19. For any gossip state (G, σ) ∈ G and any formula ψ in the language L, if ψ contains no modal 
operator Ka (for a ∈ A), we have:

G≈, (G, σ) |= ψ iff G∼, (G, σ) |= ψ.

Proof. The proof is by induction on ψ. (Base Case) By Definition 15, the claim clearly holds for formulas 
N(u, v), S(u, v) and C(uv, w). (Ind. Case) Assuming that the claim holds for ψ and ψ′, it will also hold for 
the formulas ¬ψ and (ψ ∧ ψ′), again by Definition 15. �
Corollary 20. Let P be an epistemic protocol defined by condition ϕ(x, y) and ψ a modal-free formula. Then,

(i) ϕ(x, y) = ψ implies P≈
G = P∼

G

(ii) ϕ(x, y) = K̂xψ implies P≈
G ⊆ P∼

G

(iii) ϕ(x, y) = Kxψ implies P∼
G ⊆ P≈

G.

Proof. For finite call sequences σ, this follows from Lemma 19, together with the fact that ≈x⊆∼x for 
any agent x ∈ A (Proposition 11). Using this and Definition 16, the statement also holds for infinite 
sequences σ. �
3. Basic gossip protocols

In this section, we review some gossip protocols already studied in [24]. These protocols are basic in the 
sense that they can be defined by conditions ϕ(x, y) not containing knowledge modalities. Their character-
ization results, i.e. the classes of graphs where they are strongly, fairly or weakly successful will be used 
later on during the study of epistemic protocols.

For all these basic protocols, their extensions do not depend on the call mode, as shown in Corollary 20. 
We write PG instead of P∼

G or P≈
G.

The Any Call protocol is defined as follows.

Protocol ANY (Any Call). ϕ(x, y) := �
While not every agent knows all secrets, randomly select a pair xy such that x knows y’s number and let x
call y.

The infinite sequence ab; ab; ab; . . . is ANY-permitted and does not lead to the complete gossip graph 
where all agents are expert. Thus, ANY is not successful in general (that is, in weakly connected graphs). 
Still, it is fairly successful, as shown next.

Theorem 21. [24] For any initial gossip graph G, ANY is fairly successful in G iff G is weakly connected.
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The Learn New Secrets protocol, introduced in Attamah et al. [2] (also studied in Apt et al. [1]) is 
motivated by the aim of preventing highly redundant calls in call sequences, like those in ab; ab; ab; . . . .

Protocol LNS (Learn New Secrets). ϕ(x, y) := ¬S(x, y)
While not every agent knows all secrets, select a pair xy such that x knows y’s number but not y’s secret 
and perform call xy.

The skin of a graph G = (A, N, S) is the set of its terminal nodes TG. Let s(G) be the result of skinning 
graph G, i.e. removing all terminal nodes from G. That is, s(G) = (B, N ′, S′) where B = A \ TG, with 
N ′ = N ∩B2 and S′ = S ∩B2.

Definition 22 (Sun graph). A sun graph is a graph G such that s(G) contains a single strongly connected 
component.

The previous graph G is a sun graph. Observe that B = {a, b, c, d} is a strongly connected component 
and nodes e, f do not have outgoing edges, so s(G) = (B, N ′, S′).

Sun graphs describe natural scenarios where a core B of agents, more or less well-connected to each other, 
try to coordinate also with a group of outsiders A \ B known by some core member. Gossiping is useful 
to coordinate an expansion of the initial core B. For an example, a start-up company B in need for funds 
wants to have a joint meeting with possible investors A \B each profiled and invited by some member of B.

Theorem 23. [24] For any initial gossip graph G, LNS is strongly successful on G iff G is a sun graph.

An initial gossip graph G = (A, N, S) is a tree iff (A, (N \ IA)−1) is a directed rooted tree, i.e., from the 
perspective of the relation N \ IA, there is unique node r called root such that for any node x there is a 
unique directed path from x to r. Any node not accessible from other nodes is a leaf.

Definition 24 (Bush, double bush). A bush is a tree where the root r has at least two predecessors, that is 
there exists x �= y such that Nxr and Nyr.

A double bush is a graph (A, N) such that there exists a bush Gb = (Ab, B) with root b, a bush Gd =
(Ad, D) with root d, and an agent c ∈ A such that:

• A = Ab ∪Ad; • Ab ∩Ad = {c};
• N = B ∪D; • c is a leaf in both Gb and Gd

• (c, b) ∈ B and (c, d) ∈ D.

A gossip graph G = (A, N, S) is a (double) bush if the graph (A, N) is a (double) bush.

Fig. 2 (right) depicts the general shape of a double bush.

Theorem 25. [24] LNS is weakly successful on a weakly connected gossip graph G iff G is neither a bush nor 
a double bush.

Recall that LNS is strongly successful only in sun graphs (Theorem 23). The gossip graph with Nab, Nbc

depicted after LNS in the Introduction is neither a sun graph, nor a bush or a double bush. Hence, LNS is 
weakly successful on it (indeed, consider ab; ac; bc), but not strongly successful (bc; ab).
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Fig. 2. (Left) A bush with root a and leaves e, f, c. (Right) A double bush consists of two bushes sharing a leaf c directly connected 
to both roots.

Finally, in the Call Me Once protocol, any two agents cannot call each other more than once during the 
execution of the protocol.

Protocol CO (Call Me Once). ϕ(x, y) := ¬C(xy, x) ∧ ¬C(yx, x)
Agent x may call agent y if x knows y’s number and there was no prior call between x and y.

Theorem 26. [24] The CO protocol is strongly successful on an initial gossip graph G iff G is weakly connected.

Conditions ϕ(x, y) of the protocols ANY, LNS, CO are Boolean formulas. Checking condition ϕ(x, y) can 
be implemented in linear-time in the size of ϕ(x, y).

Since our epistemic agents are introspective, the basic protocols ANY, LNS and CO are equivalent to their 
epistemic counterparts: replacing ϕ(x, y) by Kxϕ(x, y) does not change their extensions:

(ANY) � ≡ Kx�
(LNS) ¬S(x, y) ≡ Kx¬S(x, y)
(CO) ¬C(xy, x) ∧ ¬C(yx, x) ≡ Kx(¬C(xy, x) ∧ ¬C(yx, x))

4. Possible learning protocols

In the protocols considered in this section, an agent can perform a call if he considers it possible that 
either himself or the agent being called will learn at least one new secret. Conditions ϕ(x, y) are of the 
form K̂xψ.

4.1. Protocol PIG — Possible Information Growth

The protocol Possible Information Growth simply asks the caller not to make calls that he knows would 
be redundant for both agents.

Protocol PIG (Possible Information Growth). ϕ(x, y) := K̂x

∨
z∈A(S(x, z) ↔ ¬S(y, z))

Call xy can be made if x knows y’s number and if x considers it possible that there is a secret known by 
one of x, y but not the other.

Example 27. In [2], the infinite PIG≈-execution ab; cd; ab; cd; . . . (also in PIG∼) is described for the complete 
gossip graph for 4 agents:
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Every time a considers it possible that a call bd was just made (instead of the actual cd), a new call ab can 
be made in PIG≈; similarly, every time c considers it possible that a call bd was just made (instead of ab), 
a new call cd can be made; and so on ad infinitum.

Proposition 28. The following hold:

1. PIG∼ is strongly successful on G iff G has at most 2 agents and is weakly connected;
2. PIG≈ is strongly successful on G iff G has at most 3 agents and is weakly connected.

Proof. Right to left of 1. and 2. are easy (for 2., note that any agent c not involved in a call ab knows that 
ab occurred).

Conversely, if G is not weakly connected, then by Corollary 6 both PIG∼ and PIG≈ are not strongly 
successful. Now, we prove left to right for G weakly connected.

1. If G has more than 2 agents, let a, b and c be distinct agents such that Nab and either Nbc or 
Ncb. The call sequence σ = ab; ab; . . . is unsuccessful and in PIG∼

G: indeed for each σ|n = (ab)n we have 
(G, (ab)n) ∼a (G, (ab)n−1; bc), which makes σ|(n + 1) ∈ PIG∼

G.
2. If G has more than 3 agents and is weakly connected, we can prove that G contains one of the following 

patterns5:

where dashed lines represent edges in N ∪N−1.
To show that PIG≈ is not strongly successful in those G, we prove by cases that PIG≈

G contains an infinite 
sequence σ (similar to that in Example 27):
(Case pattern of type 1) Consider σ = ab; cd; (ab; dc)ω. After the first calls ab; cd, agent a keeps calling b
forever (resp. d keeps calling c) with the (false) hope that the previous call was bc, instead of an actual dc
call (resp. an actual ab call).
(Case pattern of type 2) Consider σ = ab; bc; (ab; cb)ω. After the first calls ab; bc, agents a and c happen to 
alternate calls to b with the (false) hope that the previous call was bd instead of the actual cb or, resp., ab
call.

Let us provide the formal details for the case pattern of type 1 (we omit the details for the case pattern 
of type 2 since the proof is analogous). In the first place, the first two calls are clearly in PIG≈

G. Let now 
n > 2 be arbitrary and assume as inductive hypothesis that σ|n ∈ PIG≈

G. If n is even, say n = 2k, then σ|n
is of the form σ|2k = ab; cd; (ab; dc)k−1 and so we have

(G, ab; cd; (ab; dc)k−2; ab; dc) ≈a (G, ab; cd; (ab; dc)k−2; ab; bc)

which makes the call sequence σ|(n + 1) = ab; cd; (ab; dc)k−1; ab to be in PIG≈
G as well. If n is odd, say 

n = 2k + 1, then σ|n is of the form σ|(2k + 1) = ab; cd; (ab; dc)k−1; ab and so

(G, ab; cd; (ab; dc)k−1; ab) ≈d (G, ab; cd; (ab; dc)k−1; bc)

which again gives σ|(n + 1) = ab; cd; (ab; dc)k−1; ab; dc to be in PIG≈
G. �

5 In order to see it, let us consider the execution of Depth-First-Search [5] on the undirected graph corresponding to G from an 
agent r. Let us consider the tree corresponding to that Depth First Search. Either there is a 3-chain from r (and we get a pattern 
of type 1), or a 2-chain from r and a 1-chain from r (and we still get a pattern of type 1) or the root r has 3 children (and we get 
a pattern of type 2).
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Theorem 29. Let G be an initial gossip graph. Then,

PIG is fairly successful in G iff G is weakly connected

Proof. (⇒) This is just Corollary 6. (⇐) Let σ be a maximal PIG-permitted sequence.

(Case: σ is infinite) It suffices to prove that σ is not fair. There is then a prefix τ � σ such that for all 
τ � τ ′ � σ we have: Sτ ′ = Sτ �= A2 and Nτ ′ = Nτ . There exist x, y ∈ A such that Nτxy and Sτ

x �= Sτ
y , 

otherwise we would have Sτ = A2. The call xy is permitted after τ but will not be made after it. Thus, σ is 
not fair.

(Case: σ is finite) It is enough to prove that there are x, y ∈ A such that Nσxy implies Sσ
x �= Sσ

y . (Since 
then σ would not be PIG-maximal.) Towards a contradiction, assume the contrary: for all x, y if Nσxy then 
Sσ
x = Sσ

y . Since G is weakly connected, by the transitivity of (Nσ ∪ (Nσ)−1)∗ and of equality, the latter 
assumption implies that Sσ

x = Sσ
y for all x, y ∈ A. From this, together with the fact that Sσxx for all 

x ∈ A, we conclude that Sσ
x = A = Sσ

y for all x, y ∈ A, in contradiction with the assumption that σ is not 
successful.

It only remains to be shown that the set of successful PIG-permitted sequences in G is non-empty. To 
show that there exists at least one such successful PIG-permitted sequence, let σ be a minimum length 
successful ANY-permitted sequence, see e.g. [24]. Note that since σ has minimum length, it does not contain 
calls between expert agents. We claim that σ is a PIG-sequence. Trivially σ|1 is PIG-permitted. Let σ|n be 
PIG-permitted and σn+1 = xy. There are two cases.

(Sσ|n
x = A): By the assumption Sσ|n

y �= A and so σ|n; xy is PIG-permitted.
(Sσ|n

x �= A): Let z ∈ (A \ S
σ|n
x ), then (G, σ|n) ∼x (G,σ|n; zy) and Sσ|n

x �= S
σ|n;zy
y . Thus, σ|n; xy is 

PIG-permitted. �
The condition defining the PIG protocol, namely that it is possible that either agent involved in the call 

learns some secret, can be split into two conditions: that the caller might learn something; that the callee 
might learn something. Each of these conditions defines a new protocol.

4.2. Protocol TSS — Tell (me) Some Secret

First we consider the protocol where an agent will make a call only if she might learn something.

Protocol TSS (Tell me Some Secret protocol). ϕ(x, y) := K̂x

∨
z∈A(S(y, z) ∧ ¬S(x, z))

Call xy can be made if x knows y’s number and x considers it possible to learn some new secret from y.

For an example of an infinite TSS call sequence, consider again the sequence ab; cd; ab; cd; . . . as in 
Example 27. Thus, the characterization will be in terms of fairly successful sequences.

Theorem 30. Let G be an initial gossip graph. Then,

TSS≈ is fairly successful in G iff G is weakly connected.

Proof. (⇒) This is just Corollary 6. (⇐) We prove that all fair maximal TSS≈-sequences are successful, so 
let σ ∈ TSS≈

G be fair and maximal. Also, let τ � σ be a finite prefix of σ satisfying: Sτ = Sτ ′ and Nτ = Nτ ′

for any finite τ ′ with τ � τ ′ � σ. The proof is by cases.
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(Case: there is an expert in Gτ ) Then let B ⊆ A be the set of experts in Gτ . If B �= A, then there are two 
agents x ∈ B and y ∈ A \B such that xy is a call in τ (otherwise, no expert agent would exist at all). Hence, 
the call yx is both valid (xy ∈ τ implies Nτyx) and TSS≈-permitted in any finite τ ′ with τ � τ ′ � σ. By 
fairness, the call yx is made in some such τ ′, contradicting the above assumption B �= A.

(Case: there is no expert in Gτ ) Then, select x, y ∈ A with minimum (N ∪ N−1)-distance and such that 
¬Sτxy. So there is an agent z (the predecessor of y in that minimum distance path, e.g. z = x if the path 
has length one) such that Sτxz and Nzy or Nyz.

If Nzy, then by Lemma 5 Nτxy, and so the call xy is TSS≈-permitted in any finite τ ′ with τ � τ ′ � σ, 
so the call xy will be made at some such τ ′, contradicting the selection of τ .

If Nyz, then since y is not expert, there is an agent u such that ¬Sτyu.
(Case 1) There is a finite call sequence, say of the form τ ′; ν with τ � τ ′; ν � σ such that y does 

not occur in ν. Then, Gτ ′;ν ≈y Gτ ′;uz, so for any finite τ ′′ with τ ′; ν � τ ′′ � σ, we have that yz is 
TSS≈-permitted. By fairness, this call yz will be made after τ ′; ν in σ. If x is in the call yz (that is, 
x = z), then we reach a contradiction with the selection of τ . Otherwise, if x /∈ {y, z}, then by the same 
reasoning the call xz is in TSS≈-permitted for any suffix of τ containing the call yz; by fairness, the call xz
is eventually made in σ (where x learns the secret of y), so again we reach a contradiction with the selection 
of τ .

(Case 2) Each call after τ (in σ) contains agent y. For each finite τ ′; ν with τ � τ ′; ν � σ we have 
(G, τ ′; ν) ≈x (G, τ ′; yz), so the call xz is TSS≈-permitted after τ , but this call xz is never made after τ
(in σ), contradicting the assumption of fairness. �
Corollary 31. For any initial gossip graph G,

TSS∼ is fairly successful in G iff G is weakly connected.

Proof. The same proof of Theorem 30 works for the asynchronous case: we only have to replace ≈ by ∼, 
and replace the paragraph for the sub-case Nyz with the following: if Nyz, then since y is not expert, there 
is an agent u such that ¬Sτyu. Now for each finite τ ′ with τ � τ ′ � σ, we have Gτ ′ ∼y Gτ ′;uz so yz is 
TSS∼-permitted after any such finite τ ′ with τ � τ ′ � σ. �
4.3. Protocol HSS — Hear Some Secret

The other protocol defined from PIG consists in calls made under the pretext of (possibly) teaching some 
secrets to the other agents. In other words, the Hear Some Secret protocol (HSS) is an instruction for calling 
in which an agent x will make a call to y if x knows the secret of some agent z, and x does not know that 
y has the secret of z.

Protocol HSS (Hear Some Secret protocol). ϕ(x, y) := K̂x

∨
z∈A(S(x, z) ∧ ¬S(y, z))

Call xy can be made if x knows y’s number and considers it possible that she knows some secret that y does 
not know.

Besides the inclusion HSS≈ ⊆ HSS∼ (using Corollary 20), the execution of HSS in asynchronous and 
synchronous gossip models gives rise to different extensions, so HSS≈ ⊂ HSS∼, as shown next.

Example 32. Let G = (A, N, S) be the initial gossip graph given by Nab and Nbc; see the graph in the 
top-left corner of the next picture.
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(Left) After executing the HSS≈
G-sequence ab; ac, agent c knows that b could learn her secret, so the call cb

is HSS≈
G-permitted, leading to a successful execution in Gab;ac;cb.

(Right) After executing the HSS∼
G-sequence ab; ac, agent b considers it possible that only the call ab has 

been made; thus, a call bc is HSS∼
G-permitted after ab; ac, since in the state Gab agent c would learn b’s 

secret. This learning will in fact not occur: the call bc will only lead to agent b learning c’s secret, and thus 
to the successful state Gab;ac;bc. The same sequence ab; ac; bc, though, is not HSS≈

G-permitted, since b would 
be aware that ab; ac already took place.

According to both protocols HSS≈ and HSS∼, if there are n agents, then each of those can call any of the 
n −1 other agents in order to inform of at most n −1 secrets that they might not know. Therefore, the length 
of any HSS sequence is less than n3, and so any HSS-maximal sequence σ is finite. The characterization 
result, then, is in terms of strong success.

Theorem 33. For any initial gossip graph G,

HSS≈ is strongly successful in G iff G is weakly connected.

Proof. Let G = (A, N, S) be a weakly connected graph. For the ⇒ direction, we use Corollary 6. For the 
⇐ direction, let σ be a maximal HSS≈-permitted sequence in G and assume, towards a contradiction, that 
Sσ �= A2. Select agents a and b with minimum (N ∪ N−1)-distance satisfying ¬Sσab; and let π be such a 
minimum distance path between a and b.

By the maximality of σ, we must also have that ¬Nσab. Again by the maximality of σ, we must have 
¬Nσba as well (otherwise σ; ba would be HSS≈

G-permitted), and so we also have that ¬Sσba.
Select any c in π different from a and b (such c must exist in the weakly connected gossip graph G: the 

previous fact ¬Nσab implies ¬Nab, and similarly ¬Nσba implies ¬Nba).
By the minimality of π, we must have that both Sσca and Sσcb. Recall that (G, σ) ≈c (G, σ) and in the 

latter b ∈ Sσ
c \ Sσ

a . Thus, σ; ca is HSS≈-permitted in G, contradicting the maximality of σ. �
The same proof can be used in asynchronous gossip models, just replacing HSS≈ by HSS∼.

Corollary 34. For any initial gossip graph G,

HSS∼ is strongly successful in G iff G is weakly connected.

4.4. Protocol HMS — Hear My Secret

The Hear My Secret protocol (HMS) is proposed in Apt et al. [1], where it is proved (for the merge-and-
learn call mode) that it is successful in any complete graph Kn, i.e. provided N = A2. In this protocol, an 
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agent x will make a call to y if x does not know that y has the secret of x. Hence, HMS can be seen as the 
dual of LNS, and also as a particular case of HSS.

Protocol HMS (Hear My Secret Protocol). ϕ(x, y) := K̂x¬S(y, x)
Call xy is possible if x knows y’s number and x considers it possible that y does not know x’s secret.

The following results are similarly proved for synchronous and asynchronous gossip models G≈ and G∼. 
Instead of HMS≈

G and HMS∼
G, we simply write HMS in the proofs. Note that only finitely-many calls can be 

made in any HMS sequence, so in particular all HMS-maximal sequences are finite.

Lemma 35. For any initial gossip graph G = (A, N, S), if σ is an HMS-maximal call sequence on G, then 
Sσ = Nσ.

Proof. Assume that σ is HMS-maximal on G. By Fact 4, we only need to show that Nσ ⊆ Sσ, so let Nσab be 
arbitrary. By HMS-maximality, we must have that Sσba (as otherwise (G, σ) ≈a (G, σ) and (G, σ) ∼a (G, σ)
would make σ; ab permitted); again by Fact 4, Nσba, and finally again by HMS-maximality, we must have 
Sσab. �
Corollary 36. If σ is an HMS-maximal call sequence on G, then Sσ ◦N∗ = Sσ.

Proof. We have that Sσ ⊆ Sσ◦N∗ by definition of N∗. We now prove that Sσ◦N∗ ⊆ Sσ: let (x, y) ∈ Sσ◦N∗. 
Then for some k ∈ N, (x, y) ∈ Sσ ◦Nk. We get from Lemma 5 plus Lemma 35 that Sσ ◦N ⊆ Sσ. Applying 
this fact k times yields (x, y) ∈ Sσ. �
Corollary 37. If σ is an HMS-maximal call sequence on G, then Sσ and Nσ are symmetrical.

Proof. Clearly, (G, σ) ≈a (G, σ) (resp. with ∼c), and from Sσab and ¬Sσba, we obtain Nσab. Now the 
graph Gσ satisfies ¬Sσba, so σ; ab is also in HMS≈

G (resp. in HMS∼
G), contradicting the assumption that 

σ is maximal. From Sσ = (Sσ)−1 and Lemma 35, we conclude that Nσ is also symmetrical: Nσ = Sσ =
(Sσ)−1 = (Nσ)−1. �
Definition 38 (Sun� graph). An initial gossip graph G = (A, N, S) is a sun� iff there is a strongly connected 
component B ⊆ A such that for each x ∈ B and each y ∈ A, we have N∗xy.

Sun� graphs obtain as a natural generalization of sun graphs by closure under transitivity: the outsiders 
can also bring to the group other outsiders not directly known by the core group B, who can bring more 
outsiders, and so on. For example, some activist group of vegans B try to strengthen their power by 
coordinating a dinner with other vegans they know about, and making this invitation extensible to others.

Theorem 39. The HMS protocol is strongly successful in any sun� graph.

Proof. Let G be a sun� graph, and let B be some strongly connected component in G such that its elements 
b satisfy N∗by for any y ∈ A. Also, let σ be an HMS-maximal call sequence on G. Let x, y ∈ A. We show 
that Sσxy.
(Case x ∈ B) Then, N∗xy, and because Sxx, and also Sσxx, we obtain that (x, y) ∈ Sσ◦N∗. By Corollary 36
it follows that Sσxy.
(Case x /∈ B) If y ∈ B, then from the previous case we have Sσyx and so Nσyx. If ¬Sσxy, then yx is 
HMS-permitted after σ. This contradicts the maximality of σ. Hence, x knows all the secrets in B. If y /∈ B, 
let u ∈ B. Thus, N∗uy, and so Sσxu. These two facts jointly imply that Sσxy using Corollary 36. �



H. van Ditmarsch et al. / Journal of Applied Logic 20 (2017) 1–31 19
But the HMS protocol is also strongly successful on other graphs:

Example 40. Let G be the initial gossip graph given by: Nab and Ncb. It is not a sun� but HMS is strongly 
successful on G: its extension consists in ab; cb; ca and cb; ab; ac.

The characterization of gossip graphs where the HMS protocol is weakly successful can be more easily 
established.

Theorem 41. Let G = (A, N, S) be an initial gossip graph. Then,

HMS≈ is weakly successful in G iff G is weakly connected.

Proof. (⇒) This is just Corollary 6. (⇐) The proof is based on induction on the number of agents 
n = |A|. (Base case n = 2) Let A = {a, b} and without loss of generality suppose Nab. The sequence 
ab is HMS≈-permitted in G, and after it a and b are expert. (Ind. Step n 	→ n +1) Assume (Ind. Hyp.) that 
for any weakly connected gossip graph with n agents there is an HMS≈

G successful execution in this graph. 
Let G = (A, N, S) be a weakly connected graph with n + 1 agents. There exists an agent x such that, for 
Ax = A � {x}, the restriction of G to Ax, namely, the graph

G′ =
(
Ax, N ∩Ax

2, S ∩Ax
2 ) is weakly connected.6

By the Ind. Hyp. there is an HMS≈-maximal sequence σ′ on G′ which is successful. Since G is weakly 
connected, a call involving x after σ′ is possible, so let xy be such a call. After σ′, agent y is an expert 
among Ax and the call xy makes x expert among A. After σ′; xy let agent x call all the agents in A �{x, y}. 
The new sequence σ is HMS≈-permitted and every one is expert after it. �

Combining this result with Proposition 11, we obtain the characterization of weak success for HMS under 
asynchronous gossip models.

Corollary 42. Let G = (A, N, S) be an initial gossip graph. Then,

HMS∼ is weakly successful in G iff G is weakly connected.

5. Necessary learning protocols

Contrary to the previous section, where conditions were of the form K̂xψ, here we consider protocols 
whose conditions rely on the Kx modality. A protocol first considered in Attamah et al. [2] is the so-called 
Known Information Growth KIG, where one agent x can perform a call xy if she knows that either herself 
or the agent called y will learn at least one new secret. This informal condition has two readings: de dicto
and de re, giving rise to two protocols.7

Protocol KIGd (Known Information Growth de dicto). ϕ(x, y) := Kx

∨
z∈A(S(x, z) ↔ ¬S(y, z))

Call xy can be made if x knows y’s number and if x knows that some secret is to be learnt either by x or y; 
but x might not know whose secret will that be or who will learn it.

6 For proving the existence of such an x, consider a spanning tree of the undirected graph corresponding to G. Then let x be a 
leaf of this tree.
7 The de dicto/de re distinction is well-known in linguistics [20] and philosophical logic [9]: the famous example every man loves 

a woman can either mean that there is a woman every man loves (de re or ∃∀-reading) or that for every man there exists a woman 
(typically but not necessarily different for different men) that he loves (de dicto or ∀∃-reading). This distinction has also been used 
in epistemic logical settings, see e.g. [18].
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Protocol KIGr (Known Information Growth de re). ϕ(x, y) :=
∨

z∈A Kx(S(x, z) ↔ ¬S(y, z))
Call xy can be made if x knows y’s number and there is some agent z such that x knows that its secret will 
be learnt by either x or y.

Let us observe that the de dicto/de re distinction is superfluous in Section 4. This is due to those protocols’ 
conditions being of the form ϕ(x, y) = K̂xψ: the K̂x-modality commutes with the disjunction 

∨
z∈A; that 

is, K̂x

∨
z∈A ψ is equivalent to 

∨
z∈A K̂xψ. Also, note that only finitely-many calls can be made in any KIGd

or KIGr execution, so all maximal call sequences σ are finite.

5.1. Synchronous calls in KIG protocols

Under the synchronous mode of telephone calls, the protocols KIGr≈G and KIGd≈G are different from each 
other (and also different from LNS; compare with the asynchronous case below). Two properties of both 
protocols in synchronous gossip models KIGr≈G and KIGd≈G are expressed by the following Propositions 43
and 44.

Proposition 43. If G = (A, N, S) is an initial gossip graph and σ is KIGd≈-maximal (resp. KIGr≈-maximal) 
on G, then Sσ = Nσ.

Proof. Let G be an initial gossip graph, and let there be x, y with Nσxy and ¬Sσxy. Then the call xy is 
KIGd≈-permitted (resp. KIGr≈-permitted) in Gσ, which is in contradiction with the maximality of σ. This 
shows Nσ ⊆ Sσ. The property Sσ ⊆ Nσ follows from Fact 4. Together, this gives Sσ = Nσ. �
Proposition 44. If σ is a KIGd≈-maximal (resp. a KIGr≈-maximal) call sequence on an initial gossip graph G, 
then Sσ ◦N∗ = Sσ.

Proof. The proof is exactly as in Corollary 36, simply replace Lemma 35 by Proposition 43. �
Theorem 45. The KIGd≈ and KIGr≈ protocols are strongly successful on any initial gossip graph G that is a 
sun graph.

Proof. Let G = (A, N, S) be a sun graph. Let σ be a KIGd≈-maximal (resp. KIGr≈-maximal) call sequence 
on G. Let x, y ∈ A. We first show that Sσxy.

If x is in s(G), then N∗xy. Because of Sxx, also Sσxx, and therefore (x, y) ∈ Sσ ◦N∗. By Proposition 44
it follows that Sσxy.

If x is a terminal node, then by maximality of σ, there is some u with ux ∈ σ. This means that Nσuz for 
some z with Nzx (where possibly u = z), because u must have learnt x’s number from some such z. Thus, 
after the call ux, x has the number of some z with Nzx, that is, Nσxz. By maximality of σ it follows that 
Sσxz. Since z ∈ s(G) it follows that N∗zy. From Sσxz and N∗zy we get (x, y) ∈ Sσ ◦N∗. By Proposition 44
we then get Sσxy, and we are done. �

The previous result is not a full characterization: KIGr≈ and KIG∼ are strongly successful in the non-sun 
gossip graph G = ({a, b, c, d}, N, S) defined by Nad, Nbd, Ncd.

Theorem 46. For any initial gossip graph G = (A, N, S),

KIGr≈ and KIGd≈ are weakly successful in G iff G is weakly connected.

Proof. The proof for KIGr≈ is exactly the same as that for HMS≈ (Theorem 41), just replace HMS≈ by 
KIGr≈. The proof for KIGd≈ simply follows from that for KIGr≈ together with the fact KIGr≈ ⊆ KIGd≈. �
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5.2. Asynchronous calls in KIG protocols

The situation in asynchronous gossip models G∼ is different, as we show next, since for any gossip graph 
the three protocols LNS, KIGr∼ and KIGd∼ collapse into the same extension.

A first observation is that under asynchronous calls, if an agent a does not have a given secret z, then a
considers it possible that any agent b does not have it either.

Lemma 47. Let a gossip graph G = (A, N, S) for three or more agents be given and σ a KIG∼ sequence in G. 
Let a, b, c be three of the agents in A such that agent a does not know the secret of agent c in Gσ. Then, 
agent a considers a sequence σ′ possible after which agent b does not know the secret of agent c, and knows 
fewer secrets than under σ, i.e.

(G, σ) ∼a (G, σ′) and c /∈ Sσ′

b ⊆ Sσ
b (for some σ′).

Proof. If b does not know the secret of c in Gσ, just let σ′ = σ. Therefore, suppose that b knows the 
secret of c. Let us consider all minimal ways in which b could have learnt the secret of c. This is the set Θ
defined by:

Θ =
{
τ a subsequence of σ : τ = cx1, x1x2; . . . ;xkb with xi �= xj

and b �= xi �= c for each 1 ≤ i, j ≤ k

}
Now define the following procedure for deleting calls from each τ ∈ Θ. Select some such τ ∈ Θ, and denote 
by A(τ) the set of agents occurring in the calls in τ . Observe first that
(i) for any xi ∈ A(τ) no subsequence of calls xiy1; y1y2; . . . ; yka can exist in σ, after the first call involving 

xi is made in τ .

The reason is that otherwise a would learn the secret of c. As a consequence of (i), if we let τ ′ (resp. σ′′) 
be the result of removing the last call xkb from τ (resp. σ), removing this call xkb will not affect any of the 
calls za involving a in σ. That is, we claim that
(ii) (G, σ) ∼a (G, σ′′)

We show this claim by induction on the calls za in σ. We only show the inductive step: let za = σl+1. 
Consider the cases:
(Case: za occurs before xkb) Then (G, σl) and (G, σ′

l) are identical and so indistinguishable by both z and a; 
thus, (G, σl; za) ∼a (G, σ′

l; za).
(Case: za occurs after xkb) That is, σ′

l = σl+1. We can apply (i) to conclude that (G, σ′
l) ∼z (G, σl+1) and 

(G, σ′
l) ∼a (G, σl+1), since otherwise σ would contain a subsequence xkb; . . . ; yz; za transmitting the secret 

of c to a through xk, b and z.
Now removing the last call xkb from τ may cause a call to be removed from some other τ ′′ in Θ. However, 

because τ ′′ is (also) a minimal subsequence transmitting the secret of c to b, this call xkb can only be the 
last call of τ ′′ too. Thus, we can now repeat the procedure for all remaining sequences τ in Θ that still have 
their last call in place, and reason as in (ii) at each step of this procedure. Call the resulting sequence σ′. 
The sequence σ′ is indistinguishable for agent a from the sequence σ. In addition, agent b does not know 
the secret of c after σ′. Finally, since σ′ is a subsequence of σ, we also have Sσ′

b ⊆ Sσ
b . �

Lemma 48. Let G = (A, N, S) be any initial graph with |A| ≥ 3. For any finite valid sequence σ of asyn-
chronous calls in G and two agents a, b ∈ A, there exists a sequence σ′ such that

(G, σ) ∼a (G, σ′) and Sσ′

b ⊆ Sσ′

a
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Proof. Let z1, z2, . . . , zn be an enumeration of all agents in A such that agent a does not know their secrets 
after σ,

∀1 ≤ i ≤ n zi /∈ Sσ
a

We inductively define a sequence σ′ such that

(G, σ) ∼a (G, σ′) and Sσ′

b ⊆ Sσ′

a

Let σ0 = σ and define σk+1 as the sequence of calls where

(G, σk) ∼a (G, σk+1) and zk+1 /∈ S
σk+1
b ⊆ Sσk

b

According to Lemma 47 these sequences exist. The sequence σ′ = σn is our desired sequence. �
As a consequence of the previous results for asynchronous calls, the two Known Information Growth 

protocols KIGd and KIGr have the same extension as the Learn New Secret protocol LNS.

Theorem 49. The following equalities hold:

KIGr∼ = KIGd∼ = LNS.

Proof. We show the following chain of inclusions between the extensions

LNS ⊆ KIGr∼ ⊆ KIGd∼ ⊆ LNS

The first two inclusions LNS ⊆ KIGr∼ ⊆ KIGd∼ are obvious from the conditions of these protocols and 
Definition 9.

We prove that KIGd∼ ⊆ LNS. For this, let σ be an arbitrary KIGd∼-permitted sequence of calls in some G. 
Towards a contradiction, assume there is a call in σ that is not LNS-permitted in G and let ab be the first 
such call in σ. This means that a knows the secret of b before the call ab. Let σ = σ1; ab; σ2, hence σ1 is 
LNS-permitted in G. By Lemma 48 there is a sequence σ′

1 such that

(G, σ1) ∼a (G, σ′
1) and S

σ′
1

b ⊆ S
σ′
1

a

Let σ′
1 = π1; X; π2 where X = ca is the last call in σ′

1 which contains a.
By Definition 9, (G, π1;X) ∼a (G, π1;X; cb)
hence (G, σ1) ∼a (G, σ′

1) = (G, π1;X;π2) ∼a (G, π1;X; cb;π2)
therefore (G, σ1) ∼a (G, π1;X; cb;π2).
In Gπ1;X;cb;π2 the secrets known by b and by a are the same. By this fact the call ab is not KIGd∼G-permitted 

after σ1 (contradiction). Thus, KIGd∼G ⊆ LNSG. �
This result can be combined with Theorems 23 and 25 to obtain the following characterization results:

Corollary 50. For each KIG∼ ∈ {KIGr∼, KIGd∼} and any gossip graph G,

(i) KIG∼ is strongly successful in G iff G is a sun graph,
(ii) KIG∼ is weakly successful in G iff G is neither a bush nor a double bush.
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6. Comparison of protocol extensions

In addition to the characterization results presented in Sections 4 and 5, it is also of interest to study 
which of these protocols coincide with, or subsume, other protocols in terms of their extensions.

Let us first compare the asynchronous extension of each protocol with its synchronous counterpart.

Corollary 51. The following inclusions hold:

P≈
G ⊂ P∼

G for each P ∈ {HMS,HSS,TSS,PIG}, and
P∼
G ⊂ P≈

G for each P ∈ {KIGr,KIGd}.

Proof. The inclusions follow from Corollary 20 together with the definition of each protocol. To see that 
these inclusions are proper, consider the following examples:

(K3, ab; ab) ∈ PIG∼ \ PIG≈ (K3, ab; ac; cb) ∈ KIGr≈ \ KIGr∼

(K3, ab; ab) ∈ TSS∼ \ TSS≈ (K3, ab; ac; cb) ∈ KIGd≈ \ KIGd∼

(K3, ab; ac; bc; ab) ∈ HSS∼ \ HSS≈

(K3, ab; bc; ac) ∈ HMS∼ \ HMS≈ �
Second, we can compare the basic protocols LNS, CO and ANY from [24] with those studied in this paper. 

For the PIG protocol:

Proposition 52. The following inclusions hold: CO ⊂ PIG≈ ⊂ PIG∼ ⊂ ANY.

Proof. The inclusion CO ⊂ PIG≈ follows from the following characterization of the sets PIG∼ and PIG≈:

PIG∼ = ANY \ {(G, σ) | σ = τ ; xy; . . . ; xy and Sτ ;xy
x = A}

PIG≈ = ANY \ (PIG∼ ∪ {(G, σ) | σ = . . . ; xy; xy; . . .})

From this it follows that if σ /∈ PIG≈
G then σ contains two calls between the same pair of agents, so σ /∈ COG. 

Inclusions PIG≈ ⊂ PIG∼ ⊆ ANY follow from Corollary 51 and Corollary 20.
The proper inclusions CO ⊂ PIG≈ and PIG∼ ⊂ ANY are shown next:

(K3, ab; bc; ab) ∈ PIG≈ \ CO (K3, ab; bc; bc) ∈ ANY \ PIG∼. �
The other non-basic protocols are also included in ANY, but none of them extends CO.

Proposition 53. CO � P, for any P ∈ {LNS, HMS, HSS, TSS, KIGr, KIGd}.

Proof. For an example of a CO-execution not in the extension of the other protocols, consider the sequence 
ab; ca; da; cb; cd. �

More detailed comparisons between the extensions of the different protocols within each call mode are 
presented next.

6.1. Comparison of protocols in asynchronous gossip models

In the asynchronous gossip models, the protocols can be arranged according to the inclusions listed next. 
Fig. 3 illustrates these inclusions and also contains examples showing that the inclusions are proper.
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Fig. 3. Inclusions of protocol extensions in asynchronous gossip models.

Corollary 54. The following inclusions and equalities hold among the protocols in asynchronous gossip mod-
els:

(i) LNS = KIGr∼ = KIGd∼ ⊂ HMS∼ ∩ TSS∼

(ii) HMS∼ ⊂ CO ∩ HSS∼

(iii) TSS∼ ∪ CO∼ ∪ HSS∼ ⊂ PIG∼

Proof. The equalities in (i) were proved in Theorem 49. For the inclusion LNS ⊂ HMS∼ see Corollary 57
and Example 55.4 below. For the inclusion LNS ⊆ TSS∼, on the one hand we have that the LNS condition 
¬S(x, y) is equivalent to both Kx¬S(x, y) and K̂x¬S(x, y); but the latter is equivalent to K̂x(S(y, y) ∧
¬S(x, y)) (since S(y, y) is true in any gossip state); finally, if we let z = y, the latter is a particular case of 
K̂x

∨
z∈A(S(y, z) ∧ ¬S(x, z)). Example 55.2 shows that this inclusion is proper.

For (ii), we show first HMS∼ ⊆ CO. Note that after each call in any HMS∼ sequence σ, both caller and 
callee know the other agent has their secret, and so no other call between the two will be made, so σ ∈ COG. 
The inclusion HMS∼ ⊆ HSS∼ holds by definition of the corresponding protocol conditions. With detail, let 
σ ∈ HMS∼

G and let (H, τ) be any gossip state. We have (H, τ) |= S(x, x), so if (H, τ) |= ¬S(y, x) also holds, 
then (H, τ) |= (S(x, x) ↔ ¬S(y, x)), so (H, τ) |=

∨
z∈A(S(x, z) ↔ ¬S(y, z)). Given a gossip state (G, σ) with 

(G, σ) |= K̂x¬S(y, x), we can apply the previous implication to those (H, τ) such that (G, σ) ∼x (H, τ), and 
obtain (G, σ) |= K̂x

∨
z∈A(S(x, z) ↔ ¬S(y, z)). Thus, σ ∈ HSS∼

G. Example 55.5 shows these inclusions are 
proper.

For (iii), the inclusions TSS∼, HSS∼ ⊆ PIG∼ are obvious from the definitions of the protocol conditions. 
The inclusion CO ⊆ PIG∼ was proved in Proposition 52. Example 55.1 shows that these inclusions are 
proper. �

The possible inclusion CO ⊆ HSS∼ remains an open problem. See Fig. 3 and Example 55 for an illustration 
of Corollary 54, together with examples showing that those inclusions are proper. The two question marks 
“?” correspond to the open problem whether CO ⊆ HSS∼ holds.



H. van Ditmarsch et al. / Journal of Applied Logic 20 (2017) 1–31 25
Example 55. The following sequences are examples used in Fig. 3:

1. the sequence (ab; cd)32; ab; bc; ba is in PIGK4 but not in HSSK4 (given the upper bound 43 = 64 for 
HSS-sequences) and also not in TSSK4 since before the last call b becomes expert; clearly, it is not in 
COK4 either.

2. ab; ac; db; cb; ad is in HSS∼
K4 , TSS∼

K4 , COK4 but not in HMS∼
K4 .

3. ab; ac; db; cb is in HMS∼
K4 , TSS∼

K4 and COK4 .
4. bc; ab; ac is in HMS∼

G but not in TSS∼
G, where G is the gossip graph: a b c.

5. σ = ab; bc; bd; ce; ad; ae; ac is in COK5 but not in HMS∼
K5 ; the reason is that after the calls σ|6 = ab; . . . ; ae, 

agent a knows that c must know her own secret, so the last call σ7 = ac cannot be made in HMS∼
K5 . 

Note also that σ ∈ HSS∼
K5 � TSS∼

K5 .

The rest of this section is devoted to the proof that LNS ⊆ HMS∼. Let us show first that for any 
σ ∈ HMS∼

G, if agent a does not have the secret of b, then it is also possible (for a) that b does not have the 
secret of a; in other words

(G, σ) |= Ka S(b, a) implies (G, σ) |= S(a, b).

Lemma 56. Let G = (A, N, S) be an initial gossip graph, and let σ be an HMS∼
G-sequence. If ¬Sσab, then 

there is τ such that (G, σ) ∼a (G, τ) and ¬Sτ ba.

Proof. Let |A| = n, we first define the tree of calls (ultimately) to a in σ. For this we define treeσk(a)
inductively as:

treeσ0 (a) = {xa : xa ∈ σ}

treeσk+1(a) =
{
xy;π : ∃π = yz; . . . ;wa ∈ treeσk(a)

for σ = . . . ;xy; . . . ; yz; . . .

}
Observe that in HMS∼

G there cannot be two calls between the same pair of agents. Thus, n · (n − 1) is 
effectively the maximum length of sequences in HMS∼

G and hence we can define the tree of calls to a in σ as:

treeσ(a) =
⋃

k≤n·(n−1) treeσk(a)

We proceed with the proof. Assume ¬Sσab. Let τ be the subsequence of σ consisting of all the calls in 
treeσ(a) (i.e. in increasing order w.r.t. that in σ).

Since τ contains no call involving b, we have that Sτ
b = {b} and in particular ¬Sτba. Thus, it suffices to 

show that (G, σ) ∼a (G, τ).
Towards a contradiction, let τ ′ = τ ′′; cd be the smallest prefix such that (G, σ′) �∼a (G, τ ′), where 

σ′ = σ′′; cd is the smallest prefix of σ such that τ ′ is a subsequence of σ′. Thus, we have (G, σ′′) ∼a (G, τ ′′)
but (G, σ′) �∼a (G, τ ′). By Definition 9, cd must be a call of the form ad and moreover satisfying either of 
the following: Sσ′′

d �= Sτ ′′

d or Nσ′′

d �= Nτ ′′

d . (The other two possibilities Sσ′′
a �= Sτ ′′

a or Nσ′′
a �= Nτ ′′

a are ruled 
out by the assumption (G, σ′′) ∼a (G, τ ′′).) In either case there must be a call de in σ′′ before ad which is 
not in τ ′′. But this contradicts the definition of τ from the tree of calls treeσ(a). �

As a consequence, we have that the ϕ(x, y) condition for LNS implies the condition for HMS∼. From this 
we infer the following.

Corollary 57. The following inclusion holds: LNS ⊆ HMS∼.

Thus, every LNS sequence is in HMS∼, but not every LNS sequence is in HMS≈ (the next section contains 
more results within the synchronous case):
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Fig. 4. Inclusions of protocol extensions in synchronous gossip models.

Example 58. Let Kn+1 = (A, N, S) with, say, A = {a1, . . . , an, b}. Then

a1a2; a2b; a1a3; . . . ; a1an; a1b

is in LNS, but the last call a1b cannot be made in HMS≈
G, since before this call a1 knows that the second 

call could only be of the form a2b.

6.2. Comparison of protocols in synchronous gossip models

Under synchronous calls, we obtain more fine-grained distinctions among protocol extensions than in the 
asynchronous case (Fig. 3). The inclusions among protocol extensions under synchronous calls are listed in 
Corollary 59 and depicted in Fig. 4.

Corollary 59. The following inclusions hold:

(i) LNS ⊂ KIGr≈ ⊂ KIGd≈ (ii) LNS ⊂ CO ∩ TSS≈

(iii) HMS≈ ⊂ CO ∩ HSS≈ (iv) KIGd≈ ∪ HSS≈ ∪ TSS≈ ⊂ PIG≈
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Fig. 5. Graphs for some examples of Fig. 4.

Proof. The proof of the ⊆-inclusions in (i) is analogous to that of Theorem 49 for asynchronous gossip 
models, just replace ∼x by ≈x and G≈ by G∼. For (ii), the claim LNS ⊆ CO was shown in [24]; for the 
inclusion HMS≈ ⊆ CO in (ii), combine the proof in Corollary 54 with the fact HMS≈ ⊆ HMS∼. For (iii)–(iv), 
the proofs are the same than in Corollary 54 for the asynchronous case, again replacing ∼x by ≈x. Finally, 
see Fig. 4 for examples showing that these inclusions are proper. �

In the table of Fig. 4, the two rightmost columns contain respectively sequences not in TSS≈
K4 (left) and in 

TSS≈
K4 (right). These sequences are (resp. are not) in the extension of each of the protocols listed in the left 

if they are labeled with 1 (resp. 0). Combinations labeled by ‘none’ are not possible due to LNS ⊆ TSS≈.
Graphs G3, G4, G10, G13 are given in Fig. 5. Examples 3, 4, 10 and 13 (in grey) describe sequences that are 

actually not in KIGd≈G � KIGr≈G because we assume for these four examples that all agents have knowledge 
of the initial topology N . It is unknown whether examples for the four cells in grey exist without this 
assumption.

7. Related work

The original gossip problem of spreading secrets on permanent networks has been extensively studied, first 
in the case of complete graphs, i.e. when any agent can call any other agent (Tijdeman [22], or Hurkens [17]
for a modern reference) and later for other network topologies, e.g. Golumbic [10] and Harary et al. [13]. 
Hedetniemi et al. [14] is a survey of results in many different variants of the gossip problem. The focus is 
on the minimum number of calls leading to all agents knowing all secrets; and the different proofs describe 
centralized algorithms for call scheduling among a given network of agents. These papers, then, do not aim 
at the study of distributed protocols.

Distributed epistemic protocols for gossip have been introduced recently in Attamah et al. [2] and Apt et 
al. [1], where each agent decides to call depending on its knowledge. [2] studied LNS, PIG, KIGd and KIGr in 
complete graphs, whereas [1] studied LNS and HMS under the merge-then-learn call mode (again in complete 
graphs) and protocols designed for ring networks. As we said near the end of Section 2.1, the accessibility 
relations under the merge-then-learn model of calls are less fine-grained than under learn-then-merge (and 
presumably less natural as models of communication for standard gossip applications among humans and 
also computers). More formally,

Fact 60. For any initial gossip state G = (A, N, S) and any agent x ∈ A,

∼x ⊆∼ML
x and ≈x ⊆≈ML

x

where ∼ML
x and ≈ML

x denote the accessibility relations under merge-then-learn.
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The subset part (⊆) of these two claims can be easily proved by translating these telephone calls into 
secret announcements in the framework of Dynamic Epistemic Logic [23]: for learn-then-merge, announce 
what secrets are known by each agent, e.g. S(a, c) ∧ S(b, d); for merge-then-learn, announce what either of 
them know, e.g. (S(a, c) ∨ S(b, c)) ∧ (S(a, d) ∨ S(b, d)). Clearly, the former are at least as informative as the 
latter. Moreover, the above inclusions ∼x⊆∼ML

x and ≈x ⊆≈ML
x can be proper, as shown in Example 61.

Example 61 (Merge-then-learn). Under asynchronous merge-then-learn, if a knows c’s secret before a call 
ab (center gossip states), after the call ab she cannot tell if b also knew it before (bottom), or just learnt it 
from her (top). That is, (G, ac; ab) ∼ML

a (G, ac; bc; ab), while (G, ac; ab) �∼a (G, ac; bc; ab).

For the synchronous case, consider a similar gossip graph G′ with 5 agents; then,

(G′, ac; cb; ab) ≈ML
a (G′, ac; de; ab) while (G′, ac; cb; ab) �≈a (G′, ac; de; ab).

The related problem of epidemic information (e.g. for distributed database maintenance among processes) 
has also been studied in dynamic topologies, either randomly generated at each round of calls in Karp et 
al. [19], or when processes (with bounded contact lists) exchange contacts in messages — see Eugster et 
al. [6] for a survey. Haeupler et al. [11] propose an efficient algorithm for the gossiping of agents’ numbers 
only (i.e. addresses), also called the resource discovery problem. Other distributed algorithms for dynamic 
gossip include LNS, CO and other token-passing protocols, which have been studied in previous work [24].

The current paper is a follow-up of [24] with the goal of understanding distributed knowledge-based 
protocols. Thus, the conditions for a call xy in the protocols studied here are not just those definable only 
from the facts available to the caller agent x (i.e. the secrets and numbers learnt, the list of previous calls 
made or received by x). In epistemic protocols, the condition for call xy can also depend as well on the 
reasoning with higher-order information, e.g. the secrets that other agents knew in the past. From this, 
agent x can figure out which global call histories might or might not have occurred, and which secrets an 
agent might know.

Indeed, the language used here for protocol conditions (Definition 14) is the standard language of epis-
temic logic of Hinktikka [16] with multiple agents and where atomic propositions are grounded. Our language 
does not contain any dynamic operators, as in Baltag et al. [4] or temporal operators, in the style of Halpern 
et al. [12] or Parikh et al. [21]. The approach of [21] employs memory-based agents. Our agents have memory, 
but only indirectly so (and this indirect usage is common in the area): this is the role of the C(ab, c) variables 
in our purely epistemic language, that become (and then remain) true once agent c has been involved (as 
a or as b) in a call ab. Attamah et al. [2] propose another similar language but with action models for calls 
and with protocols explicitly written in PDL dialect [8] with knowledge operators. In Apt et al. [1], they 
consider epistemic guards for knowledge-based programs like in our setting.

Our gossip models could be reformulated as specific interpreted systems, in the style of Halpern et al. [12]
or Fagin et al. [7]. In [2], possible worlds are distributions of secrets (gossip graphs) whereas in our settings 
they encode both the initial gossip graph and the history of calls executed so far. In [1], possible worlds 
only contain the call sequences because the topology (complete graph or ring) is common knowledge.
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Our protocols can be seen as specific knowledge-based programs (see chap. 7 in [7]): the conditions for 
calls by some agent x are of the form ¬Kxψ or Kxψ, as explained at the end of Section 3.

Finally, Herzig et al. [15] proposes an epistemic logic where calls are modeled by assignments of visibility 
atoms. This logic is then used to model knowledge after telephone calls in classical gossip.

8. Conclusions and future work

In this paper, we studied some distributed protocols for dynamic gossip that are defined by epistemic 
conditions, following the work started in [24]. As in classical gossip, the goal is that all agents learn all 
secrets using telephone calls. But in dynamic gossip both secrets and telephone numbers of agents are 
communicated. As a consequence, any given protocol P requires less or equal calls than in the classical 
problem. We focused on two modes of calls, leading to the corresponding asynchronous and synchronous 
notions of knowledge (an agent obtains knowledge from the contents of each call with other agents). As 
usual in modal logic, each notion of knowledge is represented by an accessibility relation between possible 
states, here described by a pair consisting of an initial network and a call history.

The epistemic protocols studied in this paper are based on the idea that each call (possibly or necessarily) 
results in the learning of some secret by either agent involved in this call. After presenting each protocol, 
we proved the corresponding characterization results, i.e. that some class of graphs captures all (or contains 
some of) the gossip scenarios where this protocol is necessarily (or possibly) successful. The characterization 
results are summarized in the following table, where “. . . ” denotes that the class of gossip graphs is the 
same as in the cell on the left.

Strong success Fair success Weak success
ANY [24] no weakly connected . . .
LNS [24] sun graphs . . . not (bush or double bush)
CO [24] weakly connected . . . . . .
PIG no weakly connected 

(Theorem 29)
. . .

TSS no weakly connected 
(Theorem 30, Corollary 31)

. . .

HSS weakly connected 
(Theorem 33, Corollary 34)

. . . . . .

HMS at least for sun� graphs 
(Theorem 39)

. . . weakly connected 
(Theorem 41, Corollary 42)

KIGd≈

KIGr≈
at least for sun graphs 
(Theorem 45)

. . . weakly connected 
(Theorem 46)

KIGd∼

KIGr∼
sun graphs 
(Corollary 50)

. . . not (bush or double bush) 
(Corollary 50)

Finally, we studied the protocols from a comparative point of view to find out whether a protocol is 
subsumed or equal to some other protocol, in terms of their sets of executions.

Still, some open problems remain: a full characterization of the protocols HMS, KIGd≈ and KIGr≈; a proof 
or refutation of the inclusion CO ⊆ HSS∼; and a few examples of couples (G, σ) in KIGd∼ \ KIGr∼ that do 
not assume knowledge of the network topology. Solving these problems is left for future work.

Other interesting directions to be explored are: protocol execution length and other knowledge assump-
tions.

For execution length, it would be useful to characterize the class of graphs where each protocol P can 
be optimal, i.e. the class of gossip graphs where a successful P-execution exists using the minimum number 
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of calls 2n − 4, for gossip graphs with n ≥ 4 agents. A comparative study in terms of maximum execution 
length would permit to select a protocol minimizing the maximum number of calls in a given network.

With respect to the assumptions on agents’ initial knowledge, one might consider strengthening the 
assumptions made in this paper. Presumably, this should result in the protocols being successful in wider 
classes of graphs. The main directions towards this might consist of assuming that agents know who are the 
contacts of their contacts; or, moreover, to assume common knowledge of the initial network, or common 
knowledge that the agents are executing the same protocol. All these open problems and directions must 
be left for future work.

Another open problem concerns the following model checking problem: given a gossip state (G, σ) and 
a formula ϕ(a, b), determine whether (G, σ) |= ϕ(a, b). Certainly it is decidable in the synchronous case. 
Indeed, the exploration of the model G≈ from a given (G, σ) is confined to the set of gossip states (H, σ′)
where |σ′| = |σ|, which is finite. In contrast, the decidability of model checking in the asynchronous case 
is not obvious, since a model checker may explore an infinite number of gossip states. We conjecture its 
decidability, though, and that this can be proved by applying techniques developed in [3].
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