
A Unified Framework for Oscillatory Integral Transforms:

When to use NUFFT or Butterfly Factorization?

Haizhao Yang

Department of Mathematics, National University of Singapore

October 9, 2018

Abstract

This paper concerns the fast evaluation of the matvec g = Kf for K ∈ CN×N , which is
the discretization of an oscillatory integral transform g(x) =

∫
K(x, ξ)f(ξ)dξ with a kernel

function K(x, ξ) = α(x, ξ)e2πıΦ(x,ξ), where α(x, ξ) is a smooth amplitude function , and Φ(x, ξ)
is a piecewise smooth phase function with O(1) discontinuous points in x and ξ. A unified
framework is proposed to compute Kf with O(N logN) time and memory complexity via the
non-uniform fast Fourier transform (NUFFT) or the butterfly factorization (BF), together with
an O(N) fast algorithm to determine whether NUFFT or BF is more suitable. This framework
works for two cases: 1) explicit formulas for the amplitude and phase functions are known; 2)
only indirect access of the amplitude and phase functions are available. Especially in the case
of indirect access, our main contributions are: 1) an O(N logN) algorithm for recovering the
amplitude and phase functions is proposed based on a new low-rank matrix recovery algorithm;
2) a new stable and nearly optimal BF with amplitude and phase functions in a form of a
low-rank factorization (IBF-MAT) is proposed to evaluate the matvec Kf . Numerical results
are provided to demonstrate the effectiveness of the proposed framework.

Keywords. Non-uniform fast Fourier transform, butterfly factorization, randomized algorithm,
matrix completion, Fourier integral operator, special function transform.

AMS subject classifications: 44A55, 65R10 and 65T50.

1 Introduction

Oscillatory integral transforms have been an important topic for scientific computing. After dis-
cretization with N grid points in each variable, the integral transform is reduced to a dense
matrix-vector multiplication (matvec) g = Kf . The direct computation of the matvec takes
O(N2) operations and is prohibitive in large-scale computation. There has been an active re-
search line in developing nearly linear matvec based on the similarity of K to the Fourier matrix
[1, 29], i.e., K(x, ξ) = α(x, ξ)e2πıp(x)q(ξ), or based on the complementary low-rank structure of K
[9, 16, 18, 19, 21, 24, 25, 30, 31] when the phase function is not in a form of separation of variables.

The main ideas of existing algorithms are as follows. After computing the low-rank approxima-
tion of α(x, ξ) ≈

∑r
k=1 ak(x)bk(ξ), we have

g(x) ≈
r∑

k=1

ak(x)

∫
e2πıΦ(x,ξ) (bk(ξ)f(ξ)) dξ. (1)

1

ar
X

iv
:1

80
3.

04
12

8v
2

 [
m

at
h.

N
A

]
 8

 O
ct

 2
01

8

Kernels K(x, ξ) Algorithms Precomputation time Application time memory

α(x, ξ)e2πıp(x)q(ξ) NUFFT [1, 29] O(N) O(N logN) O(N)

α(x, ξ)e2πıΦ(x,ξ) NUFFT O(N) O(N logN) O(N)

α(x, ξ)e2πıΦ(x,ξ) BF [7, 18] O(N logN) O(N logN) O(N logN)

Table 1: Summary of existing algorithms and proposed algorithms (in bold) for the evaluation
of Kf when amplitude and phase have explicit formulas. Although the BF in [7] requires no
precomputation and O(N) memory, it is a few times slower than the BF in [18] regarding the
application time. Hence, we adopt the scaling of [18] in this paper.

Scenarios Algorithms Precomputation time Application time memory

Scenario 1 BF [19] O(N1.5) O(N logN) O(N logN)
Scenario 2 BF [19] O(N1.5 logN) O(N logN) O(N1.5)
Scenario 3 BF [7, 18] O(N logN) O(N logN) O(N logN)

All scenarios NUFFT or IBF-MAT O(N logN) O(N logN) O(N logN)

Table 2: Summary of existing algorithms and proposed algorithms (in bold) for the evaluation
of Kf for a general kernel α(x, ξ)e2πıΦ(x,ξ) when only indirect access of amplitude and phase is
available according to different scenarios listed in Table 3.

If K(x, ξ) = α(x, ξ)e2πıp(x)q(ξ), then

g(x) ≈
r∑

k=1

ak(x)

∫
e2πıp(x)q(ξ) (bk(ξ)f(ξ)) dξ

can be evaluated through r NUFFT’s. If the phase function Φ(x, ξ) is not of the form p(x)q(ξ), then
the butterfly factorization (BF) [19, 24, 25] of e2πıΦ(x,ξ) is computed. The main cost for evaluating
(1) is to apply the BF to r vectors, which is O(rN logN). Hence, after precomputation (low-
rank factorization and BF1, if needed), both kinds of algorithms admit O(N logN) computational
complexity for applying K to a vector f . However, existing algorithms are efficient only when
the explicit formulas of the kernel is known (see Table 1 and 2 for a detailed summary). The
computational challenge in the case of indirect access of the kernel function (see Table 3 for a list
of different scenarios) motivates a series of new algorithms in this paper.

This paper proposes an O(N logN) unified framework for evaluating Kf either based on
NUFFT or BF (see Figure 1 for the main computational flowchart of the unified framework). This
framework considers possibly most application scenarios of oscillatory integral transforms. We also
briefly discuss how to choose NUFFT or BF to maximize the computational efficiency according to
several factors (e.g., accuracy and rank parameters in low-rank factorization, the number of vectors
in the matvec) in a serial computational environment. The unified framework works in two cases:
1) explicit formulas for the amplitude and phase functions are known; 2) only indirect access of
the amplitude and phase functions are available. When the explicit formulas are given, computing
Kf is relatively simple. Hence, we only focus on the case of indirect access. To the best of our
knowledge, the most common indirect access can be summarized into three scenarios in Table 3.

As the first main contribution of this paper, in the case of indirect access, a nearly linear scaling
algorithm is proposed to recover the amplitude and phase matrices in a form of low-rank matrix

1In most applications, K is applied to multiple vectors f ’s. Hence, it is preferable to save the results of expensive
computational routines that are independent of the input vectors f ’s for later applications.

2

Yes

NoInput
vector

f

Output
vector

g

Explicit amplitude
and phase
functions
available?

Discretize amplitude
and phase functions
and compute their

low-rank
approximations

Recover amplitude
and phase matrices
in form of low-rank

approximations

Determine
whether NUFFT is

suitable for
computing the
matvec g=K*f

FLOWCHART Haizhao Yang | February 9, 2018

Yes

No

Apply NUFFT to
compute the
matvec g=K*f

Apply BF to
compute the
matvec g=K*f

Figure 1: The computational flowchart of the unified framework using NUFFT or BF. The frame-
work consists of three main steps: 1) construct the low-rank approximations of the amplitude and
phase matrices; 2) determine whether NUFFT is applicable; 3) apply NUFFT or BF. When the
numerical rank of the phase function rε is only larger than the dimension of the problem by one or
two, NUFFT is usually faster than BF and hence it will be applied to compute Kf .

Scenario 1 : There exists an algorithm for evaluating an arbitrary entry of the
kernel matrix in O(1) operations [3, 4, 19, 25].

Scenario 2 : There exist an O(N logN) algorithm for applying K and its transpose
to a vector [13, 19, 22, 28].

Scenario 3 : The amplitude and the phase functions are solutions of partial
differential equations (PDE’s) [9]. O(1) columns and rows of the
amplitude and phase matrices are available by solving PDE’s.

Table 3: Three scenarios of the indirect access of the amplitude and phase functions.

factorization. As far as we know, the low-rank matrix recovery problem in this paper has not been
studied before since there is no direct access to the entries of low-rank matrices. Hence, there is no
existing algorithm in the literature suitable for this problem.

As the second main contribution, when the low-rank amplitude and phase matrices have been
recovered, a new BF (named as IBF-MAT for short) is proposed for the matvecKf . IBF-MAT is the
first BF for the matvec Kf with O(N logN) complexity for both precomputation and application
in the case of indirect access (see Table 2 for the comparison with existing algorithms).

Finally, this paper shows that if the numerical rank of Φ(x, ξ) is rε (depending on an ε accuracy
parameter), a rε-dimensional NUFFT can be applied to evaluate (1) in O(N logN) operations.
The dimension of the NUFFT, rε, could be larger than the dimension of the variables x and ξ, and
hence we consider it as a dimension lifting technique. This new method significantly extend the
application range of the NUFFT approach for computing Kf .

The rest of the paper is organized as follows. In Section 2, we revisit existing low-rank factoriza-
tion techniques and propose our new low-rank matrix factorization in the case of indirect access. In

3

Section 3, we introduce the new NUFFT approach by dimension lifting. In Section 4, we introduce
the IBF-MAT. Finally, we provide several numerical examples to demonstrate the efficiency of the
proposed unified framework in Section 5.

2 Low-rank matrix factorization

This section is for the first main step in the unified framework as shown in Figure 1: low-rank
matrix factorizations of the amplitude and phase matrices.

2.1 Existing low-rank matrix factorization

Low-rank approximation by randomized sampling

For K ∈ Cm×n, we define a rank-r approximate singular value decomposition (SVD) of K as

K ≈ U0Σ0V
∗

0 , (2)

where U0 ∈ Cm×r is orthogonal, Σ0 ∈ Rr×r is diagonal, and V0 ∈ Cn×r is orthogonal. Efficient
randomized tools have been proposed to compute approximate SVDs for numerically low-rank
matrices [11, 14]. The one in [11] (see Algorithm 1) is more attractive because it only requires
O(m + n) operations and memory. We adopt MATLAB notations to describe Algorithm 1 for
simplicity: given row and column index sets I and J , KI,J = K(I, J) is the submatrix with entries
from rows in I and columns in J ; the index set for an entire row or column is denoted as “ : ”.

1 Input: A matrix K ∈ Cm×n, a rank parameter r, and an over-sampling parameter q.
2 Output: The low-rank factorization K ≈ U0Σ0V

∗
0 in (2).

3 Let Πcol and Πrow denote the important columns and rows of K that are used to form the
column and row bases. Initially Πcol = ∅ and Πrow = ∅.

4 Randomly sample rq rows and denote their indices by Srow. Let I = Srow ∪Πrow. Perform a
pivoted QR decomposition of KI,: to get KI,:P = QR, where P is the resulting permutation
matrix and R = (rij) is an O(r)× n upper triangular matrix. Define the important column
index set Πcol to be the first r columns picked within the pivoted QR decomposition.

5 Randomly sample rq columns and denote their indices by Scol. Let J = Scol ∪Πcol. Perform
a pivoted LQ decomposition of K:,J to get PK:,J = LQ, where P is the resulting
permutation matrix and L = (lij) is an m×O(r) lower triangular matrix. Define the
important row index set Πrow to be the first r rows picked within the pivoted LQ
decomposition.

6 Repeat Line 4 and 5 a few times to ensure Πcol and Πrow sufficiently sample the important
columns and rows of K.

7 Apply the pivoted QR factorization to K:,Πcol and let Qcol be the matrix of the first r
columns of the Q matrix. Similarly, apply the pivoted QR factorization to K∗Πrow,: and let
Qrow be the matrix of the first r columns of the Q matrix.

8 Let Scol and Srow be the index sets of a few extra randomly sampled columns and rows. Let

J = Πcol ∪ Scol and I = Πrow ∪ Srow. Let M = (Qcol)
†
I,:KI,J(Q∗row)†:,J , where (·)† stands for

the pseudo-inverse.
9 Compute the SVD M ≈ UMΣMV

∗
M and let U0 = QcolUM , Σ0 = ΣM , and V ∗0 = V ∗MQ

∗
row.

Algorithm 1: Randomized sampling for a rank-r approximate SVD.

4

Interpolative low-rank approximation

Algorithm 1 is sufficiently efficient if we allow a linear complexity to construct the low-rank
approximation. However, to construct the BF in nearly linear operations, we cannot even afford
linear scaling low-rank approximations; we can only afford an algorithm that provides the low-rank
factors with explicit formulas. This motivates the interpolative low-rank approximation below.

Let us focus on the case of a kernel function K(x, ξ) = e2πıΦ(x,ξ) and its discretization K =
e2πıΦ ∈ CNA×NB to introduce the interpolative low-rank approximation. We assume that x and ξ are
one-dimensional variables and the algorithm below can be easily generalized to higher dimensional
cases by tensor products. Note that if the phase function is given in a form of separation of
variables, i.e., Φ(x, ξ) =

∑r
k=1 uk(x)vk(ξ), the following interpolative factorization will also work

with a minor modification.
Let A and B denote the sets of contiguous row and column indices of K. If A×B corresponds

to a small two-dimensional interval in the variables x× ξ, then a low-rank approximation

K(A,B) = e2πıΦ(A,B) ≈ U0V
∗

0

exists and can be constructed via Lagrange interpolation as follows.
Suppose the numbers of elements in A and B are NA and NB, respectively. Let

R(A,B) := Φ(A,B)− ones(NA, 1) ∗ Φ(cA, B)− Φ(A, cB) ∗ ones(1, NB) + Φ(cA, cB), (3)

where cA and cB are the indices of A and B closest to the mean of all indices in A and B, respectively,
then K can be written as

K(A,B) = e−2πıΦ(cA,cB) ∗ diag
(
e2πıΦ(A,cB)

)
∗ e2πıR(A,B) ∗ diag

(
e2πıΦ(cA,B)

)
. (4)

Hence, the low-rank approximation of e2πıR(A,B) immediately gives the low-rank approximation of
K(A,B). A Lagrange interpolation can be applied to construct the low-rank approximation of
e2πıR(A,B).

Recall the challenge that we may not have explicit formulas for the amplitude or phase functions.
Hence, we cannot use Chebyshev grid points in the Lagrange interpolation to maintain a small
uniform error as the previous BF in [7, 18] does. Therefore, we choose indices in A or B in a similar
manner like Mock-Chebyshev points [2, 15] as follows2.

Let us assume A = {1, . . . , NA} and B = {1, . . . , NB}. If an index set doesn’t start with the
index 1, we can simply shift the grid points accordingly. For a fixed integer r, the Chebyshev grid
of order r on [−1

2 ,
1
2] is defined by{

zt =
1

2
cos

(
(t− 1)π

r − 1

)}
1≤t≤r

.

A grid adapted to the index set A is then defined via shifting, scaling, and rounding as

{xt}t=1,...,r =

{
Round

(
t+ (NA − r)(zt +

1

2
)

)}
t=1,...,r

. (5)

2 Though it was shown in [26] that no fast stable approximation of analytic functions from equispaced samples in
a bounded interval in the sense of L∞-norm with an exponential convergence rate is available, the Mock-Chebyshev
points admit polynomial interpolation with a root-exponential convergence rate. In this paper, we care more about
the approximation error at the equispaced sampling locations, in which case it is still unknown whether the Mock-
Chebyshev points admit an exponential convergence rate.

5

Note that the rounding operator may result in repeated grid points. Only one grid point will be
kept if repeated. Similarly, a grid adapted to the index set B is defined as

{ξt}t=1,...,r =

{
Round

(
t+ (NB − r)(zt +

1

2
)

)}
t=1,...,r

. (6)

Given a set of indices {xt}t=1,...,r in A, define Lagrange interpolation polynomials MA
t (x) by

MA
t (x) =

∏
1≤j≤r,j 6=t

x− xj
xt − xj

.

Similarly, MB
t is denoted as the Lagrange interpolation polynomials for B.

Now we are ready to construct the low-rank approximation of e2πıR(A,B) by interpolation:

• when we interpolate in ξ, the low-rank approximation of e2πıR(A,B) is given by

e2πıR(A,B) ≈ U0V
∗

0 , (7)

where
U0 =

(
e2πıR(A,ξ1), . . . , e2πıR(A,ξr)

)
∈ CNA×r,

V0 =
(
(MB

1 (B))∗, . . . , (MB
r (B))∗

)
∈ CNB×r,

and each MB
t (B) denotes a row vector of length NB such that the k-th entry is

MB
t (ξk) =

∏
1≤j≤r,j 6=t

ξk − ξj
ξt − ξj

for ξk ∈ B, k = 1, . . . , NB, given by (6).

• when we interpolate in x, the low-rank approximation of e2πıR(A,B) is

e2πıR(A,B) ≈ U0V
∗

0 , (8)

where
U0 =

(
(MA

1 (A))∗, . . . , (MA
r (A))∗

)
∈ CNA×r,

V0 =
((
e2πıR(x1,B)

)∗
, . . . ,

(
e2πıR(xr,B)

)∗) ∈ CNB×r,

and each MA
t (A) denotes a row vector of length NA such that the k-th entry is

MA
t (xk) =

∏
1≤j≤r,j 6=t

xk − xj
xt − xj

for xk ∈ A, k = 1, . . . , NA, given by (5).

Finally, we are ready to construct the low-rank approximation for the matrix e2πıΦ(A,B) when
we have Φ(A,B) or equivalently a low-rank factorization of Φ(A,B) as in Algorithm 2.

6

1 Input: The phase matrix Φ ∈ CN×N or its low-rank factorization Φ = Ū V̄ ∗. Contiguous
index sets A and B of the row and column indices of Φ, respectively. A rank parameter r.

2 Output: The low-rank factorization UV ∗ such that UV ∗ ≈ e2πıΦ(A,B), where U ∈ CNA×r,
and V ∈ CNB×r, where NA is the number of elements in A and NB is for B.

3 if the input contains low-rank factors Ū and V̄ of Φ then
4 define a function to evaluate an arbitrary entry of Φ at the position (m,n) in O(1)

operations as follows
Φ(m,n) = Ū(m, :)V̄ (n, :)∗.

5 if interpolation in the variable ξ in B then
6 by (4) and (7), we have

U := e−2πıΦ(cA,cB) ∗ diag
(
e2πıΦ(A,cB)

)
∗ U0, V ∗ := V ∗0 ∗ diag

(
e2πıΦ(cA,B)

)
, (9)

where U0 and V0 are given just below (7).

7 if interpolation in the variable x in A then
8 by (4) and (8), we have

U := e−2πıΦ(cA,cB) ∗ diag
(
e2πıΦ(A,cB)

)
∗ U0, V ∗ := V ∗0 ∗ diag

(
e2πıΦ(cA,B)

)
, (10)

where U0 and V0 are given just below (8).

Algorithm 2: Interpolative low-rank approximation for one-dimensional kernel e2πıΦ(x,ξ).
Factorization in higher dimensions can be constructed similarly via tensor products.

7

2.2 New low-rank matrix factorization with indirect access

This section introduces a nearly linear scaling algorithm for constructing the low-rank factorization
of the phase matrix Φ ∈ RN×N when we only know the kernel matrix K = e2πıΦ through Scenarios
1 and 2 in Table 3. The main idea is to recover O(1) randomly selected columns and rows of Φ
from the corresponding columns and rows of K = e2πıΦ. Then by Algorithm 1 in Section 2.1, we
can construct the low-rank factorization of Φ.

Obtaining O(1) randomly selected columns and rows of K is simple in Scenarios 1 and 2: we
can directly evaluate them in Scenario 1; we apply the kernel matrix K and its transpose to O(1)
randomly selected natural basis vectors in RN to obtain the columns and rows.

However, reconstructing the corresponding columns and rows of Φ from those of K = e2πıΦ is
more challenging. The difficulty comes from the fact that

1

2π
= (log (K(i, j))) =

1

2π
=
(

log
(
e2πıΦ(i,j)

))
=

1

2π
arg
(
e2πıΦ(i,j)

)
= mod (Φ(i, j), 1),

where =(·) returns the imaginary part of the complex number, and arg(·) returns the argument of
a complex number. Hence, Φ is only known up to modular 1.

Fortunately, our main purpose is not to recover the exact Φ that generates K; instead, we are
interested in a low-rank matrix Ψ such that

mod (Ψ, 1) =
1

2π
= (log (K)) . (11)

Based on the smoothness of the phase function, a TV 3-norm3 minimization technique is proposed
to recover the columns and rows of Φ up to an additive error matrix E that is numerically low-rank,
i.e., the TV 3-norm minimization technique returns a matrix Ψ = Φ + E such that e2πıΨ = e2πıΦ

and E is numerically low-rank.
To be more rigorous, we look for the solution of the following combinatorial constrained TV 3-

norm minimization problem:

min
Φ∈RN×N

∑
i∈R
‖Φ(i, :)‖TV 3 +

∑
j∈C
‖Φ(:, j)‖TV 3 (12)

subject to mod (Φ(i, j), 1) =
1

2π
= (log (K(i, j)))

for i ∈ R or j ∈ C,

where C and R are column and row index sets with O(1) randomly selected indices, respectively.
The problem addressed here is similar to phase retrieval problems, but has a different setting to

existing phase retrieval applications and different aims in numerical computation. Phase retrieval
problems usually have sparsity assumptions on the signals (or after an appropriate transformation)
that lose phases. In the problem considered in this paper, e2πıΦ is dense and might not be sparse
after a transformation (e.g., the Fourier transform or wavelet transform). Furthermore, there are
only O(N) samples of the target matrix of size N ×N to be recovered and the hard constrain (12)
is preferred instead of treating it as a soft constrain. TV 1-norm is a useful tool for regularization
in phase retrieval problems; however, TV 3-norm is preferred in this paper since, for example,
{Φ(x, y)+ax+by}a,b∈Z are good solutions to obtain the low-rank factorization of the phase function,

3The TV 3-norm of a vector v ∈ RN is defined as ‖v‖TV 3 :=
∑N−2
i=2 |vi+1 + vi−1 − 2vi − (vi+2 + vi − 2vi+1)| in this

paper. Similarly, The TV 1-norm of a vector v ∈ RN is defined as ‖v‖TV 1 :=
∑N
i=2 |vi − vi−1|. The TV 2-norm of a

vector v ∈ RN is defined as ‖v‖TV 2 :=
∑N−1
i=2 |vi+1 + vi−1 − 2vi|.

8

and it is not necessary to pick up one function among {Φ(x, y) + ax+ by}a,b∈Z with the minimum
TV 1-norm using much extra effort. TV 3-norm minimization leave us much more flexibility to
obtain an approximately good solution to (11) quickly.

Our goal here is an O(N) algorithm for solving the matrix recovery problem in (12). Though
there have been many efficient algorithms for phase retrieval problems, they usually require compu-
tational cost at least O(nN2), where N2 is the size of the target and n is the number of iterations.
n and N2 are both too large to be applied in our problem. Hence, instead of solving (12) exactly
using advanced optimization techniques, we propose a heuristic fast algorithm to identify a rea-
sonably good approximate solution to (12). As we can see in numerical examples, the proposed
heuristic algorithm works well in most applications.

A heuristic solution of the TV 3-norm minimization is to trace the columns and rows of 1
2π= (log (K))

to identify smooth columns and rows of Ψ agreeing with (11) and satisfying the following conditions:

1. the variation of these columns and rows of Ψ is small;

2. recovered columns and rows after tracing share the same value at the intersection.

Let us start with an example of vector recovery with TV 3-norm minimization to motivate the
algorithm for matrix recovery:

min
v∈RN

‖v‖TV 3 (13)

subject to mod (v, 1) =
1

2π
= (log (k)) ,

where k ∈ RN is a given vector. The discussion below will be summarized in Algorithm 3. Figure 2
visualizes the vector recovery procedure for a simple case when k is a vector from the discretization
of e2πiφ(ξ) with a piecewise smooth function φ(ξ) with only one discontinuous location ξ = 0.

First, we assume k is a vector from the discretization of e2πiφ(ξ) with a smooth function φ(ξ). Let
u = 1

2π= (log (k)). We only know u and would like to recover v from u. If we have known v(i : i+2),
to minimize the TV 3-norm of v, we can assign the value of v(i+3) such that v(i+2)+v(i)−2v(i+1)
and v(i+3)+v(i+1)−2v(i+2) have the minimum distance while maintaining mod (v(i+3), 1) =
u(i + 3) (corresponding to Line 16 in Algorithm 3). Hence, we only need to determine the values
of v(1 : 3) as the initial condition of the TV 3-norm vector recovery (corresponding to Line 6-13
in Algorithm 3). Similarly, to maximize the smoothness of v, we can assign the value of v(i + 2)
such that v(i + 1) − v(i) and v(i + 2) − v(i + 1) have the minimum distance while maintaining
mod (v(i + 2), 1) = u(i + 2) (corresponding to Line 10-13 in Algorithm 3). Finally, we can assign
any value to v(1) and determine the value of v(2) such that |v(2) − v(1)| is minimized with
mod (v(2), 1) = u(2) (corresponding to Line 6-9 in Algorithm 3).

Second, we deal with the case when k is a vector from the discretization of e2πiφ(ξ) with a
piecewise smooth function φ(ξ). Suppose

S = {c1, c2, . . . , cn}

is an index set storing the discontinuity locations of φ(ξ) with c1 = 1 < c2 < · · · < cn < N . c1 = 1
since we can always assume that φ(ξ) is discontinuous at the end points of its domain. We can
apply the algorithm just above to recover each piece v(ci : ci+1) for i = 1, . . . , n. When i = 1,
we are free to set up any value for v(c1), while when i > 1, v(ci) has been assigned according to
the recovery for the previous piece corresponding to v(ci−1). This difference is considered in the
“if” statement in Line 6 and 10 in Algorithm 3. Since there is no prior information about S except
that we know c1 = 1 ∈ S, Algorithm 3 automatically determine the discontinuous locations in Line

9

17-19 according to a threshold τ : when the second derivative of v at a certain location is larger
than τ , we consider v is discontinuous at this location.

Recall the goal of matrix recovery in (11), it is not necessary to tune the parameter τ such
that the discontinuous locations are exactly identified. If Algorithm 3 miss some discontinuous
locations, Algorithm 4 will provide a smoother estimation of the phase matrix; if Algorithm 3
artificially detects O(1) fake discontinuous locations, Algorithm 4 will provide an estimation of the
phase matrix with more pieces of smooth domains. As long as (11) is satisfied, all these estimations
are satisfactory. In our numerical tests, τ is set to be π

2 for all numerical examples. Other values
of τ result in similar numerical results, as long as τ is not close to 0 such that there are too many
fake discontinuous points that bring down the efficiency of Algorithm 4.

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

(a) (b) (c) (d) (e)

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

(f) (g) (h) (i) (j)

Figure 2: Illustration of the recovery of one row of the phase function Φ(x, ξ) = x · ξ + c(x)|ξ|,
where c(x) = (2 + sin(2πx))/2, by Algorithm 3. This row is a function in ξ denoted as v of length
N , and v has two discontinuous point: one at the beginning and one in the middle. Suppose
u = mod (v, 1), we only know u (in blue) and would like to recover v (in red) from u. Top
panel: (a) u. (b) Line 6-9 in Algorithm 3 assign the first two entries of v right after the first
discontinuous point such that they have the minimum distance while maintaining mod (v, 1) =
mod (u, 1). (c) Line 10-13 in Algorithm 3 assign the third entry of v such that v(2) − v(1) and
v(3)− v(2) have the minimum distance while maintaining mod (v, 1) = mod (u, 1). (d) Line 16
in Algorithm 3 assigns the fourth entry of v such that v(3)+v(1)−2v(2) and v(4)+v(2)−2v(3) have
the minimum distance while maintaining mod (v, 1) = mod (u, 1). (e) Similarly, for all other
i’s before the second discontinuous point, assign the i-th entry of v by minimizing the distance
between v(i−1)+v(i−3)−2v(i−2) and v(i)+v(i−2)−2v(i−1) while maintaining mod (v, 1) =
mod (u, 1). Bottom panel: the second discontinuous point is detected by Line 17 in Algorithm 3;
apply the same procedure as for (a)-(e) to recover the second part of v after the second discontinuous
point.

10

1 Input: a vector u of length N , a discontinuity detection parameter τ .
2 Output: a vector v satisfying mod (v, 1) = mod (u, 1), and a vector of indices S for

discontinuity locations.
3 Initialize: S = [1]; let n be the number of elements in S; and let c = 1.
4 while c ≤ n do
5 If c < n, let st = S(c) and ed = S(c+ 1)− 1; otherwise, let st = S(c) and ed = N .
6 if c = 1 then
7 Assign the values of v(st : st+ 1) such that these two values have the minimum

distance while maintaining mod (u(st : st+ 1), 1) = mod (v(st : st+ 1), 1).

8 else
9 Assign the values of v(st) such that two values in v(st− 1 : st) have the minimum

distance while maintaining mod (u(st− 1 : st), 1) = mod (v(st− 1 : st), 1).

10 if c = 1 then
11 Assign the values of v(st+ 2) such that v(st+ 2)− v(st+ 1) and v(st+ 1)− v(st) have

the minimum distance while maintaining mod (u(st+ 2), 1) = mod (v(st+ 2), 1).

12 else
13 Assign the values of v(st+ 1) such that v(st+ 1)− v(st) and v(st)− v(st− 1) have

the minimum distance while maintaining mod (u(st+ 1), 1) = mod (v(st+ 1), 1).

14 If c = 1, let bg = st+ 3; otherwise, let bg = st+ 2.
15 for all indices a from bg to ed do
16 Assign the value of v(a) such that v(a− 1) + v(a− 3)− 2v(a− 2) and

v(a) + v(a− 2)− 2v(a− 1) have the minimum distance while maintaining
mod (v(a), 1) = mod (u(a), 1).

17 if |v(a) + v(a− 2)− 2v(a− 1)| > τ then
18 Consider a as a new location at which v is discontinuous, add a to S, and let

n← n+ 1.
19 Break the for-loop.

20 c← c+ 1.

Algorithm 3: An O(N) algorithm for recovering a vector v from the observation u =
mod (v, 1). The discontinuous locations of v is automatically detected. See Figure 2 for
an illustration with a simple example.

When the vector recovery algorithm in Algorithm 3 is ready, we apply it to design a matrix
recovery algorithm in Algorithm 4. Recall that recovered columns and rows by Algorithm 3 should
share the same value at the intersection. To guarantee this, we carefully choose the recovery order
of the rows and columns, and the initial values of vector recovery, to avoid assignment conflicts
at the intersection. For simplicity, we only introduce Algorithm 4 for a phase function defined on
R× R. We will leave the extension to high-dimensional case as a future work.

11

1 Input: a vector C and a vector R as the column and row index sets indicating O(1)
randomly selected columns and rows of Φ, columns U = mod (Φ(:, C), 1), rows V =
mod (Φ(R, :), 1), a discontinuity detection parameter τ .

2 Output: columns Ū and rows V̄ satisfying mod (Ū , 1) = mod (U, 1), and mod (V̄ , 1) =
mod (V, 1).

3 Apply Algorithm 3 to U(:, C(1)) to detect a discontinuous point set Sr; add Sr to R and
update row samples V accordingly.

4 Apply Algorithm 3 to V (R(1), :) to detect a discontinuous point set Sc; add Sc to C and
update row samples U accordingly.

5 Let nr be the number of elements in Sr and nc be the number of elements in Sc. The
discontinuous point sets naturally partition the phase matrix into nr × nc blocks (see
Figure 3 for an example).

6 for Each block partitioned by discontinuous point sets do
7 Set τ = 2π, since it is not necessary to detect discontinuity here.
8 Apply Algorithm 3 to recover the first row and the first column of each block.
9 Apply Algorithm 3 to recover the second and the third columns of each block. Make sure

that the recovery shares the same entries when they intersect with the first row, and
there is no discontinuity along rows inside the first three columns.

10 Apply Algorithm 3 to recover O(1) rows of each block such that the first three entries of
these rows have the same entries as in the first three columns.

11 Apply Algorithm 3 to recover O(1) columns of each block such that these columns have
the same entries as in the recovered rows when a column and a row intersects.

Algorithm 4: An O(N) algorithm for the approximate solution of the TV 3-norm minimiza-
tion when the phase function Φ(x, ξ) is defined on R× R.

(a) (b)(a)

(c) (d)

(a) (b)(a)

(c) (d)

(a) (b)(a)

(c) (d)

(a) (b)(a)

(c) (d)(a) (b) (c) (d)

Figure 3: Illustration of the low-rank matrix recovery in Algorithm 4. (a) The matrix is partitioned
into submatrices such that there is no discontinuity along columns and rows in each submatrix.
Line 8 in Algorithm 4 recovers the first column and row of each submatrix. (b) Next, Line 9 in
Algorithm 4 recovers the second and the third columns for each submatrix. (c) Next, Line 10 in
Algorithm 4 recovers O(1) rows of each submatrix such that the first three entries of these rows
have the same entries as in the first three columns. (d) Finally, Line 11 in Algorithm 4 recovers
O(1) columns of each submatrix such that these columns have the same entries as in the recovered
rows when a column and a row intersects.

In the case of higher dimensions, the discretization of the oscillatory integral transform and the
arrangement of grid points will lead to artificial discontinuity along the column and row indices.
For example, a column or a row as a one-dimensional function in index is discontinuous at a certain
point, while we look back to the original high dimensional domain, the original kernel function

12

is continuous at the corresponding point. Hence, once the discretization and arrangement of grid
points have been fixed, we can remove the artificial discontinuity and apply the same ideas as in
Algorithm 4 to recover high dimensional phase functions.

With Algorithm 4 ready, we are able to introduce the nearly linear scaling algorithm for con-
structing a low-rank factorization UV ∗, where U ∈ CN×r and V ∈ CN×r, such that e2πıUV ∗ = e2πıΦ

when we only know the kernel matrix K = e2πıΦ through Scenarios 1 and 2 in Table 3. This method
is summarized in Algorithm 5.

2.3 Summary for the low-rank matrix factorization in the unified framework

Before moving to the algorithms for other main steps of the unified framework as shown in Figure 1,
let us summarize how those algorithms in Section 2.1 and Section 2.2 can be applied to construct the
low-rank matrix factorization of the ampltiude and phase functions with nearly linear computational
complexity.

For a general kernel K(x, ξ) = α(x, ξ)e2πıΦ(x,ξ), suppose we discretize α(x, ξ) and Φ(x, ξ) with
N grid points in each variable to obtain the amplitude matrix A and the phase matrix Φ. When
the explicit formulas of α(x, ξ) and Φ(x, ξ) are known, it takes O(N) operations to evaluate one
column or one row of A and Φ. Hence, Algorithm 1 in Section 2.1 is able to construct the low-rank
matrix factorization of A and Φ in O(N) operations.

When the explicit formulas are unknown but they are solutions of certain PDE’s as in Scenario
3 in Table 3. In this paper, we simply assume that O(1) columns and rows of the amplitude and
phase functions are available and Algorithm 1 in Section 2.1 can be applied to construct the low-
rank factorization in O(N) operations. In practical applications like solving wave equations [9], this
assumption for the phase function is reasonable since it can be obtain via interpolating the solution
of the PDE’s on a coarse grid of size independent of N . However, obtaining the amplitude function
might take expensive computation for solving PDE’s on a grid depending on N . Optimizing this
complexity will be left as interesting future work.

In the case of indirect access in Scenario 1 and 2 in Table 3, it takes O(N) or O(N logN)
operations to evaluate one column or one row of the kernel matrix K. By taking the absolute
value of K, we obtain one column or one row of A. Hence, the low-rank factorization of A can
be constructed via Algorithm 1 in Section 2.1 in O(N logN) operations. Dividing the amplitude
from the kernel, we have the access of the phase in the form of e2πıΦ(x,ξ). Hence, the low-rank
factorization of Φ can be constructed by Algorithm 5 in Section 2.2 in O(N logN) operations.

13

1 Input: Scenario 1: an algorithm for evaluating an arbitrary entry of the kernel matrix K in
O(1) operations; Scenario 2: an O(N logN) algorithm for applying K and its transpose to
a vector. A rank parameter r, an over-sampling parameter q, and the matrix size N .

2 Output: U ∈ CN×r and V ∈ CN×r such that e2πıUV ∗ = e2πıΦ.
3 if Scenario 1 then
4 Evaluate rq randomly selected columns and rows of K.
5 else if Scenario 2 then
6 Apply the kernel matrix K and its transpose to rq randomly selected natural basis

vectors in RN to obtain the columns and rows of K.
7 Apply Algorithm 4 with the columns and rows of K to obtain rq columns and rows of a

matrix Ψ such that e2πıΨ = e2πıΦ.
8 Apply Algorithm 1 with the columns and rows of Ψ to obtain the low-rank factorization of

Ψ ≈ UV ∗ such that e2πıUV ∗ = e2πıΦ, U ∈ CN×r, and V ∈ CN×r.
Algorithm 5: Low-rank matrix factorization for indirect access. The computational com-
plexity in Scenario 1 is O(N) and that in Scenario 2 is O(N logN).

3 NUFFT and dimension lifting

This section introduces a new NUFFT approach by dimension lifting to evaluate the oscillatory
integral transform

g(x) =

∫
α(x, ξ)e2πıΦ(x,ξ)f(ξ)dξ. (14)

If we could find {pj(x)}1≤j≤r and {qj(ξ)}1≤j≤r such that e2πı(Φ(x,ξ)−
∑r
j=1 pj(x)qj(ξ)) is numerically

low-rank, then (14) is reduced to O(1) r-dimensional NUFFT’s:

g(x) ≈
rε∑
k=1

ak(x)

∫
e2πı

∑r
j=1 pj(x)qj(ξ) (bk(ξ)f(ξ)) dξ, (15)

where ak(x) and bk(ξ) are the low-rank approximation of

α(x, ξ)e2πı(Φ(x,ξ)−
∑r
j=1 pj(x)qj(ξ)) ≈

rε∑
k=1

ak(x)bk(ξ).

Note that the prefactor of an r-dimensional NUFFT increases as r increases. Hence, the key con-
dition for deciding whether NUFFT is suitable for evaluating (14) is the existence of {pj(x)}1≤j≤r
and {qj(ξ)}1≤j≤r to ensure a small r and rε.

The choice of {pj(x)}1≤j≤r and {qj(ξ)}1≤j≤r is related to but different from classical low-
rank approximation problems that can be solved by the SVD. In fact, we have a new low-rank
approximation problem for fixed rank parameters r and rε as follows:

min
P,Q∈RN×r,U,V ∈RN×rε

‖Ae2πı(Φ−PQ∗) − UV ∗‖2, (16)

where A represents the amplitude matrix for α(x, ξ), and Φ is the phase matrix for Φ(x, ξ). An
immediate idea is to set reasonable r and rε, and solve the minimization problem in (16). If
the minimum value of the objective function is sufficiently small, then we can use the NUFFT
to evaluate (14) via (15). However, solving the optimization problem in (16) could be much more
expensive than O(N). This motivates Algorithm 6 below for deciding whether we could use NUFFT
in O(N) operations.

14

1 Input: low-rank factorization of the phase matrix Φ ≈ U1V
∗

1 , where U1 ∈ CN×r1 and
V1 ∈ CN×r1 ; low-rank factorization of the amplitude matrix A ≈ U2V

∗
2 , where U2 ∈ CN×r2

and V2 ∈ CN×r2 ; rank parameters r < r1 and rε, an over-sampling parameter q > 1, an
accuracy parameter ε ≈ 0, and the matrix size N .

2 Output: y ∈ {0, 1}; if y = 1, return P,Q ∈ RN×r, U, V ∈ RN×rε satisfying the low-rank
factorization

(U2V
∗

2)� e2πı(U1V ∗1 −PQ∗) ≈ UV ∗,

where � means the entry-wise dot product of two matrices.
3 Compute the approximate r-leading SVD of the rank-r1 matrix U1V

∗
1 using the randomized

truncated SVD algorithm in [12, 14]a and denote it as PΣQ∗. Update PΣ→ P .
4 Randomly sample rq columns of (U2V

∗
2)� e2πı(U1V ∗1 −PQ∗) and stack them into a matrix M .

Perform a pivoted QR decomposition of M and let R be the resulting rq × rq upper
triangular matrix.

5 Let n be the number of diagonal entries of R that are larger than R(1, 1)ε. If n < r, let
y = 1; otherwise, let y = 0.

6 if y = 1 then
7 Apply Algorithm 1 to compute the low-rank factorization UV ∗ of

(U2V
∗

2)� e2πı(U1V ∗1 −PQ∗) with the rank parameter rε and the over-sampling parameter q.

Algorithm 6: An O(N) algorithm for deciding whether NUFFT is applicable; if NUFFT is
applicable, returns the low-rank factorization for the evaluation in (15).

aIn the computation of the leading singular pair, since we have the rank-r1 factorization, the computational cost
is O(N), the convergence to the ground true singular pair is very fast if a test matrix with a number of columns
larger than r1 is applied [12], and the probability to obtain high accuracy is very close to 1.

Although Algorithm 6 is not optimal in the sense that it cannot provide the best P and Q such
that the low-rank approximation of Ae2πı(Φ−PQ∗) has the smallest rank, Algorithm 6 is sufficiently
efficient and works well in practice. The stability and probability analysis of the main components
of this algorithm can be found in [12, 14, 23]. If the output of Algorithm 6 is y = 1, then the low-
rank factorization of Ae2πı(Φ−PQ∗) is incorporated into (15) to evaluate (14) with rε r-dimensional
NUFFT’s. Note that r is a parameter less than or equal to 3 according to the current development
of NUFFT, and rε usually can be as large as O(100) since N is usually very large. If the output
of Algorithm 6 is y = 0, then the NUFFT approach is not applicable and we use the IBF-MAT
introduced below to evaluate (14). As we shall see later in the numerical examples, in some
applications, the NUFFT approach is not applicable for the whole matrix K, but it can be applied
to submatrices of K. Combining the results of all the submatrices of K can also lead to efficient
matvec for K. This strategy is problem-dependent and hence we omit the detailed discussion here.

4 IBF-MAT

This section introduces the IBF-MAT for evaluating the oscillatory integral transform if NUFFT is
not applicable. Recall that after computing the low-rank factorization of the amplitude function,
our target is to evalutate (1). If NUFFT is not applicable, we compute the IBF-MAT of e2πıΦ(x,ξ),
where the phase function is given in a form of a low-rank matrix factorization. Then the evaluation
of (1) is reduced to the application of IBF-MAT to O(1) vectors. Hence, we only focus on the
IBF-MAT of e2πıUV ∗ , where U and V ∈ RN×r. To simplify the discussion, we also assume that x
and ξ are one-dimensional variables. It is easy to extend the IBF-MAT to multi-dimensional cases

15

following the ideas in [7, 18, 20, 21].
K := e2πıUV ∗ is a complementary low-rank matrix that has been widely studied in [10, 11, 19,

21, 24, 25, 32]. Let X and Ω be the row and column index sets of e2πıUV ∗ . Two trees TX and TΩ

of the same depth L = O(logN), associated with X and Ω respectively, are constructed by dyadic
partitioning. Denote the root level of the tree as level 0 and the leaf one as level L. Such a matrix
K of size N ×N is said to satisfy the complementary low-rank property if for any level `, any
node A in TX at level `, and any node B in TΩ at level L − `, the submatrix KA,B, obtained by
restricting K to the rows indexed by the points in A and the columns indexed by the points in B, is
numerically low-rank. See Figure 4 for an illustration of low-rank submatrices in a complementary
low-rank matrix of size 16× 16.

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Figure 4: Hierarchical decomposition of the row and column indices of a one-dimensional comple-
mentary low-rank matrix of size 16× 16. The trees TX (TΩ) has a root containing 16 column (row)
indices and leaves containing a single column (row) index. The rectangles above indicate some of
the low-rank submatrices.

In a special case when K has an explicit formula, [7] proposed an O(N logN) butterfly algo-
rithm to construct a data-sparse representation of K using the low-rank factorizations of low-rank
submatrices in the complementary low-rank structure. [18] further optimized this algorithm and
formulated it into the form of BF:

K ≈ ULGL−1 · · ·GhMh(Hh)∗ . . . (H1)∗(V 0)∗, (17)

where the depth L = O(logN) is assumed to be even, h = L/2 is a middle level index, and all
factors are sparse matrices with O(N) nonzero entries. Storing and applying the BF requires only
O(N logN) complexity. However, in a general case when only the low-rank factorization of the
phase matrix Φ ≈ UV ∗ is available, the state-of-the-art purely algebraic approach to construct the
BF requires at least O(N1.5) computational complexity [19]. Though the application of the BF is
highly efficient, the precomputation of the factorization is still not practical when N is large.

The IBF-MAT in this paper admits O(N logN) construction and application complexity, which
would be a useful tool in developing nearly linear scaling algorithms to solve a wide class of differ-
ential and integral equations when incorporated into the schemes in [13, 17, 22, 27, 28]. The main
difference between IBF-MAT and the BF in [7, 18] is that, we apply Algorithm 2 in Section 2.1 to
construct the low-rank factorization of low-rank submatrices, instead of the interpolative low-rank
approximation in Section 2.1 in [18]. Hence, to reduce the length of this paper, we only illustrate
how Algorithm 2 in this paper is applied to design an O(N logN) butterfly algorithm. The reader
is referred to [18] for the routines that construct the data-sparse representation in the form of (17)
using the new butterfly algorithm.

With no loss of generality, we assume that K = e2πıUV ∗ coming from the discretization of
K(x, ξ) = e2πıΦ(x,ξ) with a uniform grid. Given an input vector {f(ξ), ξ ∈ Ω}, the goal is to

16

compute the potential vector {g(x), x ∈ X} defined by

g(x) =
∑
ξ∈Ω

K(x, ξ)f(ξ), x ∈ X.

The main data structure of the butterfly algorithm is a pair of dyadic trees TX and TΩ. Recall
that for any pair of intervals A×B ∈ TX × TΩ obeying the condition `A + `B = L, the submatrix
{K(x, ξ)}x∈A,ξ∈B is approximately of a constant rank. An explicit method to construct its low-rank
approximation is given by Algorithm 2. More precisely, for any ε > 0, there exists a constant rε
independent of N and two sets of functions {αABt (x)}1≤t≤rε and {βABt (ξ)}1≤t≤rε given in (9) or
(10) such that ∣∣∣∣∣K(x, ξ)−

rε∑
t=1

αABt (x)βABt (ξ)

∣∣∣∣∣ ≤ ε, ∀x ∈ A,∀ξ ∈ B. (18)

For a given interval B in Ω, define uB(x) to be the restricted potential over the sources ξ ∈ B

uB(x) =
∑
ξ∈B

K(x, ξ)g(ξ).

The low-rank property gives a compact expansion for {uB(x)}x∈A. Summing (18) over ξ ∈ B with
coefficients g(ξ) gives∣∣∣∣∣∣uB(x)−

rε∑
t=1

αABt (x)

∑
ξ∈B

βABt (ξ)g(ξ)

∣∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

Therefore, if one can find coefficients {λABt }1≤t≤rε obeying

λABt ≈
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε, (19)

then the restricted potential {uB(x)}x∈A admits a compact expansion∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

The butterfly algorithm below provides an efficient way for computing {λABt }1≤t≤rε recursively. The
general structure of the algorithm consists of a top-down traversal of TX and a bottom-up traversal
of TΩ, carried out simultaneously. A schematic illustration of the data flow in this algorithm is
provided in Figure 5.

Algorithm 4.1. Butterfly algorithm

1. Preliminaries. Construct the trees TX and TΩ.

2. Initialization. Let A be the root of TX . For each leaf interval B of TΩ, construct the expansion
coefficients {λABt }1≤t≤rε for the potential {uB(x)}x∈A by simply setting

λABt =
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε. (20)

17

By the interpolative low-rank approximation in Algorithm 2 applied to e2πıΦ(A,B) in the vari-
able ξ in B, we can define the expansion coefficients {λABt }1≤t≤rε by

λABt := e−2πıΦ(cA,ξ
B
t)
∑
ξ∈B

(
MB
t (ξ)e2πıΦ(cA,ξ)g(ξ)

)
, (21)

where {ξBt }1≤t≤rε is the set of grid points adapted to B by (6).

3. Recursion. For ` = 1, 2, . . . , L/2, visit level ` in TX and level L − ` in TΩ. For each pair
(A,B) with `A = ` and `B = L− `, construct the expansion coefficients {λABt }1≤t≤rε for the
potential {uB(x)}x∈A using the low-rank representation constructed at the previous level. Let
P be A’s parent and C be a child of B. Throughout, we shall use the notation C � B when
C is a child of B. At level ` − 1, the expansion coefficients {λPCs }1≤s≤rε of {uC(x)}x∈P are
readily available and we have∣∣∣∣∣uC(x)−

rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈C
|g(ξ)|

 ε, ∀x ∈ P.

Since uB(x) =
∑

C�B u
C(x), the previous inequality implies that∣∣∣∣∣uB(x)−
∑
C�B

rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ P.

Since A ⊂ P , the above approximation is of course true for any x ∈ A. However, since `A +
`B = L, the sequence of restricted potentials {uB(x)}x∈A also has a low-rank approximation
of size rε, namely, ∣∣∣∣∣uB(x)−

rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

Combining the last two approximations, we obtain that {λABt }1≤t≤rε should obey

rε∑
t=1

αABt (x)λABt ≈
∑
C�B

rε∑
s=1

αPCs (x)λPCs , ∀x ∈ A. (22)

This is an over-determined linear system for {λABt }1≤t≤rε when {λPCs }1≤s≤rε,C�B are avail-
able. The butterfly algorithm uses an efficient linear transformation approximately mapping
{λPCs }1≤s≤rε,C�B into {λABt }1≤t≤rε as follows

λABt := e−2πıΦ(cA,ξ
B
t)
∑
C�B

rε∑
s=1

MB
t (ξCs)e2πıΦ(cA,ξ

C
s)λPCs , (23)

where {ξBt }1≤t≤rε (and {ξCt }1≤t≤rε) is the set of grid points adapted to B (and C) by (6).

4. Switch. For the levels visited, interpolation is applied in variable ξ, while the interpolation is
applied in variable x for levels ` > L/2. Hence, we are switching the interpolation variable in
Algorithm 5 at this step. Now we are still working on level ` = L/2 and the same domain pairs
(A,B) in the last step. Let λABs denote the expansion coefficients obtained by interpolative

18

TX TΩ

L
2

L
2

Figure 5: Trees of the row and column indices. Left: TX for the row indices X. Right: TΩ for the
column indices Ω. The interaction between A ∈ TX and B ∈ TΩ starts at the root of TX and the
leaves of TΩ.

low-rank factorization using Algorithm 2 applied to e2πıΦ(A,B) in the variable ξ in B in the last
step. Correspondingly, {ξBs }s are the interpolation grid points in B in the last step. We take
advantage of the interpolation in variable x in A using Algorithm 2 applied to e2πıΦ(A,B) and
generate grid points {xAt }1≤t≤rε in A by (5). Then we can define new expansion coefficients

λABt :=

rε∑
s=1

e2πıΦ(xAt ,ξ
B
s)λABs .

5. Recursion. Similar to the discussion in Step 3, we go up in tree TΩ and down in tree TX
at the same time until we reach the level ` = L. We construct the low-rank approximation
functions by interpolation in variable x using Algorithm 2 as follows:

αABt (x) = e2πıΦ(x,cB)MA
t (x)e−2πıΦ(xAt ,cB), βABt (ξ) = e2πıΦ(xAt ,ξ), (24)

where {xAt }1≤t≤rε is the set of grid points adapted to A by (5).

Hence, the new expansion coefficients {λABt }1≤t≤rε can be defined as

λABt :=
∑
C�B

e2πıΦ(xAt ,cC)
rε∑
s=1

(
MP
s (xAt)e−2πıΦ(xPs ,cC)λPCs

)
, (25)

where again P is A’s parent and C is a child interval of B.

6. Termination. Finally, ` = L and set B to be the root node of TΩ. For each leaf interval
A ∈ TX , use the constructed expansion coefficients {λABt }1≤t≤rε in (25) to evaluate uB(x) for
each x ∈ A,

u(x) = uB(x) =

rε∑
t=1

αABt (x)λABt

= e2πıΦ(x,cB)
rε∑
t=1

(
MA
t (x)e−2πıΦ(xAt ,cB)λABt

)
,

(26)

where {xAt }1≤t≤rε is the set of grid points adapted to A by (5).

Like the butterfly algorithm in [7], Algorithm 4.1 is a direct approach that use the low-rank
matrix factorization by Algorithm 2 on-the-fly to evaluate the oscillatory integral transform

g(x) =

∫
e2πıΦ(x,ξ)f(ξ)dξ

19

in O(N logN) operations without precomputation. If repeated applications of the integral trans-
form to multiple functions f ’s are required, it is more efficient to keep the low-rank matrix factor-
izations and arrange them into the form of BF in (17). Besides, the rank provided by interpolative
factorization is far from optimal, which motivates the structure-preseving sweeping matrix com-
pression technique in [18] to further compress the preliminary BF by interpolative factorization to
obtain a sparser BF, which is the IBF-MAT of the kernel e2πıΦ(x,ξ) in this paper. The reader is
referred to [18] for a complete re-compression algorithm.

5 Numerical results

This section presents several numerical examples to demonstrate the efficiency of the proposed
unified framework. The numerical results were obtained on a computer with Intel R© Xeon R© CPU
X5690 @ 3.47GHz (6 core/socket) and 128 GB RAM. All implementations are in MATLAB R© and
are available per request. This new framework will be incorporated into the ButterflyLab4 in the
future.

Let {gd(x), x ∈ X}, {gb(x), x ∈ X} and {gn(x), x ∈ X} denote the results given by the direct
matrix-vector multiplication, IBF-MAT, and NUFFT, respectively. The accuracy of applying fast
algorithms is estimated by the relative error defined as follows,

εb =

√∑
x∈S |gb(x)− gd(x)|2∑

x∈S |gd(x)|2
and εn =

√∑
x∈S |gn(x)− gd(x)|2∑

x∈S |gd(x)|2
, (27)

where S is an index set containing 256 randomly sampled row indices of the kernel matrix K. The
error for recovering the amplitude function is defined as

εamp =
‖A(S, S)− U(S, :)V (:, S)∗‖2

‖A(S, S)‖2
, (28)

where A is the amplitude matrix and UV ∗ is its low-rank recovery. The error for recovering the
phase and the kernel functions are defined similarly and denoted as εpha and εK , respectively.

5.1 Accuracy and scaling of low-rank matrix recovery and IBF-MAT

In first part of the numerical section, we present numerical results of several examples to demon-
strate the accuracy and asymptotic scaling of the proposed low-rank matrix recovery for amplitude
and phase functions, and IBF-MAT. With no loss of generality, we only focus on Scenarios 1 and
2 of indirect access. For the first scenario, we apply the proposed algorithms to evaluate a Fourier
integral operator (FIO) in 1D and a Hankel matrix transform. For the second scenario, we compute
the IBF-MAT of the composition of two FIO’s when we only have the BF representing each FIO.

One-dimensional FIO
Our first example is to evaluate a one-dimensional FIO [19] of the following form:

g(x) =

∫
R
α(x, ξ)e2πıΦ(x,ξ)f̂(ξ)dξ, (29)

where f̂ is the Fourier transform of f , α(x, ξ) = 1, and Φ(x, ξ) is a phase function given by

Φ(x, ξ) = x · ξ + c(x)|ξ|, c(x) = (2 + 0.2 sin(2πx))/16. (30)

4Available on https://github.com/ButterflyLab.

20

https://github.com/ButterflyLab

The discretization of (29) is

g(xi) =
∑
ξj

α(xi, ξj)e
2πıΦ(xi,ξj)f̂(ξj), i, j = 1, 2, . . . , N, (31)

where {xi} and {ξj} are points uniformly distributed in [0, 1) and [−N/2, N/2) following

xi = (i− 1)/N and ξj = j − 1−N/2. (32)

This example is for Scenario 1 in Table 3. The unified framework is applied to recover the
amplitude and phase functions in a form of low-rank matrix factorization, compute the IBF-MAT
of the kernel function, and apply the IBF-MAT as in (1) to a randomly generated f in (29) to
obtain g. Table 4 summarizes the results of this example for different grid sizes N and numbers
of interpolation points rε. In the low-rank approximations of amplitude and phase functions, the
rank parameter is 20 and the over-sampling parameter is 5.

N, rε εb εK εpha εamp Trec(min) Tfac(min) Tapp(sec) Td/Tapp

1024, 6 2.52e-04 7.70e-11 7.70e-11 1.22e-15 1.80e-02 4.45e-02 6.17e-03 1.51e+01
1024, 8 2.60e-06 2.82e-12 2.82e-12 1.23e-15 1.07e-02 4.24e-02 3.91e-03 2.03e+01
1024,10 1.69e-08 3.16e-12 3.16e-12 1.22e-15 1.04e-02 3.35e-02 5.31e-03 1.72e+01
1024,12 6.21e-11 3.12e-12 3.12e-12 1.22e-15 1.08e-02 3.36e-02 3.95e-03 1.92e+01

4096, 6 3.38e-04 2.17e-11 2.17e-11 1.20e-15 4.06e-02 2.05e-01 1.32e-02 7.85e+01
4096, 8 3.16e-06 3.15e-11 3.15e-11 1.20e-15 4.21e-02 2.26e-01 1.62e-02 4.52e+01
4096,10 1.84e-08 6.67e-11 6.67e-11 1.31e-15 4.07e-02 1.83e-01 1.66e-02 4.38e+01
4096,12 7.87e-11 2.23e-11 2.23e-11 1.31e-15 4.06e-02 2.11e-01 2.34e-02 3.53e+01

16384, 6 3.87e-04 3.98e-10 3.98e-10 1.23e-15 1.53e-01 1.04e+00 4.78e-02 1.69e+02
16384, 8 3.98e-06 4.77e-11 4.77e-11 1.22e-15 1.54e-01 1.13e+00 7.39e-02 1.08e+02
16384,10 2.18e-08 2.64e-10 2.64e-10 1.22e-15 1.47e-01 9.73e-01 8.39e-02 1.02e+02
16384,12 1.87e-10 2.12e-10 2.12e-10 1.23e-15 1.47e-01 1.13e+00 1.14e-01 6.67e+01

65536, 6 4.85e-04 2.83e-09 2.83e-09 1.22e-15 5.81e-01 4.80e+00 1.96e-01 5.36e+02
65536, 8 5.35e-06 2.30e-09 2.30e-09 1.22e-15 5.77e-01 5.41e+00 3.07e-01 3.32e+02
65536,10 3.18e-08 3.77e-09 3.77e-09 1.22e-15 6.01e-01 5.07e+00 3.94e-01 2.91e+02
65536,12 2.01e-09 3.47e-09 3.47e-09 1.22e-15 5.96e-01 5.92e+00 5.40e-01 2.63e+02

262144, 6 5.55e-04 5.46e-09 5.46e-09 1.27e-15 2.32e+00 2.31e+01 8.80e-01 1.90e+03
262144, 8 4.51e-06 7.31e-09 7.31e-09 1.14e-15 2.32e+00 2.73e+01 1.48e+00 1.12e+03
262144,10 3.80e-08 2.23e-08 2.23e-08 1.25e-15 2.33e+00 2.51e+01 1.92e+00 8.69e+02
262144,12 7.70e-09 9.88e-09 9.88e-09 1.25e-15 2.33e+00 2.94e+01 2.55e+00 7.82e+02

Table 4: Numerical results for the one-dimensional FIO given in (31). Trec is the time for recovering
the amplitude and phase functions, Tfac is the time for computing the IBF-MAT, Tapp is the time
for applying the IBF-MAT, and Td is the time for a direct summation in (31).

Table 4 shows that for a fixed number of interpolation points rε, and a rank parameter for the
amplitude and phase functions, the accuracy of the low-rank matrix recovery and the IBF-MAT
stay in almost the same order, though the accuracy becomes slightly worse as the problem size
increases. The slightly increasing error is due to the randomness of the proposed algorithm. As
the problem size increases, the probability for capturing the low-rank matrix with a fixed rank

21

parameter becomes smaller. Although the phase function is not smooth at ξ = 0, the proposed
algorithm is still able to recover the phase function accurately.

As for the computational complexity, both the factorization time and the application time of the
IBF-MAT, and the reconstruction time of the amplitude and phase functions scales like N logN .
Every time we quadripule the problem size, the time increases on average by a factor of 4 to 6, and
the increasing factor tends to decrease as the problem size increases. The speed-up factor over the
direct method increases quickly and it is very significant when the problem size is large.

Special function transform
Next, we provide an example of a special function transform. Following the standard notation,

we denote the Hankel function of the first kind of order m by H
(1)
m . When m is an integer, H

(1)
m

has a singularity at the origin and a branch cut along the negative real axis. We are interested in
evaluating the sum of Hankel functions over different orders,

g(xi) =
N∑
j=1

H
(1)
j−1(xi)fj , i = 1, 2, . . . , N, (33)

which is analogous to expansion in orthogonal polynomials. The points xi are defined via the
formula

xi = N +
2π

3
(i− 1),

which are bounded away from zero. The entries of the matrix in the above matvec can be explicitly
calculated on-the-fly in O(1) operations per entry using asymptotic formulas. The unified frame-
work will work for many other orthogonal transforms in the oscillatory regime that admit smooth
amplitude and phase functions. For more examples see [3, 4].

This example is also for Scenario 1 in Table 3. The unified framework is applied to recover
the amplitude and phase functions in a form of low-rank matrix factorization, compute the IBF-
MAT of the kernel function, and apply the IBF-MAT as in (1) to a randomly generated f to
obtain g. Table 5 summarizes the results of this example for different grid sizes N and numbers
of interpolation points rε. In the low-rank approximations of amplitude and phase functions, the
rank parameter is 20 and the over-sampling parameter is 5.

The results in Table 5 agree with the O(N logN) complexity analysis and the speed-up factor
over a direct summation is significant. The accuracy of the IBF-MAT becomes better if rε is larger
and is almost independent of the problem size. Note that the recovery accuracy of the amplitude
and phase functions becomes worse as N increases. This is due to the fact that there is a singularity
point in the corner of the amplitude matrix (see Figure 6), leading to an increasing rank of the
amplitude matrix as the problem size increases. Besides, the randomized sampling algorithm in
Algorithm 1 is not good in the presence of singularity, unless we know this singularity a prior
so that we sample more at the corner. Hence, when N > 16384 the accuracy of the low-rank
amplitude and phase recovery is not very good and this influences the accuracy of the IBF-MAT,
since the accuracy of the IBF-MAT is bounded below by the recovery accuracy. It is easy to fix
this issue. After reconstructing the amplitude and phase, we can check singularity and reconstruct
these functions again with adjusted sampling strategies to improve the accuracy. This works well
in practice and we don’t show the numerical results to save the space of the paper.

Composition of two FIO’s in 1D
The third example is to evaluate a composition of two FIO’s of the following form:

g(x) = L ◦ L(f), (34)

22

N, rε εb εK εpha εamp Trec(min) Tfac(min) Tapp(sec) Td/Tapp

1024, 6 1.19e-04 3.07e-09 2.88e-09 6.78e-12 2.06e-02 3.65e-02 1.82e-02 3.79e+01
1024, 8 2.35e-06 5.77e-10 6.34e-10 1.88e-11 1.86e-02 3.61e-02 1.38e-02 6.29e+01
1024,10 2.26e-06 5.27e-10 5.75e-10 2.33e-11 1.84e-02 2.41e-02 1.23e-02 7.69e+01
1024,12 1.72e-07 5.21e-10 5.58e-10 1.70e-11 1.90e-02 2.61e-02 1.23e-02 7.27e+01

4096, 6 3.66e-05 1.73e-07 1.92e-07 2.85e-10 6.38e-02 1.80e-01 6.53e-02 1.41e+02
4096, 8 9.03e-06 2.52e-09 1.42e-09 1.16e-10 6.68e-02 1.98e-01 8.72e-02 9.98e+01
4096,10 1.97e-06 5.83e-09 3.16e-09 1.11e-10 6.66e-02 1.52e-01 8.35e-02 1.16e+02
4096,12 4.93e-07 9.66e-08 8.34e-08 3.05e-11 6.66e-02 1.64e-01 9.15e-02 1.01e+02

16384, 6 2.82e-03 5.00e-07 3.19e-07 7.10e-10 2.48e-01 9.51e-01 3.70e-01 2.92e+02
16384, 8 1.66e-04 7.16e-07 6.00e-07 9.17e-10 2.42e-01 1.02e+00 5.03e-01 2.04e+02
16384,10 4.21e-06 7.43e-08 3.75e-08 2.51e-09 2.49e-01 8.48e-01 4.66e-01 2.32e+02
16384,12 2.43e-07 3.61e-08 2.16e-08 1.87e-10 2.49e-01 8.88e-01 5.01e-01 2.08e+02

65536, 6 2.86e-03 2.51e-06 1.65e-07 3.97e-07 9.81e-01 4.56e+00 2.78e+00 6.65e+02
65536, 8 7.15e-06 2.98e-06 1.24e-06 1.11e-07 9.61e-01 4.96e+00 3.57e+00 4.74e+02
65536,10 8.50e-07 6.45e-06 3.40e-06 7.58e-11 9.59e-01 4.35e+00 4.04e+00 4.25e+02
65536,12 4.10e-05 1.99e-04 2.89e-06 3.12e-05 9.56e-01 4.67e+00 3.97e+00 4.69e+02

262144, 6 1.26e-03 3.82e-05 3.07e-05 9.52e-08 3.86e+00 2.22e+01 1.33e+01 1.81e+03
262144, 8 5.41e-06 9.77e-06 4.93e-06 1.26e-06 3.89e+00 2.42e+01 1.79e+01 1.38e+03
262144,10 1.01e-05 3.94e-05 1.61e-05 3.00e-06 3.90e+00 2.28e+01 2.37e+01 1.07e+03
262144,12 5.94e-05 1.58e-04 4.27e-06 2.17e-05 3.89e+00 2.44e+01 2.08e+01 1.17e+03

Table 5: Numerical results for the Hankel function transform given in (33). Trec is the time for
recovering the amplitude and phase functions, Tfac is the time for computing the IBF-MAT, Tapp
is the time for applying the IBF-MAT, and Td is the time for a direct summation in (33).

Figure 6: The exact amplitude function of the example in (33). There is a singularity point in
the corner of the amplitude matrix, leading to an increasing rank of the amplitude matrix as the
problem size increases.

23

where L is an FIO of the form

g(x) =

∫
R
e2πıΦ(x,ξ)f̂(ξ)dξ, (35)

where Φ(x, ξ) is a phase function given by

Φ(x, ξ) = x · ξ + c(x)ξ, c(x) = (2 + 0.2 sin(2πx))/16. (36)

The discretization of (35) is similar to (31).
This example is for Scenario 2 in Table 3. The unified framework is applied to recover the

amplitude and phase functions in a form of low-rank matrix factorization, compute the IBF-MAT
of the kernel function, and apply the IBF-MAT as in (1) to a randomly generated f in (34) to
obtain g. Table 6 summarizes the results of this example for different grid sizes N and numbers
of interpolation points rε. In the low-rank approximations of amplitude and phase functions, the
rank parameter is 20 and the over-sampling parameter is 5.

We would like to emphasize that the composition of two FIO’s results in an FIO with a phase
function that is very singular at the point ξ = 0. This leads to large-rank submatrices in the kernel
matrix. In this case, we can adopt the multiscale butterfly algorithm/factorization in [20, 21] to
deal with this singularity. We have implemented the multiscale version of the IBF-MAT and present
its numercial performance in Table 6. For the purpose of reducing the length of this paper, we
don’t introduce the multiscale IBF-MAT. The reader is referred to [20, 21] for detailed description
of the multiscale idea.

Table 6 shows that for a fixed number of interpolation points rε, and a rank parameter for the
amplitude and phase functions, the accuracy of the low-rank matrix recovery and the multiscale
IBF-MAT stay in almost the same order, though the accuracy becomes slightly worse as the problem
size increases. The slightly increasing error is due to the randomness of the proposed algorithm as
explained previously. There is no explicit formula for the amplitude and phase functions in this
example. Hence, we cannot estimate the accuracy of the recovery algorithm. Since the accuracy of
the multiscale IBF-MAT is bounded below by the accuracy of amplitude and phase recovery. We
see that the recovery accuracy should be very good.

As for the computational complexity, both the factorization time and the application time of the
IBF-MAT, and the reconstruction time of the amplitude and phase functions scales like N logN .
On average, when we quadripule the problem size, the time increases on average by a factor of 4
to 6, and the increasing factor tends to decrease as the problem size increases.

5.2 Comparison of NUFFT and BF

In the second part of the numerical section, we illustrate the O(N) strategy in Algorithm 6 for
deciding whether we can use NUFFT in the oscillatory integral transform. We will show that once
the NUFFT is applicable, it is more efficient than the BF considering that the prefactor of the
factorization and application time of the BF is larger than that of the NUFFT approach, when we
require an approximate matvec with a high accuracy, no matter how many vectors in the matvec.
To this end, we will provide an example of FIO’s in solving wave equations. In the case of low
accuracy requirement, according to the comparison of BF and NUFFT in Table 1 and 2 in [18],
our conclusion just above still valid.

Fast algorithms for solving wave equations with variable coefficients based on FIO’s have been
studied based on either the BF in [9] or the wave packet representation of the FIO’s in [5, 8]. [9]
also proposed an approach to solve wave equations based on a carefully desgined NUFFT according
to the explicit formulas of FIO’s inspired by the work in [6].

24

N, rε εb Trec(min) Tfac(min) Tapp(sec)

1024, 6 3.13e-04 6.65e-02 2.70e-02 3.41e-02
1024, 8 3.65e-06 4.52e-02 2.75e-02 2.99e-02
1024,10 3.07e-08 4.55e-02 1.81e-02 3.65e-02
1024,12 4.25e-10 4.49e-02 2.04e-02 3.51e-02

4096, 6 3.94e-04 2.43e-01 1.60e-01 1.25e-01
4096, 8 4.59e-06 2.41e-01 1.81e-01 1.79e-01
4096,10 3.48e-08 2.47e-01 1.49e-01 2.54e-01
4096,12 9.24e-10 2.45e-01 1.71e-01 3.14e-01

16384, 6 4.58e-04 1.51e+00 8.92e-01 7.02e-01
16384, 8 5.42e-06 1.80e+00 1.02e+00 1.69e+00
16384,10 3.84e-08 1.72e+00 9.42e-01 1.70e+00
16384,12 1.69e-09 1.80e+00 1.08e+00 1.86e+00

65536, 6 5.22e-04 9.33e+00 4.61e+00 7.90e+00
65536, 8 6.29e-06 1.01e+01 5.36e+00 1.42e+01
65536,10 4.56e-08 9.54e+00 5.12e+00 2.47e+01
65536,12 9.25e-09 1.01e+01 5.72e+00 2.68e+01

262144, 6 5.86e-04 3.32e+01 2.22e+01 5.30e+01
262144, 8 7.16e-06 3.29e+01 2.51e+01 8.35e+01
262144,10 6.07e-08 3.28e+01 2.55e+01 1.40e+02
262144,12 2.45e-08 3.25e+01 3.00e+01 1.43e+02

Table 6: Numerical results for the composition of two FIO’s given in (34). Trec is the time for
recovering the amplitude and phase functions, Tfac is the time for computing the multiscale IBF-
MAT, and Tapp is the time for applying the multiscale IBF-MAT.

We propose to apply the new NUFFT approach with dimension lifting for the evaluation of
FIO’s in solving wave equations. This new method does not rely on the explicit formula of an
FIO and can be applied to more general scenarios. Besides, the dimension lifting idea could lead
to fewer applications of the NUFFT, since the rank rε in (15) could be smaller compared to the
NUFFT approach in [9]. We will only provide a one-dimensional wave equation as an example to
compare the performance of the new NUFFT approach and the BF approach for the evaluation
of FIO’s in solving wave equations. The application of the new NUFFT approach to solve higher
dimensional wave equations will be left as a future work.

In more particular, we solve the one-dimensional wave equation as follows:
∂ttu(x, t)− ∂x(c2(x)∂xu(x, t)) = 0 t > 0, x ∈ [0, 1)

u(x, 0) = u0(x) x ∈ [0, 1)

∂tu(x, 0) = u1(x) x ∈ [0, 1),

(37)

where the boundary conditions are taken to be periodic. The theory of FIO’s states that for a given
smooth and positive c(x) there exists a time t∗ that depends only on c(x) such that for any t < t∗,
the general solution of (37) is given by a summation of two FIO’s:

u(x, t) =
∑
ξ∈Z

e2πıΦ±(x,ξ,t)α±(x, ξ, t)f̂±(ξ),

25

where f± are two functions depending on the initial conditions.
In this example, we assume that c(x) = 2 + sin(2πx) and follow the ideas in [9] to construct

the FIO’s in the solution operator of (37). Without loss of generality, we focus on the evaluation
of the FIO ∑

ξ∈Z
e2πıΦ+(x,ξ,t)f̂+(ξ). (38)

The phase function Φ+(x, ξ, t) satisfies the Hamiltonian-Jacobi equation{
∂tΦ+(x, ξ, t)− c(x)|∂xΦ+(x, ξ, t)| = 0

Φ+(x, ξ, 0) = x · ξ.
(39)

Note that Φ+(x, ξ, t) is homogeneous of degree 1 in ξ, i.e., Φ+(x, λξ, t) = λΦ+(x, ξ, t) for λ > 0.
Therefore, we only need to evaluate Φ+(x, ξ, t) at ξ = ±1. From the algebraic point of view, the
phase matrix is piecewise rank-1, i.e.,

Φ+(x, ξ, t) =

{
Φ+(x, 1, t)ξ, ∀ξ ≥ 0,

−Φ+(x,−1, t)ξ, ∀ξ < 0.
(40)

In fact, to make the boundary condition periodic in x, Ψ+(x, ξ, t) := Φ+(x, ξ, t)− xξ is introduced
for ξ = ±1. Then we have{

∂tΨ+(x, ξ, t)− c(x)|∂xΨ+(x, ξ, t) + ξ| = 0,

Ψ+(x, ξ, 0) = 0.
(41)

When c(x) is a band-limited function, Ψ+(x, ξ, t) is a smooth function in x when t is sufficiently
smaller than t∗. Hence, a small grid in x is enough to discretize (41). The value of Ψ+ on a finer
grid in x can evaluated by spectral interpolation using FFT.

In the numerical examples here, we adopt a uniform grid with 512 grid points for x in [0, 1),
and a time step size 1

4096 to solve (41). The standard local Lax-Friedrichs Hamiltonian method is
applied for x and the third order TVD Runge-Kutta method is used for t to solve (41). We vary
the problem size N of the evaluation in (38) and discretize Φ+(x, ξ, t) with a uniform spacial grid
with a step size 1

N for x ∈ [0, 1) and a uniform frequency grid with a step size 1 for ξ ∈ [−N
2 ,

N
2).

By (40), we solve (41) and obtain a low-rank factorization of the phase matrix and apply IBF-
MAT to evaluate (38). Note that the phase matrix is piecewise rank-1, we can split the summation
in (38) into two parts:∑

ξ∈{−N
2
,...,−1}

e2πıΦ+(x,ξ,t)f̂+(ξ) +
∑

ξ∈{0,1,··· ,N
2
−1}

e2πıΦ+(x,ξ,t)f̂+(ξ), (42)

and apply the one-dimensional NUFFT approach to evaluate the two summations in (42). Or we
can also apply the two-dimensional NUFFT approach to compute the summation in (38). The
numerical results are summarized in Table 7 and Table 8. To make the accuracy of the BF and
the NUFFT approaches comparable, we choose the rank parameter rε in the IBF-MAT as 12, the
accuracy tolerance ε in the IBF-MAT and the NUFFT as 1e− 12.

Numerical results in Table 7 show that both the IBF-MAT and the one-dimensional NUFFT
approach without dimension lifting admit O(N logN) factorization and application time. For
almost the same evaluation accuracy, the one-dimensional NUFFT approach has a much smaller
prefactor (about O(1000) times smaller considering the total cost) making it more preferable.

26

N t TFFT (sec) T bfac(sec) T bapp(sec) εb Tnfac(sec) Tnapp(sec) εn

1024 2.441e-04 2.09e-04 2.22e+00 2.90e-03 9.86e-13 3.96e-03 2.55e-03 1.69e-13
1024 1.953e-03 2.09e-04 1.72e+00 1.97e-03 9.43e-13 1.80e-03 1.12e-03 9.85e-14
1024 1.562e-02 2.09e-04 1.71e+00 1.99e-03 1.37e-12 2.28e-03 1.03e-03 8.25e-14

4096 2.441e-04 2.07e-04 1.08e+01 1.14e-02 1.33e-12 9.26e-04 3.44e-03 4.22e-13
4096 1.953e-03 2.07e-04 1.02e+01 1.12e-02 1.25e-12 8.13e-04 3.44e-03 2.74e-13
4096 1.562e-02 2.07e-04 1.03e+01 1.14e-02 1.52e-12 7.78e-04 3.36e-03 1.93e-13

16384 2.441e-04 3.21e-04 5.56e+01 5.63e-02 6.46e-12 8.95e-04 1.26e-02 1.02e-12
16384 1.953e-03 3.21e-04 5.53e+01 8.04e-02 6.13e-12 9.30e-04 1.36e-02 1.48e-12
16384 1.562e-02 3.21e-04 5.61e+01 5.65e-02 5.29e-12 1.02e-03 1.48e-02 1.06e-12

65536 2.441e-04 2.91e-03 2.92e+02 2.70e-01 3.06e-12 9.89e-04 5.33e-02 7.89e-12
65536 1.953e-03 2.91e-03 2.93e+02 2.72e-01 3.96e-12 9.62e-04 5.39e-02 5.55e-12
65536 1.562e-02 2.91e-03 2.93e+02 3.14e-01 3.78e-12 1.12e-03 6.05e-02 4.30e-12

262144 2.441e-04 5.41e-03 1.46e+03 1.23e+00 3.61e-12 8.45e-04 2.04e-01 6.33e-12
262144 1.953e-03 5.41e-03 1.48e+03 1.42e+00 9.87e-12 1.08e-03 2.16e-01 4.12e-11
262144 1.562e-02 5.41e-03 1.56e+03 1.31e+00 1.04e-11 1.20e-03 2.00e-01 4.04e-11

Table 7: Numerical results for the evaluation of (42) for different problem sizes N at different time
t. TFFT is the runtime of a FFT on a vector of length N as comparison. T bfac, T

b
app, T

n
fac, and

Tnapp are the factorization time and the application time for the IBF-MAT and the one-dimensional

NUFFT, respectively. εb and εn are the relative evaluation error by the IBF-MAT and the NUFFT
approaches, respectively.

Numerical results in Table 8 show that the two-dimensional NUFFT approach with dimension
lifting also admits O(N logN) factorization and application time. Though the BF might be a
few times more efficient in some cases in terms of the application time, the NUFFT approach is
still more preferable considering the expensive factorization time of the BF. Although the two-
dimensional NUFFT approach is more expensive than the one-dimensional NUFFT method, the
two-dimensional NUFFT approach doesn’t rely on the piecewise rank-1 property of the phase
function, and therefore is applicable in more general situations.

Although we know that the NUFFT approach is applicable for (38) and (42), we still apply
Algorithm 6 to test its time scaling. The results of TDEC in Table 8 also verify that Algorithm 6
for deciding whether we can apply the NUFFT approach has a linear scaling.

6 Conclusion and discussion

This paper introduced a unified framework for O(N logN) evaluation of the oscillatory integral
transform g(x) =

∫
α(x, ξ)e2πıΦ(x,ξ)f(ξ)dξ. This framework works for two cases: 1) explicit formulas

for the amplitude and phase functions are known; 2) only indirect access of the amplitude and phase
functions are available. In the case of indirect access, this paper proposed a novel fast algorithms for
recovering the amplitude and phase functions in O(N logN) operations. Second, a new algorithm
for the oscillatory integral transform based on the NUFFT and a dimension lifting technique is
proposed. Finally, a new BF, the IBF-MAT, for amplitude and phase matrices in a form of a low-
rank factorization is proposed. These two algorithms both requires only O(N logN) operations to
evaluate the oscillatory integral transform.

27

N t Tdec(sec) T bfac(sec) T bapp(sec) εb Tnfac(sec) Tnapp(sec) εn

1024 2.441e-04 1.33e-02 2.22e+00 2.90e-03 9.86e-13 1.65e-03 7.05e-04 1.45e-13
1024 1.953e-03 1.63e-02 1.72e+00 1.97e-03 9.43e-13 2.90e-03 4.94e-03 1.03e-13
1024 1.562e-02 1.43e-02 1.71e+00 1.99e-03 1.37e-12 4.32e-04 4.98e-03 9.55e-14

4096 2.441e-04 4.09e-02 1.08e+01 1.14e-02 1.33e-12 7.83e-04 1.96e-03 4.66e-13
4096 1.953e-03 3.83e-02 1.02e+01 1.12e-02 1.25e-12 9.56e-04 1.53e-02 6.70e-13
4096 1.562e-02 3.87e-02 1.03e+01 1.14e-02 1.52e-12 1.66e-03 2.21e-02 8.89e-13

16384 2.441e-04 1.40e-01 5.56e+01 5.63e-02 6.46e-12 6.30e-04 7.41e-03 1.07e-12
16384 1.953e-03 1.80e-01 5.53e+01 8.04e-02 6.13e-12 4.69e-04 7.84e-02 5.01e-12
16384 1.562e-02 1.47e-01 5.61e+01 5.65e-02 5.29e-12 4.16e-04 1.54e-01 1.62e-12

65536 2.441e-04 6.60e-01 2.92e+02 2.70e-01 3.06e-12 7.04e-04 3.25e-02 4.69e-12
65536 1.953e-03 6.54e-01 2.93e+02 2.72e-01 3.96e-12 4.75e-04 3.75e-01 1.93e-11
65536 1.562e-02 6.76e-01 2.93e+02 3.14e-01 3.78e-12 5.01e-04 9.34e-01 3.92e-11

262144 2.441e-04 2.94e+00 1.46e+03 1.23e+00 3.61e-12 2.34e-03 1.18e-01 2.34e-11
262144 1.953e-03 3.29e+00 1.48e+03 1.42e+00 9.87e-12 7.74e-04 2.46e+00 2.62e-10
262144 1.562e-02 3.15e+00 1.56e+03 1.31e+00 1.04e-11 4.51e-04 8.13e+00 3.02e-10

Table 8: Numerical results for the evaluation of (38) for different problem sizes N at different time
t. Tdec is the runtime of Algorithm 6. T bfac, T

b
app, T

n
fac, and Tnapp are the factorization time and

the application time for the IBF-MAT and the two-dimensional NUFFT approach by dimension
lifting, respectively. εb and εn are the relative evaluation error by the IBF-MAT and the NUFFT
approaches, respectively.

This unified framework would be very useful in develping efficient tools for fast special function
transforms, solving wave equations, and solving electromagnetic (EM) scattering problems. We
have provided several examples to support these applications. For example, the state-of-the-art
fast algorithm for computing the compositions of FIO’s, which could be applied as a precondi-
tioner for certain classes of parabolic and hyperbolic equations [17, 27, 28]; a fast algorithm for
solving wave equation via FIO’s. We have explored the potential applications of the proposed
framework to: 1) fast evaluation of other special functions [3, 4] to develop nearly linear scaling
polynomial transforms; 2) fast solvers developed in [13, 22] for nearly linear algorithms for solving
high-frequency EM equations. Numerical results will be reported in forthcoming papers.

Acknowledgments. The author thanks the fruitful discussion with Lexing Ying and the
support of the start-up package at the National University of Singapore.

References

[1] G. Bao and W. W. Symes. Computation of pseudo-differential operators. SIAM Journal on
Scientific Computing, 17(2):416–429, 1996.

[2] J. P. Boyd and F. Xu. Divergence (Runge Phenomenon) for least-squares polynomial approxi-
mation on an equispaced grid and Mock Chebyshev subset interpolation. Applied Mathematics
and Computation, 210(1):158 – 168, 2009.

[3] J. Bremer. An algorithm for the rapid numerical evaluation of Bessel functions of real orders
and arguments. arXiv:1705.07820 [math.NA], 2017.

28

[4] J. Bremer. An algorithm for the numerical evaluation of the associated Legendre functions
that runs in time independent of degree and order. Journal of Computational Physics, 360:15
– 38, 2018.

[5] P. Caday. Computing Fourier integral operators with caustics. Inverse Problems,
32(12):125001, 2016.

[6] E. Candès, L. Demanet, and L. Ying. Fast computation of Fourier integral operators. SIAM
J. Sci. Comput., 29(6):2464–2493, 2007.

[7] E. J. Candès, L. Demanet, and L. Ying. A fast butterfly algorithm for the computation of
Fourier integral operators. Multiscale Modeling and Simulation, 7(4):1727–1750, 2009.

[8] M. V. de Hoop, G. Uhlmann, A. Vasy, and H. Wendt. Multiscale discrete approximations of
Fourier integral operators associated with canonical transformations and caustics. Multiscale
Modeling & Simulation, 11(2):566–585, 2013.

[9] L. Demanet and L. Ying. Fast wave computation via Fourier integral operators. Math. Com-
put., 81(279), 2012.

[10] B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory kernels. SIAM
Journal on Scientific Computing, 29(4):1710–1737, 2007.

[11] B. Engquist and L. Ying. A fast directional algorithm for high frequency acoustic scattering
in two dimensions. Communications in Mathematical Sciences, 7(2):327–345, 06 2009.

[12] M. Gu. Subspace iteration randomization and singular value problems. SIAM Journal on
Scientific Computing, 37(3):A1139–A1173, 2015.

[13] H. Guo, Y. Liu, J. Hu, and E. Michielssen. A butterfly-based direct integral equation solver
using hierarchical LU factorization for analyzing scattering from electrically large conducting
objects. arXiv:1610.00042 [math.NA], 2016.

[14] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,
2011.

[15] P. Hoffman and K. Reddy. Numerical differentiation by high order interpolation. SIAM Journal
on Scientific and Statistical Computing, 8(6):979–987, 1987.

[16] J. Hu, S. Fomel, L. Demanet, and L. Ying. A fast butterfly algorithm for generalized Radon
transforms. Geophysics, 78(4):U41–U51, June 2013.

[17] H. Isozaki and J. L. Rousseau. Pseudodifferential multi-product representation of the solution
operator of a parabolic equation. Communications in Partial Differential Equations, 34(7):625–
655, 2009.

[18] Y. Li and H. Yang. Interpolative butterfly factorization. SIAM Journal on Scientific Comput-
ing, 39(2):A503–A531, 2017.

[19] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. Butterfly Factorization. Multiscale
Modeling & Simulation, 13(2):714–732, 2015.

29

[20] Y. Li, H. Yang, and L. Ying. A multiscale butterfly aglorithm for Fourier integral operators.
Multiscale Modeling and Simulation, 13(2):614–631, 2015.

[21] Y. Li, H. Yang, and L. Ying. Multidimensional butterfly factorization. Applied and Computa-
tional Harmonic Analysis, 2017.

[22] Y. Liu, H. Guo, and E. Michielssen. An HSS matrix-inspired butterfly-based direct solver for
analyzing scattering from two-dimensional objects. IEEE Antennas and Wireless Propagation
Letters, 16:1179–1183, 2017.

[23] M. W. Mahoney. Lecture notes on randomized linear algebra. arXiv:1608.04481 [cs.DS], 2016.

[24] E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for analyzing scatter-
ing from large structures. Antennas and Propagation, IEEE Transactions on, 44(8):1086–1093,
Aug 1996.

[25] M. O’Neil, F. Woolfe, and V. Rokhlin. An algorithm for the rapid evaluation of special function
transforms. Appl. Comput. Harmon. Anal., 28(2):203–226, 2010.

[26] R. Platte, L. Trefethen, and A. Kuijlaars. Impossibility of fast stable approximation of analytic
functions from equispaced samples. SIAM Review, 53(2):308–318, 2011.

[27] J. L. Rousseau. Fourier-integral-operator approximation of solutions to first-order hyperbolic
pseudodifferential equations I: Convergence in sobolev spaces. Communications in Partial
Differential Equations, 31(6):867–906, 2006.

[28] J. L. Rousseau and G. Hörmann. Fourier-integral-operator approximation of solutions to first-
order hyperbolic pseudodifferential equations II: Microlocal analysis. Journal de Mathmatiques
Pures et Appliquées, 86(5):403 – 426, 2006.

[29] D. Ruiz-Antolin and A. Townsend. A nonuniform fast Fourier transform based on low rank
approximation. arXiv:1701.04492 [math.NA], 2017.

[30] D. O. Trad, T. J. Ulrych, and M. D. Sacchi. Accurate interpolation with high-resolution
time-variant Radon transforms. Geophysics, 67(2):644–656, 2002.

[31] M. Tygert. Fast algorithms for spherical harmonic expansions, {III}. Journal of Computational
Physics, 229(18):6181 – 6192, 2010.

[32] L. Ying. Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput., 31(3):1678–
1694, Feb. 2009.

30

	1 Introduction
	2 Low-rank matrix factorization
	2.1 Existing low-rank matrix factorization
	2.2 New low-rank matrix factorization with indirect access
	2.3 Summary for the low-rank matrix factorization in the unified framework

	3 NUFFT and dimension lifting
	4 IBF-MAT
	5 Numerical results
	5.1 Accuracy and scaling of low-rank matrix recovery and IBF-MAT
	5.2 Comparison of NUFFT and BF

	6 Conclusion and discussion

