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and Eulerian statistical models are proposed for the discrete dynamics, and these are com-
pared against numerical experiments. The observed results are in excellent agreement with
the theoretical models, as well as with the continuum statistical mechanical theory for
ideal fluid flow developed by Ellis et al. (2002) [10]. In particular the results verify that
the apparently trivial conservation of potential vorticity along particle paths within the
Statistical mechanics HPM method significantly influences the mean state. As a sid.e.note, tt'le numerical exper-
Geometric numerical integration iments show that a nonzero fourth moment of potential vorticity can influence the statis-

Quasigeostrophic flow tical mean.
Geophysical fluid dynamics © 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Computational applications in atmosphere and ocean science often involve the simulation of geophysical fluids on time
intervals much longer than the Lyapunov e-folding time. In these instances the goal of simulation is the evaluation of sta-
tistical quantities such as averages and correlations. It is therefore important to investigate the accuracy of numerical dis-
cretizations in the context of statistical averages.

The Hamiltonian particle-mesh (HPM) method was originally proposed in the context of rotating shallow water flow in
periodic geometry in [11] and extended to other physical settings in [6,13,7,28]. The fluid is discretized on a finite set of
Lagrangian particles that transport the mass of the fluid and persist during the flow evolution. The HPM method is symplec-
tic, and one can construct a continuum velocity field in which the discrete particle velocities are embedded for all time. The
continuum velocity field satisfies a Kelvin circulation theorem, implying material conservation of potential vorticity and
invariance of the infinite family of Casimir functionals, see [12].

For the case of ideal fluid flow in two dimensions, the HPM variant was described in [6]. We will apply the HPM method to
the quasigeostrophic potential vorticity equation describing a 2D barotropic flow over topography. Here, it is the potential
vorticity (PV), and not the mass, that is fixed on each particle and advected in a divergence-free velocity field. In this case we
show that the particle motion may be embedded in an area-preserving flow on the fluid label space. Hence, an arbitrary func-
tion of PV may be integrated by quadrature over label space and is therefore conserved. On the other hand, this trivial con-
servation is apparently due to the fact that a value of PV is assigned to each particle once and for all, and does not imply any
reduction of the number of degrees of freedom of the flow evolution in the sense of, say, a discrete energy conservation law.
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In fact, the method makes use of a secondary (coarse-grain) vorticity field, defined on a uniform grid, and numerical simu-
lations indicate that only energy and linear functionals of PV are conserved at this macroscopic scale.

Consequently, one may question to what degree the PV conservation of the HPM method is meaningful. Long time
simulations of nonlinear dynamical systems are typically inaccurate in a point-wise sense and rather are carried out
with the goal of sampling an equilibrium probability distribution over the phase space under an assumption of ergodic-
ity. The relevant statistical equilibrium distribution is a function of the conservation laws that restrict the dynamics.
Hence, if the PV conservation by HPM is truly trivial, the statistics should adhere to that of an energy-circulation equi-
librium theory, whereas a meaningful PV conservation should lead to a richer statistical equilibrium. In this paper, we
will show that the PV conservation of HPM significantly influences the statistics of simulation data obtained with the
HPM method.

Sophisticated statistical equilibrium theories for ideal fluids are based on conservation of generalized enstrophies—
the integrals over the domain of arbitrary functions of PV—or, equivalently, on the area-preservation property of the
velocity field. An equilibrium theory with microcanonical treatment of vorticity invariants was developed independently
by Lynden-Bell [17], Robert [24], Robert and Sommeria [25], and Miller [20]. An alternative approach that treats vortic-
ity invariants canonically was developed by Ellis et al. [10]. See also Chavanis [5] for a comparison of the two. Our
numerical method has features in common with the model used to construct the latter continuum theory (specifically,
a natural two-scale structure), and in this paper we derive analogous discrete statistical equilibrium models based on
both Lagrangian (Section 4) and Eulerian (Section 5) fluid considerations and compare these models with simulations
(Section 6).

We wish to emphasize here that the objective of the present paper is to show that the discrete statistics of the HPM meth-
od are in good agreement with predictions of the modern continuum theory. This implies that the construction of the HPM
method respects the dynamical considerations that go into the theory, and that for the numerical experiments included, the
discrete flow is sufficiently ergodic to observe convergence of the ensemble averages.

The quasigeostrophic potential vorticity (QG) equation [23,26,18] describes barotropic divergence-free flow over
topography

Taw0 =0, Mpx o) =qixt) —h), 0

where q is the potential vorticity (PV) field, i is the stream function, and h is the topography of the earth. The Laplacian oper-
ator is denoted by A and the material derivative by 4 = 2 + u - V. Here, the divergence-free velocity field u is related to the

T
stream function by u = V*'y, where V* = (— % , (;—)X) . In this paper, we consider the QG equation on a doubly periodic domain

Xx=(x,y) e D=10,2m) x [0,2m).

The QG model describes a Hamiltonian PDE with Lie-Poisson structure [26], implying the conservation of the total kinetic
energy

ey [v-a-nx @)

as well as the infinite class of Casimir functionals

)= [ Saax o)

for any function f for which the integral exists. Of particular interest are the PV moments:

Cr:/qrdx-, r:1727"'7 (4)
D

and especially the circulation C; and enstrophy Cs.
Preservation of the Casimir functionals follows from area-preservation under the divergence-free velocity field [21]: de-
fine a function G(o,t) denoting the measure of that part of the domain D for which the vorticity is less than o:

G(o,t) = meas{x € D|q(x,t) < 7} (5)

We note that due to the divergence-free advection of g, this function is independent of time £ = 0. Differentiating with re-
spect to o, the function

oG
g(0) =50 (6)
is preserved. For the case of a piecewise uniform PV field, q(x,t) € {01, ..., 0.}, the quantity g, = G(d,,1) — G(0/) is the mea-

sure of the vorticity level set g,.
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2. Review of continuum statistical equilibrium theories

Given a (spatially) discrete approximation q(t) to the solution q(x,t) of (1), obtained from a numerical simulation, one
would like to analyze the accuracy of computed averages of functions of the solution. For example, the long time average
of a function F(q(t)) of the PV field is denoted

_ 1 oto+T
F=lim -
T—oo T Jto

F(q(t)) dt.

If the discrete dynamics is ergodic with respect to a unique invariant measure p(q) on the phase space, then the long time
average is equivalent to the ensemble average with respect to p,

(F(q)) = / F(g)p(q)dq,

where the integral is over the (function) space of PV fields, and it suffices to derive the invariant measure associated with the
numerical method, and analyze this with respect to what is known about the continuum model.

In an effort to characterize the long time mean behavior of ideal fluids and explain their tendency to organize into large-
scale coherent structures, a number of authors have applied ideas from statistical mechanics. The pioneering work was that
of Onsager [22], which addressed the statistical mechanics of a finite point vortex model. He observed that for a bounded
domain, the available phase space must eventually decrease as a function of increasing system energy, leading to negative
temperature regimes in the microcanonical statistical ensemble. He also predicted that in a heterogeneous system of like-
signed and oppositely-signed vortices of varying strengths, the large vortices would tend to cluster so as to achieve maxi-
mum disorder with minimum degrees of freedom, like-signed vortices at negative temperatures and vice-versa. These pre-
dictions were confirmed numerically in [3].

Statistical mechanics theories based on a Fourier-spectral truncation of the Euler equations were proposed by Kraichnan
[15], Salmon et al. [27], and Carnevale and Frederiksen [4]. The spectral truncation preserves circulation C; and the quadratic
functions € and C, only. Consequently, a treatment based on constrained maximum entropy (for an introduction, see [18])
yields Gibbs-like distributions p(q) over the vorticity field, with Gaussian distribution of local vorticity fluctuations. The en-
ergy-enstrophy theory predicts a linear relation between ensemble average stream function and potential vorticity:

(q(x)) = p(x)) (7)

for a scalar p depending on the observed energy and enstrophy, where the ensemble average is defined with respect to inte-
gration over an appropriate function space in this case.

Given that it is not just the enstrophy C, but any functional C[f] that is invariant under the continuum flow of (1), it is
natural to ask what effect the more general conservation laws have on statistics. Abramov and Majda [1] investigated the
statistical significance of the higher PV moments C,, r > 2, numerically using the Poisson discretization of Zeitlin [29] and
McLachlan [19], which conserves M Casimirs of an M x M-mode truncation. Computing the long time-averaged PV and
stream function fields, they observed increasing discrepancy relative to the linear mean field theory (7), as a function of
increasing skewness C3 of the initial condition, thus proving the statistical relevance of this quantity.

Statistical equilibrium theories incorporating the full family of Casimirs implied by the preservation of area (5) were
independently proposed by Lynden-Bell [17] in the context of astrophysics, and Miller [20], Miller et al. [21], Robert
[24], and Robert and Sommeria [25]. These original theories used a microcanonical treatment of the Casimirs C[f]. That
is, the equilibrium distribution is derived by minimizing entropy under constraints of energy and the entire family of
Casimirs. More recently, Ellis et al. [10] proposed an alternative theory featuring canonical treatment of the Casimirs, in
which the point statistics of PV is described by a prior distribution. In all of these papers, a coarse-grain potential vor-
ticity field is described by a probability density over the class of fine-grain PV distributions at each point in the
domain.

In [9], we analyzed energy and enstrophy conserving finite difference methods for the QG model under topographic forc-
ing, and observed that the discrete time-averaged mean fields q and y obtained depend heavily on the conservation prop-
erties of the discretizations used. For a discretization that conserves energy only, the predicted mean field is uniformly zero
velocity (W) = 0. Given that the only dynamically conserved quantities of the HPM method are energy and total circulation
(see below), any departure from the trivial mean field is an indication of the statistical relevance of the other conserved
quantities, namely the area measure (5).

3. Hamiltonian particle-mesh method

The Hamiltonian particle-mesh (HPM) method is a numerical discretization of inviscid fluid dynamics that retains Ham-
iltonian structure. The method makes use of a Lagrangian fluid description, to advect fluid particles while conserving energy,
and an Eulerian grid for evaluating derivatives using finite differences. The method was adapted for 2D incompressible flow
in [6].
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3.1. HPM description

The PV field is discretized by introducing a set of K discrete particles with fixed potential vorticity Q,, k=1,...,K. The
particles have time-dependent position X, (t) € D, and are advected in a divergence-free velocity field according to

d
an =Vt Y (x, t)‘x:Xk(t)’

where the stream function ¥ is described below.
We also make use of a uniform M x M grid on D, with grid spacing Ax = Ay = 2n/M, and denote gridpoints by x;. Given a
discrete stream function ¥;(t) on the grid, we construct a continuous field via

Y0 =) Vilt)i(x), (8)

where ¢;(x) = (%) is a compactly supported basis function satisfying symmetry, normalization and partition of unity

properties, respectively:
$(x) = p(—x), / pdx=1, 3 4@ =1, VxeD. 9)

In our implementation we use the tensor product of normalized cubic B-splines ¢(x) = ¢o(x)¢o(y), where

2 3
=I5 <1,
bo(r) = q L2 —|r|)°, 1<r<2,
0, otherwise.

The discrete stream function ¥;(t) is obtained by solving a Poisson equation on the grid. Given a discrete grid-based PV field
q;(t) we solve

ZAijTj:qi_hi (10)
J

where h; = h(x;) is the topography function sampled at gridpoints and 4;; is an appropriate discretization of the Laplacian. In
our implementation, we use a spectral approximation and FFTs, but a finite difference formula may be sufficient.
Finally, the PV field on the grid is approximated from the particles using the relation

qi(t) = Qedi(Xa(1)). 11)
k

In [12] it is shown that the above formula samples the exact solution of a continuity equation of the form q, + V - (qit) =0
with density function q(x,t) = >, Q,¢(x — Xi) and auxiliary velocity field éi(x, t) appropriately defined. In the present case,
although the particle velocity field is given by V*¥(x,t) and is therefore divergence-free, this will only hold in an approx-
imate sense for the auxiliary velocity field u(x,t).

In the present context of vortex dynamics, the HPM method is related to the classical point vortex flow (see [8] and ref-
erences therein). The singular point vortices have been regularized by convolution with the basis functions ¢. The Eulerian
grid reduces the complexity of vortex-vortex interactions from O(K?) to O(K InK) (using FFT). The construction of the meth-
od preserves the Hamiltonian structure of the point vortex flow. However, as noted in the introduction, the HPM method was
originally in the setting of compressible flow and is in this sense applicable to more general fluids than the point vortex
model.

3.2. Properties of the discretization

By construction, the numerical method described above defines a Hamiltonian system. The Hamiltonian is

HX) = —3 3 (g h)av = — [(Z Qk@(xk)) - hi] (4™ KZ Qg</>,-<xé)> - hj} AX:. (12)
i ij k 4

Introducing phase space coordinates X = (X,...,Xk,Y1,...,Yx)" and symplectic two-form structure matrix
_ 0 —diagQ
"~ | diagQ 0 ’
the equations of particle motion are described by
Bd—x = VH(X).

dt
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The Hamiltonian is a first integral of the dynamics and approximates the total kinetic energy. Additionally, the phase flow is
symplectic and consequently volume-preserving on R3¢,
To integrate the numerical discretization in time we use the implicit midpoint rule:

Xn+l _Xn Xn+1 +Xn
B At = VH( 5 .

The numerical map is symplectic for this problem, implying that volume is preserved in the 2K-dimensional phase space of
particle positions. Also the energy is well-preserved, with fluctuations bounded by a term of O(At?) for long times, consistent
with theory reported in [14,16].

Since the particle PV values Q, k=1,..., K are fixed for the duration of the computation, PV is conserved along particle
paths for any motion of the particles. However, since the Qy play the role of parameters in the specification of HPM, their
conservation does not imply a reduction in degrees of freedom of the dynamics in the way exact conservation of H does.
On the other hand, the motion of the particles is not arbitrary, but area-preserving in the sense described next. The combi-
nation of material conservation of PV in an area-preserving flow is the essential feature of the fine scale motion of ideal fluids
that enters into the modern statistical mechanics theories.

Given an arbitrary continuous motion of the particles X(t), Eqs. (11), (10) and (8) define a continuum approximate
stream function ¥(x,t), with velocity field

Ux,t) = V"P(x,1).
Let us define label coordinates a = (a,b) on D and the Lagrangian flow y(a,t) : D x R — D induced by ¥ (x,t):

@ t) =Ul(a0),0). (13)

Since V - U = 0, the Lagrangian flow y is area-preserving on D. That is,

oy _
det% =1.

This property is retained under temporal semi-discretization with the implicit midpoint rule. That is, the mapping
1"(a) — "1 (a) is area-preserving.
On the other hand, for the numerical method, the particle motion X(t) is just given by

Xi(t) = 2(X(0), 1),

i.e. the particle motion is embedded in its own Lagrangian flow. Therefore, the discrete particle motion is area-preserving in
the sense that it can be embedded in an area-preserving flow.

Typically, we initialize the particles on a uniform grid! with spacing Aa = Ax/x for some positive integer . Let a; € D de-
note the initial position of the kth particle. Let A, denote the set of labels in the grid cell centered at a,:

2

Then D = UA,. Define a piecewise constant initial vorticity field through

=Y Ql(a), (14)
P

Aa
A= {a eD:la—a, < —}

where 1, is the characteristic function on Ay. This vorticity field is transported by the flow x(a,t) via
Q(x(a,t),t) = Qo(a). (15)
Given any function f(Q), we have

Q(x,0))dx = *da = [ f(Qo(a))|det % da Q *da = 3" f(Q)lA
/Df( x = /f ) a- /f oa = ,>/ a= QA
= A Y- f(Qu), (1)
k

det det det

which is constant. In particular, the area associated with any particular level set of PV is conserved.
In this sense we see that the fine scale particle flow trivially conserves all Casimirs, and in particular the polynomials
functions

C=Aa®) Q;, r=12,..
k

! For an arbitrary initial particle configuration, the subsequent quadrature could be carried out on the Voronoi cells.
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However, this property does not transfer to the gridded PV field q. That is, the grid-based analogs
Er:AXZZq,T, r=12,...,
i
are not conserved in general. The sole exception is the total circulation C, for which we have, using the third property of (9),

Ci=Y a2 =Y Y QXA = 3 QuiAd?,
i i k k

which is independent of time. For arbitrary nonlinear f(q), one would not expect the quantity >",f(g;)Ax? to be invariant in

general.
In Fig. 1, we plot the relative drift
_ [H(t) — H(0)
&ret[H](t) = ’W

in the quantities H and E'r, r=2,...,4 as a functions of time during a typical simulation (the experiment described in Sec-
tion 6.1.2, for the case y = 0, § = 90). The circulation is preserved to machine precision and is not shown. The energy oscil-
lations are bounded by

Eral[H](£) < 2.1 x 1074,

and the bound decreases quadratically with stepsize. The higher order vorticity moments are not preserved, and encounter
relative drifts

mtaxsrel[ffz](t):o.m, mgxere1[63](t):16.9, mtaxe,e,[@](t):lﬁi

Clearly, these are not conserved.

In some cases, it is useful to consider the bulk motion of the fluid to be prescribed by a time-dependent stream function
¥ (x,t), and consider the motion of a typical particle embedded in the flow. The motion of such a particle satisfies a nonau-
tonomous Hamiltonian system.

This point of view and its coupling to the dynamics is studied in [2]. The parcel Hamiltonian becomes

H = / 0o(@) ¥ (z(a, 1), t)da,

and the dynamics on label space (13) satisfy

(@) 10,0 =12 = @)V P(a(a.0.0), v

where | = {?I (I)}

Similarly, for the HPM discretization,

Erel
-
o

|

10
0 100 200 300 400 500 600 700 800 900 1000
time,t

Fig. 1. Relative change in energy H and higher vorticity moments Cy, Cs, C4 during the simulation described in Section 6.1.2, for the case y =0, 6 = 90.
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a ~
Qi X = Vx0 H = QVEP(Xi (1), 1), (17)

where

H=2 Q¥ X(t),0). (18)

k

4. A Lagrangian statistical model based on canonical particle distributions

Due to its Lagrangian nature, the HPM method has similarities with the point vortex method whose statistical mechanics
was considered by Onsager [22]. The particle motion can be considered a regularized point vortex method. The phase space
of the HPM method is bounded: it is simply DX. In contrast to the point vortex method, the range of energy for the HPM
method is also bounded (for finite Q,, k =1,...,K). If one considers possible configurations for a given energy, as the energy
level becomes large enough the available phase space eventually starts to decrease. In other words, the HPM method sup-
ports a negative temperature regime.

In this section, we construct a statistical equilibrium theory in the natural phase space of HPM particle positions X € D.
However, in some cases it may be preferable to directly consider the statistics of the coarse-grain vorticity field q on the grid
(11), which allows comparison with the existing equilibrium field theories. In the next section, we present an Eulerian
approximate statistical model from this point of view. To distinguish the two, we refer to the theory in this section as the
Lagrangian statistical mechanical model.

Let us consider the statistics of a single distinguished particle in contact with the reservoir formed by all other particles.
Recall that the motion of such a particle obeys a nonautonomous Hamiltonian system (17) with Hamiltonian (18). The en-
ergy contribution of particle k is Q, ¥ (X, t). We expand the stream function about the ensemble mean field

P(x,1) = (P(X)) + P, L).

Neglecting the long time effects of the perturbation part 6%, we obtain the canonical distribution for a distinguished particle

py(%) = Lemrma ¢ _ / e MW gy (19)
Ck XeD

Fig. 2 compares typical functions p,(x) with histograms of position data for two arbitrarily chosen particles with
Q.+ =1.098 and Q,- = —2.165 obtained from HPM simulations with normally distributed {Q,}. We observe good agree-
ment. Due to the choice of topography in Section 6 and normally distributed Q,, the distributions p, are uniform in the y
direction.

The one-particle canonical statistics can be used to construct a mean field theory. For particle k the one-particle statistics
is (19). This quantity gives the probability that X, is near x € D. Next consider coordinates E = (&,¢&,, ..., &) € DX on the
particle phase space, and the product distribution

p(E) =[] P&
i

which governs the probability of particle configurations under the modelling assumption that the particle positions are
independent.
To each E € DX, is an associated grid-based PV field q(Z) with

0.8

Prt

Xk* Xk:+

Fig. 2. Histograms of x-component of position for two distinct particles, compared with the predicted canonical distribution (in red). (For interpretation of
the references in color in this figure legend, the reader is referred to the web version of this article.)
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E Z Qk ék

The ensemble average PV field is

- [a@pEd,

which can be simplified as follows

V*0)Qk dx

By
/ ZQk(Pi &) Hl’é &)dg; - dgK*ZQk/({b )Py (%) dX = ZQk [Df p= :l/, 0k dx :;Qk<d)t>k

where (), is the ensemble average in the measure (19).
If we consider a piecewise constant vorticity distribution with K, particles with PV g,, the relations above can be ex-
pressed as

e PUb®)or dx

Z oK, W Z oD, (20)
where

Py = Ki(di), (21)

This quantity is the proportion of time that a particle with PV ¢, spends within the support of grid point x;, weighted by the
kernel function, times the number of such particles.
To compute the mean state, we approximate the integral in (20) by quadrature at the grid points

E X
§ O-Klﬂblfib
E e—Bj)o

This relation is solved together with
Ai(W;) = (q;) — hi,
and the constraint relation

H((q)) = Ho,

which specifies the value of g.

Our Lagrangian statistical theory for the HPM method is analogous to the canonical theory of Ellis et al. [10], inasmuch as
the energy is treated microcanonically through the specification of g, and the fine-scale vorticity conservation is treated
canonically.

5. Eulerian statistical model for HPM

The continuum statistical mechanics theories of Miller [20], Miller et al. [21], Robert [24], and Robert and Sommeria [25]
can be constructed using a two-level discretization of the continuum vorticity field. The microscopic configuration space
consists of permutations of a piecewise uniform vorticity field, assuming constant values on each cell of a fine mesh. The
macroscopic vorticity field is the local average of the microscopic field on an embedding coarse mesh. The continuum theory
is obtained by first letting the fine mesh size tend to zero for fixed coarse grid mesh size, and subsequently taking the con-
tinuum limit of the coarse mesh.

A similar approach—neglecting the continuum limits—can be used to construct a discrete statistical model for the HPM
method. Keeping in mind the interpolating continuum flow (15), we define p{ to be the probability of observing Q (x;,t) = o,
near grid point x;. Then p{ has the properties

> opiA =g, Y pi=1. (22)
i 0

The first of these says the area of PV level sets is conserved and is the discrete analog of (6). The second says the flow is
incompressible.

It is natural to associate p{ with the characteristic functions at the grid points, smoothed by the HPM basis functions ¢.
Denote by KK, the index set of particles with vorticity level ¢, (¢ =1,...,L, for some L < K):

K[={1<k<1<qk205}

Define the function
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0l =3 X .
kels,

If the particles are initialized on a uniform grid of spacing Aa = Ax/x, for ¥ > 1 an integer, then ¢! has the required prop-
erties (22). To construct a Miller/Robert theory for the HPM method, we would initialize the particles on such a uniform grid,
and consider permutations of the Q, as an approximation of the configuration space.

The motion of particles in the HPM method conserves energy, as pointed out in the Section 3. It is therefore necessary to
further restrict the sample space to those permutations of PV that preserve the initial energy to within some tolerance. De-
fine the coarse-grain mean potential vorticity by

(@) =>Y_pios, (23)
4
the coarse-grain mean stream function by
A(¥) =(q) - h, (24)
and the energy of the mean field by

Substituting ¢} for p{ in (23), the above definitions are consistent with the (coarse-grain) grid quantities q, ¥, and H given in
(11), (10), and (12), respectively.

A microcanonical statistical model analogous to the Miller/Robert approach proceeds at this point by introducing the
Shannon information entropy

S=->"piInp, (25)
i

and maximizing this function with respect to p! subject to constraints of observed values of energy, H((q)) = Ho, and the con-
ditions (22).

Instead we take here the alternative approach proposed by Ellis et al. [10] (henceforth, the EHT theory), which assumes a
canonical ensemble with respect to the higher order Casimirs, as determined by a prior distribution over point-wise vortic-
ity, in combination with a microcanonical distribution with respect to # and C;. This is consistent with observations of invis-
cid fluids, where # and C; depend only on the large-scale vorticity, whereas the C., r > 1 depend on the fine scale detailed
vorticity and the length scale of averaging. To that end we drop the requirement that p{ satisfy the first condition of (22).

Given a set of particles initialized on a uniform grid with PV values Q,, k = 1,...,K, we consider the associated piecewise
constant continuum vorticity field as described in (14) and (15). To each vorticity level set g,, £ =1,...,L we associate the
fractional area

K,Aa?
="

where K, is the number of particles with vorticity o, and |D| is the total area of D. Note that }_,IT, = 1. We take II, to be the
prior distribution on PV. Given no other information about the flow, IT, is the probability of observing PV value ¢, at an arbi-
trarily chosen point in D. The probability is uniform in space.

To determine the probability distribution p; we maximize the relative entropy

a3
S(p.11) = - ! 1n% (26)
il -

Given no other information about the system, we can maximize this entropy as a function of p; to find
Pf’ =11,

which is the prior distribution at each point on the grid, confirming the earlier statement.
Instead we wish to maximize (26) subject to microcanonical constraints on the energy

E=H({(q)) —Ho =0, (27)
and the circulation
= Ci((g)) - C1(q(0)) =0, (28)

as well as the normalization constraints

Ni=Ypi-1=0, Vi (29)
14
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Introducing Lagrange multipliers B, o, and ;, respectively, for these constraints, we solve

aS  OF oN;
ot P T a Zfap,

The respective derivatives are

oS D
ap <1 ”4+1>

OE OH 0(q;) 2 2
oF _ == (¥)0,0;A%* = — (V) 0,AX?,
op 2o opy 2T

or

W:QAXZ

ON; _

op =

Putting this all together, an extreme entropy state must have
Inp; =InIl, — 1 — B(¥i)0, + %0, + 4,
where a constant Ax* has been absorbed into o and g. Solving for p; yields the equilibrium distribution
pi = Z; e itne g, (30)

where  and o can be chosen to satisfy the constraints (27) and (28), and the partition function Z; is given by
Zi =Y el FWiraoeyy, (31)
2

The relation (30) can be combined with (23) and (24) to solve for prospective mean fields. The mean stream function (¥)
is found by solving

Z(gfe(*ﬂw’iﬂa)mﬂﬁ
zj:AiKlPﬂ :W—h(&)y (32)

together with the constraints (27) and (28).

The EHT theory is microcanonical with respect to the energy and circulation, in the sense that the parameters g and « are
chosen as Lagrange multipliers to ensure that the resulting mean field assumes desired values of these quantities. It is canon-
ical with respect to higher order Casimir’s in the sense that the fine-scale vorticity is specified as a distribution.

6. Numerical verification of the HPM statistical equilibrium theories

In this section, we compare the predicted mean fields (q) and (¥) of the discrete equilibrium statistical models from the
previous sections, with long time average mean fields q and ¥ computed from numerical simulations with the HPM method,
under the assumption that the simulated solution is approximately ergodic. It should be noted that the probability distribu-
tions (21) and (30) predict much more than just the mean states (q) and (¥), so our comparison is necessarily a limited one.
Yet from a numerical point of view, correct representation of the mean state is a minimal requirement, as it sets the statis-
tical background for dynamics.

The theoretical mean fields (20) and (32) based on the Lagrangian and Eulerian statistical models are computed numer-
ically. Due to point-wise conservation of PV on the particles, and the construction (11), the space of grid-based PV fields is
bounded, as is the partition function (31). For a given particle field Q and values for the constraints we solve for the mean
fields (20) and (32) plus associated Lagrange multipliers using a modified Newton iteration. These fields are compared with
average fields generated by long-time simulations.

For the numerical simulations we use the test setup of Abramov and Majda [1]. We choose grid resolution M = 24. The
topography is a function of x only, specifically

h(x,y) = 0.2 cosx + 0.4 cos 2x,

which is intended to make departures from Gaussian PV theory readily observable (see below).

The integrations were carried out using a step size of At = 2/M on the interval t € [0, to + T]. The solutions are averaged
over the time interval t € [to, to + T}, where t, is the time required for decorrelation of the initial condition. In all experiments
we use to = 10° and T = 10%. Longer simulations with T = 108 were also run with no observable difference in the results. The
implicit midpoint rule nonlinear relations were solved to machine precision.

All simulations were carried out with x = 1. Together with the low value of M, this implies the simulations were highly
under-resolved. This has the double effect of allowing us to stretch the limits of the discrete statistical models, for which
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various approximations were made, and to allow the system to sample the available phase space (assuming ergodicity) in a
reasonably short simulation interval.

We construct initial conditions with a desired prior distribution and energy value. The mean state (30) is fully defined by
these quantities. If the dynamics is sufficiently ergodic, then the time average mean stream function ¥ and mean potential
vorticity q should agree with the ensemble averages (24) and (23).

Given a continuous prior distribution on vorticity I1(cg), we define particle PV values Q, as follows. The number of par-
ticles is K = xk2M?. We discretize the range of vorticity ¢ into L equal partitions of size Ac where

og,=00+¢Ag, (=1,... L

We choose the number of particles with vorticity ¢.1,2 = (00 + 6.1)/2 to be

1 6 0.8
0.6
5
0.5 0.4
4
0.2
1 0 3
0
2
-05 -0.2
1
-0.4
-1 0
-1 -0.5 0 0.5 1 0 2 4 6
v

Fig. 3. Normally distributed PV on the particles. The scatter plot of mean fields (left) with linear fit. Mean stream function (right).
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Fig. 4. Locus (g;, ¥;) for skewed PV distributions, y = 0, 2, 4, and 6 (grey points). The theoretical prediction based on (21) is shown in red and that based on
(30) is shown in blue. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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Kir = {K / " (o) dJJ.

Any remainder particles are assigned the values of the consecutive most probable level sets.

The particles are initially placed on a uniform grid of spacing Aa = Ax/k in each direction. Using Monte Carlo simulations,
the PV values are randomly permuted until a configuration is found within desired total energy (grid function) Hp 4 0.01. In
all simulations, the target energy was Hy = 7, and the total circulation was C;(Q) = 0, consistent with [1]. The Lagrange mul-
tipliers 8 and o follow from the constraints of total energy and circulation.

6.1. Normally distributed PV

From the classical energy-enstrophy theory of Kraichnan and others [15,27,4] it is known that if the PV field is normally
distributed, the mean field relation should be linear of the form (7). To verify this for the HPM method, we draw the particle
vorticities from a zero-mean Gaussian prior distribution

a2
~II(c)=exp|——|.
In this case the EHT theory yields (in the semi-discrete case)
pi(0) = Z;" exp(~p(¥1)o) 11 (0).
which is continuous in the PV ¢. This density can be exactly integrated to yield the linear mean field relation
(@) = —BO*(¥).

We choose B and 0 to specify energy Hy = 7 and enstrophy C, = 40.

In the left panel of Fig. 3, the locus of data points (¥;, g;) is plotted for the time-averaged fields. The vorticity—stream func-
tion relation is nearly linear as predicted. Due to the finite sampling of the Gaussian distribution, the simulation data is not
precisely linear. The Eulerian statistical model (30) yields a more linear mean field prediction, but the Lagrangian statistical
model (21) more precisely fits the simulation data.

vy =0 Yy =2
4 4
0.4
2 2
L 40.2
oL 0
0 2 4 6 0 2 4 6
Y =4 Y =6 L 1o
6 6
4 4 -0.2
2 2
-0.4
0 0 /\\
0 2 4 6 0 2 4 6

Fig. 5. Mean stream functions corresponding to Fig. 4. For nonzero skewness 7 # 0 the stream function is two-dimensional, despite one-dimensional
topography.
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Due to the linearity and isotropy of (7) and (8), the mean stream function (i) satisfies a Helmholtz equation and is ex-
pected to be independent of y due to the special choice of topography. In the right panel we observe that the mean stream
function is indeed independent of y.

6.1.1. Skew PV distributions

In [1], Abramov and Majda show that nonzero values of the third moment of potential vorticity can cause significant devi-
ation from the statistical predictions of the normally distributed PV case. They use the Poisson discretization of Zeitlin [29] to
solve the QG model. On an M x M grid the Zeitlin method conserves energy and approximations of the first M moments of
potential vorticity Cr,r=1,...,M.

We generate initial conditions Q from the shifted gamma-distribution [5]:

1 1 1 )
[Ho)=——R(—(0+1);—,
@ =gk(cio e
where R(z;a) = I'(a) 'z%'e~% for z > 0 and R = 0 otherwise, and

Cs 1/2
Y =—5=2C""2
/ Cg/z 2
is the skewness of the distribution. We take C; = 40 and y = 0, 2, 4, and 6 to compare the results of [ 1] with the HPM method.

Fig. 4 gives the (¥}, q;) loci for the time-averaged fields, for these values of 7. Fig. 5 illustrates the associated mean stream
functions. The solutions are reminiscent of those reported in [1], but there are some differences due to the details of the
methods.

For the case y = 0, the energy-enstrophy theory predicts a linear relation (7) between mean PV and mean stream func-
tion, as well as a layered mean stream function. These predictions are confirmed in the upper left panels of Figs. 4 and 5. For
y > 0, there is significant nonlinearity in the mean field relation and vortical structures observable in the mean stream
function.
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Fig. 6. Locus (g;, ¥;) for kurtotic PV distributions, § = 0, 10, 50, and 90 (grey points). The theoretical prediction based on (21) is shown in red and that based
on (30) is shown in blue. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Mean stream functions corresponding to Fig. 6. For nonzero skewness  # 0 the stream function is two-dimensional, despite one-dimensional
topography.

Also shown in Fig. 4 are the theoretical mean states predicted by the discrete statistical equilibrium theories in Sections 4
and 5. The Lagrangian statistical model (20) is shown in red and the Eulerian model (32) in blue. Both models predict the
mean states very well.

6.1.2. PV distributions with kurtosis

Abramov and Majda [1] also conjecture that the higher-order moments C;, r > 4, are statistically irrelevant for predicting
the large-scale mean flow, based on the observation that the experiments agreed well with the energy-enstrophy mean field
theory (7) in the case y = 0, despite the fact that the moments C,, r > 4 were nonzero as arbitrarily determined by their
initialization procedure, and conserved by the method.

To investigate this conjecture we choose initial distributions Q having skewness y = 0 and nonzero kurtosis (scaled fourth
moment of PV),

In this case we generated the initial particle PV field by first drawing the Q, from a uniform distribution and then projecting
onto the constraint set {Ho =7, C; =0, C; =40, C3=0, C4 = (6 + 3)C§}.

Fig. 6 shows the mean field relations (g;, ¥;) for increasing é = 0, 10, 50, and 90. The corresponding mean stream functions
are shown in Fig. 7. We observe that nontrivial kurtosis may also significantly influence the mean field statistics, which dis-
proves the conjecture of [1].

Again we observe in Fig. 6 that both (20) and (32) do an excellent job of predicting the mean states.

7. Conclusions

The HPM method, as adapted for 2D incompressible flow, conserves total energy by construction. Each particle is assigned
a constant value of potential vorticity at initialization, and this discrete PV field is conserved point-wise, as the particles
evolve in the divergence-free flow. In this sense, PV conservation induces no reduction in degrees of freedom on the dynam-
ics. At the coarse scale, the vorticity field on the mesh satisfies conservation of energy and total circulation, but exhibits sig-
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nificant drift for nonlinear PV functionals. This is consistent with what would be observed if a coarse-graining procedure
were applied to a real inviscid flow.

A maximum entropy theory based only on energy and circulation would predict zero mean flow (i.e. () = 0). In contrast
to this prediction, we have demonstrated in this paper that the HPM method has a much richer statistical mechanics, with
nonlinear mean field relations similar to those of [1], and consistent with the canonical EHT theory [10]. In particular, we
have demonstrated that both the third and fourth moments of PV (C3 and C4) can significantly affect the mean field relation.
The latter result disproves a conjecture of Abramov and Majda [1].

We have also presented two statistical mechanics models for the HPM method, a Lagrangian and an Eulerian model. The
Eulerian model is analogous to the EHT theory, which uses a canonical treatment of fine-scale vorticity in the form of a prior
distribution, and enforces conservation of energy and total circulation through the use of Lagrange multipliers. In the present
case, the prior distribution characterizes the particle vorticity field, and the energy and circulation are conserved at the grid
scale. The Lagrangian statistical model is constructed on the phase space of particle positions, considering each particle to be
immersed in a reservoir defined by the mean flow. The fine scale, particle statistics are given by canonical ensemble distri-
butions, and the temperature parameter is used as a Lagrange multiplier to enforce energy conservation. Mean states com-
puted with both statistical models compare very well with the long-time simulation data.

Although PV is simply assigned to particles and its conservation does not imply any dynamic constraint on the evolution,
an appeal to the Lagrangian statistical model suggests that a particle’s PV value determines its response to the mean flow,
and thereby its residence time in any particular region of the flow domain. Via the basis functions ¢, the local residence time
is translated to the grid scale where the coarse-grain dynamics is governed by energy conservation.

The essential ingredients of the Miller/Robert and EHT statistical theories are the fine scale point-wise advection of PV
and the coarse scaling associated with the stream function, under the constraint of energy conservation. The HPM method
retains these features under discretization, and for this reason its equilibrium statistics are analogous to those theories. From
the numerical experiments we can conclude that the HPM method is free of artificial dissipation or other errors that might
destroy the equilibrium statistical mechanics. For the experiments conducted, the discrete dynamics is also sufficiently ergo-
dic that the averages are well approximated.
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