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A Distributed Message-Optimal Assignment on Rings∗

Gianluca De Marco† Mauro Leoncini‡ Manuela Montangero§

Abstract

Consider a set of items and a set of m colors, where each item is associated to one
color. Consider also n computational agents connected by a ring. Each agent holds
a subset of the items and items of the same color can be held by different agents. We
analyze the problem of distributively assigning colors to agents in such a way that
(a) each color is assigned to one agent only and (b) the number of different colors
assigned to each agent is minimum. Since any color assignment requires the items
be distributed according to it (e.g. all items of the same color are to be held by only
one agent), we define the cost of a color assignment as the amount of items that
need to be moved, given an initial allocation. We first show that any distributed
algorithm for this problem requires a message complexity of Ω(n · m) and then
we exhibit an optimal message complexity algorithm for synchronous rings that in
polynomial time determines a color assignment with cost at most three times the
optimal. We also discuss solutions for the asynchronous setting. Finally, we show
how to get a better cost solution at the expenses of either the message or the time
complexity.
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Italy, and Istituto di Informatica e Telematiche, CNR Pisa, Italy. e-mail: leoncini@unimore.it
§Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reg-
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1 Introduction

We consider the following problem. We are given a set of computational agents connected
by a (physical or logical) ring1, and a set of items, each associated to one color from a
given set. Initially each agent holds a set of items and items with the same color may be
held by different agents (e.g. see Fig 1.(a)). We wish the agents to agree on an assignment
of colors to agents in such a way that each color is assigned to one agent only and that the
maximum over all agents of the number of different colors assigned to the same agent is
minimum. We call this a balanced assignment: Fig 1.(b) and Fig 1.(c) show two possible
balanced assignments. Among all such assignments, we seek the one that minimizes the
total number of items that agents have to collect from other agents in order to satisfy the
constraints. For example, agent a0 in Fig 1.(b) is assigned colors ∇ and ♠, and therefore
needs just to collect four items colored ∇, since no other agent has items colored ♠.
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Figure 1: Three agents: a0, a1, a2, and six colors: ∇,♦,♥,△,♠,♣. (a) is the initial allocation,
while (b) and (c) are two possible balanced color assignments. Items above the line are those that
the agent collects from the others. Therefore their total number is the cost of the assignment.
The assignment in (b) costs (4×∇) + (2×♥+ 4×△) + (1×♣+ 6×♦) = 17 items, while the
assignment in (c) costs (4×△) + (2×♥+ 4×♦) + (5×∇+ 1×♣) = 16 items.

The problem can be formalized as follows. Let A = {a0, . . . an−1} be a set of n agents
connected by a ring and let C = {c0, . . . , cm−1} be a set of m colors. Let Qj,i ≥ 0 be the
number of items with color cj initially held by agent ai, for every j = 0, . . . , m − 1, and
for every i = 0, . . . , n− 1.

Definition 1 (Balanced Coloring). A Balanced Coloring is an assignment π : {0, . . . , m−
1} → {0, . . . , n− 1} of the m colors to the n agents in such a way that:

• for every color cj, there is at least one agent ai such that π(j) = i;

1An importand example of logical architecture is given by the set of ring shaped nodes of a Distributed
Hash Table.
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• for every agent ai, ⌊
m
n
⌋ ≤ |{cj | π(j) = i}| ≤ ⌈m

n
⌉; i.e., the number of color

assigned to agents has to be balanced. In particular, ⌊m
n
⌋ colors are assigned to

[
(
⌊m
n
⌋+ 1

)
n−m] agents, and ⌊m

n
⌋+1 colors to the remaining

(
m− ⌊m

n
⌋n

)
agents.

Any Balanced Coloring then assigns almost the same number of colors to each agent,
and when m is a multiple of n, then each agent is assigned exactly the same number of
colors.

Definition 2 (Distributed Balanced Color Assignment Problem). The Distributed Bal-
anced Color Assignment Problem aims at distributively finding a Balanced Coloring of
minimum cost, where the cost of a Balanced Coloring π : {0, . . . , m−1} → {0, . . . , n−1}
is defined as

Cost(π) =

m−1∑

j=0

n−1∑

i=0,
i6=π(j)

Qj,i. (1)

The cost of the optimal assignment will be denoted by Costopt. The approximation

ratio of a sub-optimal algorithm A is the quantity
CostA

Costopt
, where CostA is the cost of the

solution computed by A.

Motivations. The scenario defined above may arise in many practical situations in
which a set of agents independently search a common space (distributed crawlers, sensor
networks, peer-to-peer agents, etc) and then have to reorganize the retrieved data (items)
according to a given classification (colors), see for example [14, 19, 21]. In these cases,
determining a distributed balanced color assignment may guarantee specialization by
category with maximal use of data stored in local memory or balanced computational
load of agents minimizing the communication among agents.

A similar scenario may also arise in computational economics [2]. The distributed bal-
anced color assignment formalizes a combinatorial auction problem where agents are the
bidders and colors represent auction objects. The number of items that an agent holds for
each color can be interpreted as a measure of desire for certain objects (colors). Balancing
the number of colors per agent and minimizing the cost guarantees the maximum bidders
satisfaction.

The model. We assume that the agents in A = {a0, . . . , an−1} are connected by a
ring: agent ai can communicate only with its two neighbors a(i+1) mod n (clockwise) and
a(i−1) mod n (anti-clockwise). We assume that each agent knows n (the number of agents),
and C (the set of colors). Each agent ai is able to compute pi = max0≤j≤m−1Qj,i inde-
pendently, i.e., the maximum number of items it stores having the same color, while
p = max0≤i≤n−1pi is unknown to the agents.

We will consider both synchronous and asynchronous rings, always specifying which
case we are working with or if results hold for both models.

3



For synchronous and asynchronous rings, we measure message complexity in the stan-
dard way (cf. [16, 18]), i.e., we assume that messages of bit length at most c logn, for
some constant c (called basic messages), can be transmitted at unit cost. One message
can carry at most a constant number of agent ID’s. Non basic messages of length L are
allowed, and we charge a cost c′ ⌈L/ log n⌉ for their transmission, for some constant c′.

For what concerns time complexity, in the synchronous case we assume that agents
have access to a global clock and that the distributed computation proceeds in rounds.
In each round any agent can check if it has received a message (sent in the previous
round), make some local computation, and finally send a message. In the asynchronous
case agents don’t have access to a global clock, but the distributed computation is event
driven (“upon receiving message α, take action β”). A message sent from one agent to
another will arrive in a finite but unbounded amount of time.

Throughout the paper we will use the generic term time unit to designate the time
needed for a message to traverse a link both in the synchronous and asynchronous case:
for the synchronous case a time unit (also called round or time slot) is the time elapsed
between two consecutive ticks of the clock; for the asynchronous setting a time unit can
be any bounded finite amount of time. Nevertheless, in both cases the time complexity
can be simply measured as the number of time units needed to complete the algorithm’s
execution.

Outline of the results. The goal of this paper is to analyze the efficiency with which
we can solve the Distributed Balanced Color Assignment problem. In Section 2 we discuss
some related problems and show the equivalence with the so called weighted β-assignment
problem in a centralized setting [4]. We also show that a brute force approach that
first gathers all information at one agent, then computes the solution locally and finally
broadcasts it, has a high message complexity of O(mn2 log p/ logn). Fortunately, we can
do better than this. In Section 3 we give an Ω(mn) lower bound on the message complexity
to determine a feasible solution (suitable for both synchronous and asynchronous cases).
In Section 4 we present an algorithm that finds a feasible solution to the problem whose
message complexity is O(mn logm/ logn), which is then optimal when m is bounded by
a polynomial in n.

Interestingly enough, message complexity is never affected by the value p, while run-
ning time is. We then show how to adapt the algorithm to work also in the asynchronous
case at the expenses of a slight increase in message complexity; this time the messege cost
depends also on p, but the asymptotic bound is affected only when p is very large (i.e.,
only if p 6∈ O(mm)). In Section 5 we show that the proposed algorithm (both synchronous
and asynchronous versions) computes a Balanced Coloring whose cost is only a factor
of three off the optimal one, and we also show that the analysis of the approximation is
tight. Finally, we show that we can find Balanced Colorings with a better approximation
ratio at the expenses of the message and/or time complexity.

A preliminary version of this work appeared in [6]. In the previous version it was
assumed that parameter p (the maximum number of items of a given color) was known
to the computational agents. Since in practical situations it is difficult to have a good
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estimate of such a global parameter, in this new version we removed this assumption.
This required both new algorithmic ideas and technical efforts. The algorithm for the
asynchronous communication model was also not contained in the preliminary version.
Finally, we enriched the proof of the lower bound with new insights that could be useful
for further generalizations to different network topologies.

2 Related problems and centralized version

In this section we relate the Distributed Balanced Color Assignment problem to known
matching problems that have been well studied in centralized settings. We will first show
that when m = n our problem is equivalent to a maximum weight perfect matching
problem on complete bipartite graphs. On the other hand, when m ≥ n, our problem
reduces to the weighted β-assignment problem.

The class of β-assignment problems has been introduced by Chang and Lee [4], in the
context of the problems of assigning jobs to workers, in order to incorporate the problem
of balancing the work load that is given to each worker. In the weighted β-assignment
problem one aims at minimizing the maximum number of jobs assigned to each worker.

The interested reader can find useful references on these problems, their complexity,
and related approximation issues in [1, 3, 15, 20, 22].

We associate to agents and colors the complete bipartite graph on n + m vertices,
which we denote by G = (C,A, C × A). We add weights to G as follows: the weight of
the edge joining agent ai and color cj is Qj,i.

Case m = n. Given a graph (V,E), a perfect matching is a subset M of edges in E
such that no two edges in M share a common vertex and each vertex of V is incident to
some edge in M . When edges of the graph have an associated weight, then a maximum
weight perfect matching is a perfect matching such that the sum of the weights of the
edges in the matching is maximum.

Lemma 3. When m = n, a maximum weight perfect matching on G is a minimum cost
solution to the balanced color assignment problem.

Proof. Given a perfect matching E ⊆ E = C × A on G, for every (cj, ai) ∈ E we assign
color cj to agent ai. As G is complete and E is a perfect matching on G, every color
is assigned to one and only one agent and vice-versa. Moreover, the cost of any color
assignment E can be written as

∑

e∈E\E w(e), and this expression achieves its minimum
when E is a maximum weight perfect matching.

Finding matchings in graphs is one of the most deeply investigated problems in Com-
puter Science and Operations Research (see [17] for a comprehensive description of the
different variants, theoretical properties, and corresponding algorithms). The best algo-
rithm known to find a perfect matching in a bipartite graph is due to Hopcroft and Karp
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[10], and runs in O
(

|E|
√

|V |
)

time, where V and E denote the vertex and edge sets,

respectively. The best known algorithm for finding a maximum weight perfect matching
is the Hungarian method, due to Kuhn [13], which runs in time O(n3).

Case m ≥ n. The β-assignment problem is defined on a bipartite graph G = (S, T, E)
where (S, T ) is the bipartition of the vertex set. A β-assignment of S in G is a subset of
the edges X ⊆ E such that, in the induced subgraph G′ = (S, T,X), the degree of every
vertex in S is exactly one. Let β(X) be the maximum degree, in G′, of vertices in T and let
β(G) be the minimum value of β(X) among all possible β-assignments X . The weighted
β-assignment problem consists of finding a β-assignment X with β(X) = β(G) which
maximizes the total weight of the edges in X . The following lemma is straightforward.

Lemma 4. The balanced color assignment problem is a weighted β-assignment of C in
the complete bipartite graph G = (C,A, C × A), with β(G) = ⌈m/n⌉.

The fastest known algorithm to solve the weighted β-assignment problem is due to
Chang and Ho [3] and runs in O(max{|S|2|T |, |S||T |2}) time, which in our case gives the
bound O(m2n).

While the maximum weighted perfect matching problem (and its variants) has been
widely investigated in the distributed setting (see [8, 9]), no distributed results are known
for the weighted β-assignment problem.

A brute force approach. A brute force distributed solution to the problem can be
obtained by asking all the agents to send their color information to one specific agent
(a priori chosen or elected as the leader of the ring); such an agent will then solve the
problem locally and send the solution back to all the other agents. The factor dominating
the message complexity of the algorithm above is the information collecting stage. Indeed,
each agent sends O(m) non-basic messages, each corresponding to O(log p/ logn) basic
messages, through O(n) links, on the average. This results in a message complexity of
O(mn2 log p/ logn). On the other hand, we might think of an algorithm in which each
agent selects the correct number of colors basing its choice just on local information (e.g.
its label). This requires no communication at all, but, even if we are able to prove that
the agents agree correctly on a balanced coloring, we have no guarantee on how good the
solution is. As we already said, we show that we can do better than this.

3 Lower bound on message complexity

In this section we prove a lower bound on the message complexity of the problem that
applies to both synchronous and asynchronous rings.

We prove the lower bound on a particular subset I of the instances of the problem.
Let n be even and let m = (nt)/2, for some integer t. Since we are only interested in
asymptotic bounds, for the sake of simplicity, we will also assume that m is a multiple of
n, i.e. t/2 = m/n is an integer.
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For any agent ai, let ai′ denote the agent at maximum distance from ai on the ring.
In the following we say that a color is assigned to the pair (ai, ai′), for i = 0, . . . , n/2− 1,
to mean that it is assigned to both agents of the pair. We also say that a set C of colors
is assigned to agent a iff all the colors in C are assigned to a.

Let {C0, . . . , Cn/2−1} be a partition of the set of colors such that |Cj | = t for all j =
0, . . . , n/2−1. Set I consists of all instances of the Distributed Balanced Color Assignment
Problem such that for any i = 0, . . . , n/2− 1, the following two conditions hold:

(a) for any color j ∈ Ci = {i1, . . . , it} both agents of pair (ai, ai′) hold at least one item
of color j, i.e. Qj,i > 0, Qj,i′ > 0;

(b) neither ai nor ai′ hold colors not in Ci.

Lemma 5. Given an instance in I, any optimal solution assigns to (ai, ai′) only colors
from set Ci, for i = 0, . . . , n/2− 1.

Proof. Consider any solution to an instance from set I that assigns to the agent ai a color
h0 initially held by some pair (ak, ak′), with k 6= i. Since any optimal solution is perfectly
balanced on input instances of I, there must be at least one color h1 initially stored in
(ai, ai′) that is assigned to some other agent, say ap. The same argument can in turn be
applied to ap and so on until (since the number of colors/agents is finite) we fall back on
ak. Formally, there exists 0 ≤ k ≤ n/2− 1, k 6= i, such that h0 ∈ Ck 6= Ci, and a sequence
of indices k0, k1, . . . , kl, with k0 = k, k1 = i and kl+1 = k, such that

• color h0 ∈ Ck0(= Ck) is assigned to agent ak1(= ai);

• color h1 ∈ Ck1(= Ci) is assigned to agent ak2;
...

• color hl ∈ Ckl is assigned to agent akl+1
(= ak).

Let Cost1 denote the cost of such a solution and let Γ be the contribution to the cost
given by colors different from h0, h1, . . . , hl. Then, recalling condition (b) of the definition
of I, we have

Cost1 = Γ +

n−1∑

w=0,
w 6=k1

Qh0,w +

n−1∑

w=0,
w 6=k2

Qh1,w + · · ·+
n−1∑

w=0,
w 6=kl+1

Qhl,w

= Γ + (Qh0,k0 +Qh0,k′0
) + · · ·+ (Qhl,kl +Qhl,k

′
l
).

Consider now a solution that differs from the previous one only by the fact that every
color in Cw is assigned to agent aw for w = k0, k1 . . . , kl. Namely,

• h0 ∈ Ck0 is assigned to ak0 ;

• h1 ∈ Ck1 is assigned to ak1 ;
...
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• hl ∈ Ckl is assigned to akl .

This is clearly a perfectly balanced solution, since each agent “loses” and “gains”
exactly one color with respect to the previous case. Letting Cost2 be the cost of such a
solution, we have

Cost2 = Γ +
n−1∑

w=0,
w 6=k0

Qh0,w + · · ·+
n−1∑

w=0,
w 6=kl

Qhl,w

= Γ +Qh0,k′0
+ · · ·+Qhl,k

′
l
.

Hence,

Cost1 − Cost2 = Qh0,k0 + · · ·+Qhl,kl > 0,

where the inequality follows from condition (1) of the definition of I.

We now consider two specific instances in I that will be used in the following proofs.
For each pair (ai, ai′), for i = 0, . . . , n/2 − 1, and its initially allocated set of colors

Ci = {i1, . . . , it}, fix any u > 1 and partition set Ci into subsets C′ and C′′, each of
cardinality t/2. We define instance I1 ∈ I for the pair (ai, ai′) in the following way:

I1 : Qj,i = u for each j ∈ Ci
Qj,i′ = Qj,i = u for each j ∈ C′

Qj,i′ = Qj,i + 1 = u+ 1 for each j ∈ C′′

Hence, by construction, instance I1 has the property that for any j ∈ C′′, Qj,i′ > Qj,i.

Example 6. Consider a pair (ai, ai′) with a set of colors Ci = {1, 2, 3, 4, 5, 6, 7, 8}. Let
u = 2. If C′ = {2, 4, 5, 8} and C′′ = {1, 3, 6, 7}, then instance I1 will be as follows:

colors 1 2 3 4 5 6 7 8
# items for ai 2 2 2 2 2 2 2 2
# items for ai′ 3 2 3 2 2 3 3 2

In the following lemma we will show that the only optimal solution to I1 is the one
that assigns C′ to ai and C

′′ to ai′ . The above example gives an intuition of the formal
proof. By Lemma 5, we know that only the items that need to be exchanged between ai
and ai′ account for the cost of the optimal solution, and the latter is achieved by moving
items with weight 2 (those highlighted in bold in the table), i.e., by assigning C′ to ai and
C′′ to ai′ , for a total cost of 16.

Lemma 7. The only optimal solution to instance I1 is the one that assigns C′ to ai and
C′′ to ai′.

8



Proof. We first compute the cost of this solution:

Cost =
∑

j∈C′

Qj,i′ +
∑

j∈C′′

Qj,i =
∑

j∈C′

Qj,i +
∑

j∈C′′

Qj,i =
∑

j∈Ci

Qj,i.

Consider any other partition of Ci into two sets C′ and C′′. Consider another solution
that assigns C′ to ai and C′′ to ai′ and let us compute the cost of this new solution:

Cost =
∑

j∈C′

Qj,i′ +
∑

j∈C′′

Qj,i

=
∑

j∈C′∩C′

Qj,i′ +
∑

j∈C′∩C′′

Qj,i′ +
∑

j∈C′′

Qj,i

=
∑

j∈C′∩C′

Qj,i +
∑

j∈C′∩C′′

Qj,i′ +
∑

j∈C′′

Qj,i

=
∑

j∈Ci\(C′∩C′′)

Qj,i +
∑

j∈C′∩C′′

Qj,i′

>
∑

j∈Ci\(C′∩C′′)

Qj,i +
∑

j∈C′∩C′′

Qj,i = Cost,

where the inequality follows by observing that

• there is at least one j ∈ C′ ∩ C′′, otherwise the two partitions would coincide;

• on instance I1 we have that for every j ∈ C′′, Qj,i′ > Qj,i.

We now define the instance I2 ∈ I for the pair (ai, ai′) in the following way:

I2 : Qj,i′ = u for each j ∈ Ci
Qj,i = Qj,i′ = u for each j ∈ C′

Qj,i = Qj,i′ − 1 = u− 1 for each j ∈ C′′

where C〉, C
′, C′′, and u are set as before. By construction, instance I2 has now the property

that for any j ∈ C′′, Qj,i′ < Qj,i.

Example 8. Consider again the pair (ai, ai′) on the same set of colors Ci and same
partition C′ = {2, 4, 5, 8}, C′′ = {1, 3, 6, 7}, and same u = 2, exactly as in Example 6.
Instance I2 will be as follows (the cost of the optimal solution is equal to 12 and highlighted
in bold):

colors 1 2 3 4 5 6 7 8
# items for ai 2 2 2 2 2 2 2 2

# items for ai′ 1 2 1 2 2 1 1 2

9



Observe that, from ai point of view, instances I1 and I2 are indistinguishable. Nev-
ertheless, the optimal solution for instance I2 is to assign to ai the complement set of
indices with respect to the optimal solution to instance I1.

Analogously as the previous lemma we can prove the following result.

Lemma 9. There is only one optimal solution for instance I2: assign colors in C′ to ai′

and colors in C′′ to ai.

Proof. The proof is very similar to that of Lemma 7. The cost of the solution defined in
the statement is now:

Cost =
∑

j∈C′

Qj,i +
∑

j∈C′′

Qj,i′ =
∑

j∈C′

Qj,i′ +
∑

j∈C′′

Qj,i′ =
∑

j∈Ci

Qj,i′.

The cost of any other solution is calculated as in the proof of Lemma 7 with the exception
that now instance I2 has the property that for any j ∈ C′′, Qj,i′ < Qj,i.

The core of the lower bound’s proof lies in the simple observation that agent ai is
not able to distinguish between instance I1 and instance I2 without knowing also the
quantities Qj,i′ for colors j falling into partition C′′.

Lemma 10. If agent ai knows at most t/2 colors held by ai′, it cannot compute its optimal
assignment of colors.

Proof. Construct a partition of Ci in the following way: place index j in C′ if ai has
knowledge of Qj,i′ and in C′′ in the other case. If the cardinality of C′ is smaller than
t/2, arbitrarily add indices to reach cardinality t/2. Agent ai cannot distinguish between
instances I1 and I2 constructed according to this partition of Ci and, hence, by lemmas
7 and 9 cannot decide whether it is better to keep colors whose indices are in C′ or in
C′′. Finally, observe that in both instances indices in C′ are exactly in the same position
in the ordering of the colors held by ai′, thus the knowledge of these positions does not
help.

Theorem 11. The message complexity of the distributed color assignment problem on
ring is Ω(mn).

Proof. Let A be any distributed algorithm for the problem running on instances in I. By
the end of the execution of A, each agent has to determine its own assignment of colors. Fix
any pair (ai, ai′) and consider the time at which agent ai decides its own final assignment
of colors. Assume that at this time ai knows information about at most t/2 = m/n colors
of agent ai′ . By Lemma 10, it cannot determine an assignment of colors for itself yielding
the optimal solution.

Therefore, for all n/2 pairs (ai, ai′), agent ai has to get information concerning at least
m/n of the colors held by ai′ . We use Shannon’s Entropy to compute the minimum number
of bits B to be exchanged between any pair (ai, ai′) so that this amount of information is
known by ai. We have:
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B = log

(
m
m
n

)

.

Using Stirling’s approximation and the inequality m ≥ n, we get

B ≈
m

n
· log

m · n

m+ n

≥
m

n
· log

n

2
∈ Ω

(m

n
log n

)

.

As a basic message contains log n bits, any pair (ai, ai′) needs to exchange at least
Ω(m/n) basic messages. Each such message must traverse n/2 links of the ring to get to
one agent of the pair to the other. As we have n/2 pairs of agents, the lower bound on
message complexity is given by

Ω(m/n) ·
n

2
·
n

2
∈ Ω(m · n).

4 A distributed message-optimal algorithm

In this section we first describe an algorithm that exhibits optimal message complexity
on synchronous ring. We will then show how to adapt the algorithm to the case of an
asynchronous ring. In the next section we will prove that the algorithm is guaranteed to
compute an approximation of the color assignment that is within a factor three from the
optimal solution (for both synchronous and asynchronous ring).

4.1 Synchronous ring

At a high level, the algorithm consists of three phases: in the first phase, the algorithm
elects a leader a0 among the set of agents. The second phase of the algorithm is devoted
to estimate the parameter p = maxi maxj Qj,i, i.e. the maximum number of items of a
given color held by agents. Finally, the last phase performs the assignment of colors to
agents in such a way to be consistent with Definition 1. In the following we describe the
three phases in detail.

Algorithm Sync-Balance

Phase 1. The first phase is dedicated to leader election that can be done in O(n)
time with a message complexity of O(n logn) on a ring of n nodes, even when the nodes
are not aware of the size n of the ring [11].

Leader election has also been studied in arbitrary wired networks [7]. An O(n
polylog(n)) time deterministic algorithm is available even for ad hoc radio networks of
unknown and arbitrary topology without a collision detection mechanism, even though
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the size of the network must be known to the algorithm code (see [5] for the currently
best result).

Without loss of generality, in the following we will assume that agent a0 is the leader
and that a1, a2, ..., an−1 are the other agents visiting the ring clockwise. In the rest of
this paper, we will refer to agent ai−1 mod n (resp. ai+1 mod n) as to the preceding (resp.
following) neighbor of ai.

Phase 2. In this phase agents agree on an upper bound p′ of p such that p′ ≤ 2p.
Given any agent ai and an integer r ≥ 0, we define:

Bi(r) =







1 if maxj Qj,i = 0 and r = 0;
1 if 2r ≤ maxj Qj,i < 2r+1 and r > 0;
0 otherwise.

This phase is organized in consecutive stages labeled 0, 1, . . . At stage r = 0, the leader
sets an integer variable A to zero, which will be updated at the end of each stage and
used to determine when to end this phase.

In stage r ≥ 0, agent ai, for i = 0, 1, . . . , n−1, waits for i time units from the beginning
of the stage. At that time a message M might arrive from its preceding neighbor. If no
message arrives, then it is assumed that M = 0. Agent ai computes M = M +Bi(r) and,
at time unit i+ 1, sends M to its following neighbor only if M > 0, otherwise it remains
silent.

After n time slots in stage r, if the leader receives a message M ≤ n from the preceding
neighbor, then it updates variable A = A + M , and, if A < n, proceeds to stage r + 1
of Phase 2; otherwise it sends a message clockwise on the ring containing the index of
the last stage ℓ performed in Phase 2. Each agent then computes p′ = 2ℓ+1, forwards the
message clockwise, waits for n− i+ 1 time units and then proceeds to Phase 3.

Lemma 12. Phase 2 of Algorithm Sync-Balance computes an upper bound p′ of p such
that p′ ≤ 2p within O(n log p) time units and using O(n2) basic messages.

Proof. We will say that agent ai speaks up in stage r when Bi(r) = 1. Throughout the
execution of the algorithm, integer variable A records the number of agents that have
spoken up so far.

Any agent ai speaks up in one stage only. Indeed, given the color j′ for which agent ai
has the maximum number of items, then Bi(r) = 1 only at stage r such that Qj′,i falls in
the (unique) interval [2r, 2r+1). Let ai∗ be the agent having the largest amount of items
of the same color among all agents, i.e., such that Qj∗,i∗ = p, for some j∗ ∈ [0, m − 1].
Then Bi∗(r) = 1 for stage r such that 2r ≤ p < 2r+1, i.e., agent ai∗ speaks up when r = ℓ.
Observe that at the end of stage ℓ the leader sets A = n, as all n agents must have spoken
up by that time. Therefore, considering also the last extra stage in which the agents are
informed of the value of ℓ, Phase 2 ends after ℓ+ 2 stages, i.e. n(2 + log p) time units.

For what concerns message complexity, in each stage, for r = 0, . . . , log p, either no
messages are sent, or a message traverses a portion of the ring. Observe that, as each agent
speaks up only once during this phase, messages circulating on the ring must always be
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originated by different agents. Hence, the number of stages in which a message circulates
on the ring is at most n and there must be at least max{0, log p − n} silent stages. In
conclusion, Phase 2 message complexity is bounded by O(n2).

As for the ratio between the actual value of p and its approximation p′ computed in
Phase 2, by construction we have that 2ℓ ≤ p and

p′ = 2ℓ+1 = 2 · 2ℓ ≤ 2p.

Phase 3. As a preliminary step, each agent ai computes the number of colors it will
assign to itself and stores it in a variable Ki. Namely, each agent ai, for i = 0, 1, . . . , n−1
computes g =

(
⌊m
n
⌋ + 1

)
n−m and then sets Ki as follows (recall Definition 1):

Ki =

{
⌊m
n
⌋ if i < g;

⌊m
n
⌋+ 1 otherwise.

(2)

In the rest of this phase, the agents agree on a color assignment such that each agent ai has
exactly Ki colors. Algorithms 1 and 2 report the pseudo-code of the protocol performed
by a general agent ai in this phase and that is here described.

Let p′ be the upper bound on p computed in Phase 2. Phase 3 consists of log p′ + 1
stages. In each stage r, for r = 0, . . . , log p′, the agents take into consideration only colors
whose weights fall in interval Ir = [lr, ur) defined as follows:







I0 =
[
p′

2
,+∞

)

,

Ir =
[

p′

2r+1 ,
p′

2r

)

for 0 < r < log p′

Ilog p′ = [0, 1)

(3)

Observe that in consecutive stages, agents consider weights in decreasing order, as
ur+1 ≤ lr.

At the beginning of each stage r, all agents have complete knowledge of the set of
colors Cr−1 that have already been assigned to some agent in previous stages. At the
beginning of this phase, C−1 is the empty set, and after the last stage is performed, Clog p′
must be the set of all colors.

Stage r is, in general, composed of two steps; however, the second step might not
be performed, depending on the outcome of the first one. In the first step, the agents
determine if there is at least one agent with a weight falling in interval Ir, by forwarding
a message around the ring only if one of the agents is in this situation. If a message
circulates on the ring in step one, then all agents proceed to step two in order to assign
colors whose weight fall in interval Ir and to update the set of assigned colors. Otherwise,
step two is skipped. Now, if there are still colors to be assigned (i.e., if Cr 6= C), all agents
proceed to stage (r + 1); otherwise, the algorithm ends. In more details:

Step 1. Agent ai (leader included) waits i time units (zero for the leader) from the
beginning of the stage, and then acts according to the following protocol:
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Case 1: If ai receives a message from its preceding neighbor containing the label k of
some agent ak, it simply forwards the same message to its following neighbor and
waits for (n+ k − i− 1) time units;

otherwise

Case 2: If ai has a weight falling into interval Ir, then it sends a message containing its
label i to its following neighbor and waits for (n− 1) time units;

otherwise

Case 3: It does nothing and waits for n time units.

If Case 1 or Case 2 occurred, then agent ai knows that step 2 is to be performed and
that it is going to start after waiting the designed time units.

Otherwise, if Case 3 occurred, after n units of time, agent ai might receive a message
(containing label k) from its preceding neighbor, or not. If it does, then ai learns that
Case 2 occurred at some agent ak having label k > i and that step 2 is to be performed.
Hence, it forwards the message to its following neighbor in order to inform all agents
having labels in the interval [i+1, . . . , k− 1], unless this interval is empty (meaning that
ai was the last agent to be informed). Then, after waiting for another (k − i − 1) time
units, agent ai proceeds to step 2. On the contrary, if ai got no message, it learns that
Case 2 did not occur at any agent and hence, step 2 needs not be performed. After
waiting for (n− i) time units, ai can proceed to the next stage (r + 1).

Observe that, when step 2 has to be performed, step 1 lasts exactly n+ k− 1 < 2n
time units for all agents, where k is the smallest agent’s label at which Case 2 occurs,
while it lasts exactly 2n time units for all agents in the opposite case. Indeed, referring
to the pseudo-code in Algorithm 1, completion time is given by the sum of the time units
in the following code lines: in Case 1 of lines 7 and 10 (i 6= k); in Case 2 of lines 7 and 15
(i = k); in Case 3 of lines 7, 18 and 22 if agents proceed to Step 2 (i 6= k), and lines 7
and 26 otherwise.

As the time needed by agents to agree on skipping step 2 is larger than the time
needed to agree in performing it, it is not possible that some agent proceeds to step 2

and some other to stage (r + 1). On the contrary, agents are perfectly synchronized to
proceed to step 2 or stage (r + 1).

Step 2. When this step is performed, there exists a non empty subset of agents having
at least one weight falling into interval Ir. Only these agents actively participate to the
color assignment phase, while the others just forward messages and update their list of
assigned colors. Color assignment is done using a greedy strategy: agent ai assigns itself
the colors it holds which fall into interval Ir and that have not been already assigned to
other agents. Once a color is assigned to an agent, it will never be re-assigned to another
one.

To agree on the assignment, the agents proceed in the following way: agent ai creates
the list Li,r of colors it holds whose weights fall into interval Ir and that have not been
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assigned in previous stages. Then, ai waits i time units (zero for the leader) from the
beginning of the step. At that time, either ai receives a message M from its preceding
neighbor or not. In the first case, the message contains the set of colors assigned in
this stage to agents closer to the leader (obviously, this case can never happen to the
leader). Agent ai then checks if there are some colors in its list Li,r that are not contained
in M (empty message in the case of the leader), and then assigns itself as many such
colors as possible, without violating the constraint Ki on the maximum number of colors
a single agent might be assigned. Then, ai updates message M by adding the colors it
assigned itself, and finally sends the message to its following neighbor. If Li,r is empty, or
it contains only already assigned colors, ai just forwards message M as it was. In both
cases, ai then waits for a new message M′ that will contain the complete list of colors
assigned in this stage. M′ is used by all ai to update the list of already assigned colors
and is forwarded on the ring. When the message is back to the leader, stage (r + 1) can
start.

Lemma 13. Let Kr be the number of colors assigned in stage r of Phase 3, then stage r

can be completed in at most O(n) time units using at most O
(

n · Kr logm
logn

)

basic messages.

Proof. The bound on the time complexity follows straightforwardly by observing that
each of the two steps requires at most 2n time units.

For what concerns message complexity, Step 1 requires no messages if Step 2 is
skipped, and n− 1 otherwise. In fact, only one basic message goes clockwise on the ring
from ak to ak−1, where k is the smallest index at which Case 2 occurs. The worst case for
Step 2 is the case in which the leader itself assigns some colors, as a possibly long message
containing color ID’s must go twice around the ring. As there are m colors, one color
can be codified using logm bits, then, sending Kr colors requires no more than Kr logm

logn

basic messages. In conclusion, the total number of basic messages is upper bounded by

O
(

n · Kr logm
logn

)

.

Corollary 14. Phase 3 of Algorithm Sync-Balance can be completed within O(n log p)
time units and using O(nm · logm

logn
) basic messages.

Proof. It will suffice to sum up the worst cases for message and time complexity from
Lemma 13 over all stages r = 0, . . . , log p′, where p′ ≤ 2p (Lemma 12).

The upper bound on the time complexity is straightforward. Let Kr be defined as
in the statement of Lemma 13, i.e. as the number of colors assigned in a generic stage
r of Phase 3. The upper bound on the message complexity follows by observing that
∑log p′

r=0 Kr = m, as the total number of assigned colors during the log p′ + 1 stages is
exactly the given number of colors.

We are now ready to prove that our algorithm is correct. In Section 5 we will evaluate
the ratio of the cost of the solution found by this algorithm and the one of the optimal
solution.
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Algorithm 1 Sync-Balance - Phase 3 (performed by agent ai)

Require: p′ computed in Phase 2 ⊲ upper bound to maximum number of items of the same
color

1: Compute Ki ⊲ Number of colors ai has to be assigned, as defined in Equation (2)
2: C−1 ← ∅ ⊲ set of colors assigned up to the previous stage
3: for r = 0 to log p′ do
4: Li,r = {cj | cj 6∈ Cr−1 and Qj,i ∈ Ir} ⊲ Colors assignable to ai in stage r. Intervals Ir are

defined in (3)
⊲ Begin of Step 1

5: Wait i time units
6: if Got messageM = {k} from its preceding neighbor then ⊲ Case 1

⊲ k < i is an agent label
7: Forward messageM to its following neighbor
8: Wait n− i+ k − 1 time units
9: Step 2 ⊲ proceeds to Step 2

10: else

11: if Li,r 6= ∅ then ⊲ Case 2
12: Send messageM = {i} to its following neighbor
13: Wait n− 1 time units
14: Step 2 ⊲ proceeds to Step 2

15: else ⊲ Case 3
16: Wait n time units
17: if Got messageM = {k} from its preceding neighbor then
18: if k − i− 1 > 0 then ⊲ informs other agents that Step 2 is to be performed
19: Forward messageM to its following neighbor
20: Wait for k − i− 1
21: Step 2 ⊲ procedure call to Step 2

22: end if

23: else

24: Wait n− i time units ⊲ proceeds to next stage skipping Step 2

25: end if

26: end if

27: end if

28: end for
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Algorithm 2 Sync-Balance - Phase 3 Step 2 (performed by agent ai)

1: procedure Step 2

2: Wait i time units
3: if Got messageM from preceding neighbor with list of colors then
4: Li,r ← Li,r \M ⊲ list of candidate colors to self assign
5: else

6: Create empty messageM
7: end if

8: if |Li,r| 6= ∅ then
9: Self assign maximum number of colors among those in Li,r

⊲ the total number of colors ai can assign itself is given by Ki

10: Add self assigned colors toM
11: end if

12: if M 6= ∅ then

13: Send messageM to the following neighbor
14: end if

15: Wait for messageM′ from preceding neighbor with list of colors
16: Cr ← Cr−1 ∪M

′ ⊲ updates set of assigned colors
17: Forward messageM′ to the following neighbor
18: if Cr = C then ⊲ all colors have been assigned
19: stop

20: else

21: Wait for n− i time units
22: end if

23: end procedure
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Theorem 15. Assuming m ∈ O(nc), for some constant c, Algorithm Sync-Balance

finds a feasible solution to the balanced color assignment problem in time O(n log p) using
Θ(mn) messages.

Proof. To prove correctness, we show that any assignment of colors to agents computed
by algorithm Sync-Balance satisfies the two following conditions:

(i) A color cj cannot be assigned to more than one agent.

(ii) All colors are assigned.

(i) The algorithm can assign a new color cj to agent ai only in line 9 of Algorithm 2. This
can only happen if cj has not been already assigned in a previous stage, or in the current
stage to an agent with smaller label. Since, in the stage, the color assignment is done
sequentially (starting from the leader and following the ring clockwise), no color can be
assigned to two different agents. Moreover, in lines 15-17 of Algorithm 2, all agents update
the list of colors assigned in the current stage and, hence, in later stages, already assigned
colors will not be assigned again. Therefore Sync-Balance prevents the assignment of
the same color to two different agents.

(ii) If an available color cj of weight Qj,i ∈ [lr, ur) is not taken by ai during stage r, it
is only because ai has enough colors already (line 9). However, this circumstance may
not occur at all agents during the same stage (for this would imply that there were more
than m colors). Thus, either the color is taken by a higher labeled agent in stage r, or is
“left free” for agents for which the weight of cj is less than lr. By iterating the reasoning,
we may conclude that, if not taken before, the color must be eventually assigned in stage
⌈log p⌉ + 1, where agents are allowed to pick colors for which their weight is zero.

As for upper bounds on time and message complexities, by summing up upper bounds
for the three phases, we have

Time complexity: O(n)
︸ ︷︷ ︸

Phase 1

+O(n log p)
︸ ︷︷ ︸

Phase 2

+O(n log p)
︸ ︷︷ ︸

Phase 3

= O(n log p),

Message complexity: O(n logn)
︸ ︷︷ ︸

Phase 1

+O(n2)
︸ ︷︷ ︸

Phase 2

+O

(

nm ·
logm

logn

)

︸ ︷︷ ︸

Phase 3

= O(nm),

where we used Lemma 12, Corollary 14, and the facts that m ≥ n and that
logm/ logn ∈ O(1), under the given hypothesis.

4.2 Asynchronous ring

In an asynchronous ring such instructions as ”wait for i time units” (see Algorithm 1
and 2) cannot guarantee a correct completion of the global algorithm. Here we discuss
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how to make simple modifications to Sync-Balance in order to get an algorithm (named
Async-Balance) that correctly works in the asynchronous case as well.

The leader election in Phase 1 can be done in O(n) time with a message complexity of
O(n logn) even on an asynchronous ring of n nodes [11]. Therefore, the main differences
are in Phase 2 and Phase 3.

In Phase 2 we propose a slightly different strategy that works in only 2 stages, in-
stead of log p. This better time complexity translates, in general, into an extra cost in
terms of message complexity. Nevertheless, under reasonable hypothesis (namely when
p ∈ O(mm)), the message complexity reduces to the same bound as for the synchronous
setting.

Finally, in Phase 3, the main ideas remain the same, but there are no “silent stages”
and the leader acts differently from the other agents, as it is the one originating all
messages circulating on the ring.

In the following we highlight the main differences with the synchronous protocol:

Algorithm Async-Balance

Phase 1. Leader election can be accomplished with an O(n logn) message complex-
ity [11].
Phase 2. This phase consists of only two stages. In the first stage the agents compute
p = maxi maxj Qj,i. Let pi = maxj Qj,i, i.e. the maximum number of items of the same
color agent ai posseses. The leader originates a message containing p0. Upon reception
of a message M from its preceding neighbor, agent ai computes M = max{M, pi} and
forwards M to its following neighbor. The message that gets back to the leader contains
p and it is forwarded once again on the ring to inform all agents.

Observe that Phase 2 requires no more than O
(

n · log p
logn

)

basic messages, as

O(log p/ logn) basic messages are needed to send the pi’s and p.
Phase 3. Changes in this phase concern both the execution of step 1 and step 2, that
are to be modified in the following way:

Step 1. Each agent ai computes its list of assignable colors Li,r and sets Yi(r) = 1 if
|Li,r| > 0, and Yi(r) = 0 otherwise. The leader starts the step by sending, to its following
neighbor, a basic boolean message containing Y0(r). Upon reception of a message M
from its preceding neighbor, agent ai computes M = M ∨ Yi(r) and forwards M to its
following neighbor. When the leader gets the message back, it forwards the message again
on the ring, and the same is done by all agents, until the message arrives to an−1. The
second time one agent (leader included) gets the message, it checks its content: if it is a
one, then it knows that it has to proceed to Step 2; otherwise, if it contains a zero, it
proceeds to the next stage.

Step 2. The leader starts the step by sending, to its following neighbor, a (possibly
empty) list of self assigned colors, obtained exactly as in the synchronous case. Then
agents act as in the synchronous protocol, with the exception that they are activated by
the arrival of a message from the preceding neighbor and not by a time stamp. Agents
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proceed to the next stage after forwarding the complete list of colors assigned in the
stage.

Lemma 16. Let Kr be the number of colors assigned in stage r of Phase 3, then stage r

can be completed using at most O
(

n · Kr logm
logn

)

basic messages.

Proof. step 1 is always performed and a basic message is forwarded (almost2) twice
around the ring. Hence, O(n) basic messages are used. When step 2 is performed, a
message containing color ID’s goes (almost) twice around the ring. Analogously to the

synchronous case, we can prove that no more than O
(

n · Kr logm
logn

)

messages are needed.

Analogously to the synchronous case, we can prove the following corollary.

Corollary 17. Phase 3 of Algorithm Async-Balance can be completed using

O
(

nm · logm
logn

)

basic messages.

Theorem 18. Assuming m ∈ O(nc), for some constant c, Algorithm Async-Balance

finds a feasible solution to the balanced color assignment problem, on asynchronous rings,

within time O(n log p) using O
(

n · log p
logn

+ nm
)

basic messages.

Proof. The correctness proof is analogous to the synchronous case.
The time complexity is asymptotically equivalent to the synchronous case. Indeed, as

already mentioned, the leader election in Phase 1 can be completed in O(n) time, Phase
2 requires 2 circles around the ring and, finally, Phase 3 includes O(log p) stages, each of
them requiring 2 circles around the ring.

For what concerns message complexity, summing up upper bounds for single phases,
we get

O(n logn) +O

(

n ·
log p

log n

)

+O

(

nm ·
logm

logn

)

= O

(

n ·
log p

logn
+ nm

)

,

as m ∈ O(nc).

When we also have that O(log p) = O(m logm), the algorithm exhibits the same
optimal message complexity as in the synchronous setting. Namely, we can state the
following result.

Corollary 19. If m ∈ O(nc), for some constant c, and p ∈ O(mm), then Algorithm
Async-Balance finds a feasible solution to the balanced color assignment problem, on
asynchronous rings, using Θ(nm) messages.

2On the second stage, agent an−1 stops the message.
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5 Approximation Factor of Algorithm Balance

The main result of this section is that the cost of the solution (as defined in Definition 2)
computed by the algorithms presented in the previous sections is at most a small constant
factor larger than the cost of the optimal solution. Namely, we will show that it is at
most three times the optimal solution and that the analysis is tight. Moreover, we will
show how to modify the algorithm to get a 2-approximation ratio at the expenses of a
little increase of message complexity, and, for the synchronous case only, how to get a
(2 + ǫ)-approximation ratio (for every 0 < ǫ < 1) at the expenses of an increase in time
complexity.

Since, under the same assumptions of Corollary 19, the cost of the solution is the
same both in the synchronous and asynchronous versions (the assignment of colors is
exactly the same in both cases), in this section we will address both Sync-Balance and
Async-Balance with the generic name Balance. In the following some results are ex-
pressed in terms of the value p′ (respectively, p) computed by the agents in the syn-
chronous (resp. asynchronous) case during Phase 2 of the algorithm. As these results
hold for both p′ and p, to avoid repeating the distinction between p′ and p over and over
again, we will indicate with p̂ both values p′ and p.

We begin with the following lemma:

Lemma 20. Let color cj be assigned to agent ai in stage r (of Phase 3) by algorithm
Balance. Let ak be a different agent such that Qj,k ∈ [lr, ur). Then Qj,i ≤ 2 ·Qj,k.

Proof. If r = ⌈log p̂⌉ + 1 (i.e., is the last stage), then it must be Qj,i = Qj,k = 0, and we
are done. Otherwise, as cj is assigned to agent ai in stage r then it must be Qj,i ∈ [lr, ur)
and the thesis easily follows from

p̂

2r+1
≤ Qj,i, Qj,k <

p̂

2r
.

Let B : {1, . . . , m} → {1, . . . , n} be the assignment of colors to agents determined by
algorithm Balance, and let opt : {1, . . . , m} → {1, . . . , n} be an optimal assignment.
Define a partition of the set of colors based on their indices, as follows:

• C′ = {j | B(j) = opt(j)}; i.e., color indices for which the assignment made by
algorithm Balance coincides with (that of) the optimal solution.

• C′′ = {0, . . . , m − 1} \ C′; i.e., colors indices for which the assignment made by
algorithm Balance is different from the one of the optimal solution.

Lemma 21. Assume C′′ is not empty (for otherwise the assignment computed by Balance
would be optimal) and let j ∈ C′′. Let k 6= j be any other color index in C′′ such that
B(k) = opt(j). Then

Qj,opt(j) ≤ max{2 ·Qj,B(j), Qk,B(k)}.
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Proof. First observe that, as j, k ∈ C′′ and B(k) = opt(j) 6= B(j), we have that B(j) 6=
B(k).

If Qj,opt(j) ≤ Qk,B(k) we are clearly done. Suppose now that Qj,opt(j) > Qk,B(k), then
we can prove that Qj,opt(j) ≤ 2 ·Qj,B(j).

The fact that j ∈ C′′ means that Balance assigned color cj to a different agent com-
pared to the assignment of the optimal solution. Let r be the stage of Balance execution
in which agent opt(j) processed color cj (i.e., Qj,opt(j) ∈ Ir) and could not self assign
cj , then (in principle) one of the following conditions was true at stage r:

1. opt(j) already reached its maximum number of colors before stage r.
However, this is impossible. It is in fact a contradiction that opt(j) gets color ck
(recall that opt(j) = B(k)) but does not get color cj under Balance, since we are
assuming Qj,opt(j) > Qk,opt(j), which means that the assignment of ck cannot be
done earlier than cj’s assignment.

2. Color cj has already been assigned to B(j). This might happen because

(a) cj has been assigned to B(j) in a previous stage.
This implies that B(j) has a larger number of items of color cj with respect to
opt(j), i.e., that Qj,opt(j) ≤ Qj,B(j) ≤ 2 ·Qj,B(j).

(b) cj has been assigned to B(j) in the same stage, because it has a smaller label
on the ring.
By Lemma 20 we then have that Qj,opt(j) ≤ 2 ·Qj,B(j).

Theorem 22. Balance is a 3-approximation algorithm for the Distributed Balanced Color
Assignment Problem.

Proof. Let CostB and Costopt be the cost of the solutions given by algorithm Balance

and OPT , respectively. We can express these costs in the following way (where, for
simplicity, we omit index i’s range, that is always [0, n− 1]):

CostB =

m−1∑

j=0

∑

i 6=B(j)

Qj,i

=
∑

j∈C′

∑

i 6=B(j)

Qj,i +
∑

j∈C′′

∑

i 6=B(j)

Qj,i

=
∑

j∈C′

∑

i 6=B(j)

Qj,i +
∑

j∈C′′




Qj,opt(j) +

∑

i6=opt(j),
i6=B(j)

Qj,i




 .
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Analogously,

Costopt =
∑

j∈C′

∑

i 6=opt(j)

Qj,i +
∑

j∈C′′




Qj,B(j) +

∑

i6=opt(j),
i6=B(j)

Qj,i






By definition, B(j) = opt(j), for j ∈ C′, and thus
∑

j∈C′

∑

i 6=B(j)

Qj,i =
∑

j∈C′

∑

i 6=opt(j)

Qj,i, i.e.,

the cost associated with color cj ∈ C
′ is exactly the same for Balance and OPT . Notice

also that the term
∑

j∈C′′

∑

i6=opt(j)
i6=B(j)

Qj,i appears in both cost expressions. Hence, to prove

that CostB ≤ 3 · Costopt, it is sufficient to show that

∑

j∈C′′

Qj,opt(j) ≤ 3
∑

j∈C′′

Qj,B(j). (4)

We can assume without loss of generality thatm is a multiple of n. Indeed, if otherwise
n does not divide m, we can add r dummy colors (for r = m − ⌊m/n⌋), i.e. such that
Qj,i = 0 for all agents i and dummy color j. Since in our algorithm the agents consider the
weights in decreasing order, the dummy colors will be processed at the end and therefore
they have no effect on the assignment of the other colors. Moreover, as their weights are
zero, they do not cause any change in the cost of the solution.

To prove (4), we build a partition of the set C′′ according to the following procedure.
We start from any j1 in C′′ and find another index j2 such that B(j2) = opt(j′) for some
j′ ∈ C′′\{j2}. Note that, since m is a multiple of n, every agent must have m/n colors and
therefore such an index j2 must exist. If j′ = j1 the procedure ends, otherwise we have
found another index j3 = j′ such that B(j3) = opt(j′′). Again, if j′′ = j1 the procedure
ends, otherwise we repeat until, for some t ≥ 2, we eventually get B(jt) = opt(j1) . We
then set

C1 = {(j1, j2), (j2, j3), . . . , (jt−1, jt)} .

If during this procedure we considered all indices in C′′ we stop, otherwise, we pick
another index not appearing in C1 and repeat the same procedure to define a second set
C2, and so on until each index of C′′ appears in one Ci. Observe that each Ci contains
at least two pairs of indices and that each index j ∈ C′′ appears in exactly two pairs of
exactly one Ci.

Then, using Lemma 21, we get

23



∑

j∈C′′

Qj,opt(j) =
∑

Ci

∑

(j,j′)∈Ci

Qj,opt(j)

≤
∑

Ci

∑

(j,j′)∈Ci

max{2 ·Qj,B(j), Qj′,B(j′)}

≤
∑

Ci

∑

(j,j′)∈Ci

(
2 ·Qj,B(j) +Qj′,B(j′)

)

=
∑

j∈C′′

3Qj,B(j)

The following theorem shows that the approximation factor given in Theorem 5 is
tight.

Theorem 23. For any 0 < ǫ < 1, there exist instances of the Balanced Color Assignment
Problem such that COSTB is a factor 3 − 4ǫ/(4δ + ǫ) larger than the optimal cost, for
some 0 < δ < 1.

Proof. Consider the following instance of the balanced color assignment problem. For the
sake of presentation, we assume that m = n and that n is even, but it is straightforward
to extend the proof to the general case.

Fix any rational ǫ > 0, and let q, δ > 0 be such that qǫ/4 is an integer and qδ = ⌊q⌋.
Consider an instance of the problem such that colors are distributed as follows:







Q2i,2i = q(δ + ǫ/4)
Q2i+1,2i = q
Q2i,2i+1 = q(2δ − ǫ/4)
Q2i+1,2i+1 = 0,

i = 0, 1, . . . ,
n

2
− 1

and that a0 is the leader elected in the first stage of algorithm Balance, and that the
labels assigned to agents a1, . . . , an−1 are 1, . . . , n− 1, respectively.

Consider agents a2i and a2i+1, for any 0 ≤ i ≤ n
2
− 1. We can always assume that q is

such that

p̂

2r+1
≤ qδ < q(δ + ǫ/4) < q(2δ − ǫ/4) <

p̂

2r
,

for some r. That is, the weights of color c2i for agents a2i and a2i+1 belong to the same
interval [p̂/2r+1, p̂/2r).

It is easy to see that the optimal assignment gives c2i+1 to a2i and c2i to a2i+1. The
corresponding cost is Costopt = n

2
q(δ + ǫ/4). On the other hand, algorithm Balance

assigns c2i to a2i and c2i+1 to a2i+1, with a corresponding cost CostB = n
2
q(3δ − ǫ/4).

Hence, for the approximation factor, we get
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CostB
Costopt

=
3δ − ǫ

4

δ + ǫ
4

=
3
(
δ + ǫ

4

)

δ + ǫ
4

−
3ǫ
4
+ ǫ

4

δ + ǫ
4

= 3−
4ǫ

4δ + ǫ
.

Even if the approximability result is tight, if we are willing to pay something in message
complexity, we can get a 2-approximation algorithm.

Corollary 24. Algorithm Balance can be transformed into a 2-approximation algorithm,
by paying an additional multiplicative O(log p) factor in message complexity.

Proof. Algorithm Balance is modified in the following way: colors in stage r of Step 2

in Phase 3 are assigned to the agent having the largest number of items (falling in the
interval Ir) and not to the one close to the leader. This can be achieved by making the
agent forward on the ring, not only their choice of colors, but also their Qi,js for those
colors. This requires extra O(log p) bits per color, increasing total message complexity of
such a multiplicative factor.

For what concerns the approximation factor, this modification to the algorithm allows
to restate the thesis of Lemma 20 without the 2 multiplicative factor and, following the
same reasoning of Theorem 5, conclude the proof.

Finally, if we are not willing to pay extra message complexity, but we are allowed to
wait for a longer time, we get a (2 + ǫ)-approximation algorithm.

Theorem 25. Assuming m ∈ O(nc), for some constant c, for any 0 < ǫ < 1, there is a
(2 + ǫ)-approximation algorithm for the Distributed Balanced Color Assignment Problem
with running time O(n log1+ǫ p) and message complexity Ω(nm).

Proof. Modify the two interval threshold values of algorithm Sync-Balance in the follow-
ing way:

lr =

{
p̂

(1 + ǫ)r+1

}

and ur =

{
p̂

(1 + ǫ)r

}

,

and redefine

{a

b

}

=

{
⌈a
b
⌉ if a

b
> 1

1+ǫ
;

0 otherwise.
(5)

Accordingly, the statement of Lemma 20 becomes Qj,i ≤ (1+ǫ)Qj,k, and the statement
of Lemma 21 can be rewritten as

Qj,opt(j) ≤ max{(1 + ǫ) ·Qj,B(j), Qk,B(k)}.

The result on the approximation factor then follows by the same arguments of the
proof of Theorem 5. The message complexity is not affected by these changes, while the
running time now depends on the number of stages in Phase 3, that is O(log1+ǫ p).
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6 Conclusion

In this paper we have considered the Distributed Balanced Color Assignment problem,
which we showed to be the distributed version of different matching problems. In the
distributed setting, the problem models situations where agents search a common space
and need to rearrange or organize the retrieved data.

Our results indicate that these kinds of problems can be solved quite efficiently on a
ring, and that the loss incurred by the lack of centralized control is not significant. We
have focused our attention to distributed solutions tailored for a ring of agents. A natural
extension would be to consider different topologies and analyze how our techniques and
ideas have to be modified in order to give efficient algorithms in more general settings. We
believe that the main ideas contained in this work could be useful to extend the results even
to arbitrary topologies. Indeed, an O(n polylog(n)) distributed leader election protocol
(that is needed in our algorithm) is also available for arbitrary ad hoc radio networks [5].

For what concerns the ring topology, it is very interesting to note that the value p never
appears in the message complexity for the synchronous case (not even if the polynomial
relation between m and n does not hold), while a factor log p appears in the asynchronous
case. It is still an open question if it is possible to devise an asynchronous algorithm that
shows optimal message complexity, under the same hypothesis of the synchronous one;
i.e., if it is possible to eliminate the extra log p/ logn factor.

Acknowledgments. The authors wish to thank Bruno Codenotti for many helpful
comments and discussions.
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