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AoSRNet: All-in-One Scene Recovery Networks via Multi-knowledge
Integration

Yuxu Lu, Dong Yang, Yuan Gao, Ryan Wen Liu, Jun Liu, Yu Guo

• AoSRNet improves imaging performance in hazy, sandy, and low-light
degraded scenes.

• Multi-knowledge integration strategy robustly restores image in unpre-
dictable scenes.

• Optimized linear stretching and gamma correction improve AoSRNet’s
generalization.

• We constructed a set of atmospheric light values for haze and sand
image synthesis.

• Extensive experiments verify AoSRNet’s effectiveness with start-of-the-
art methods.
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Abstract

Scattering and attenuation of light in no-homogeneous imaging media or in-
consistent light intensity will cause insufficient contrast and color distortion
in the collected images, which limits the developments such as vision-driven
smart urban, autonomous vehicles, and intelligent robots. In this paper, we
propose an all-in-one scene recovery network via multi-knowledge integration
(termed AoSRNet) to improve the visibility of imaging devices in typical low-
visibility imaging scenes (e.g., haze, sand dust, and low light). It combines
gamma correction (GC) and optimized linear stretching (OLS) to create the
detail enhancement module (DEM) and color restoration module (CRM). Ad-
ditionally, we suggest a multi-receptive field extraction module (MEM) to at-
tenuate the loss of image texture details caused by GC nonlinear and OLS lin-
ear transformations. Finally, we refine the coarse features generated by DEM,
CRM, and MEM through Encoder-Decoder to generate the final restored im-
age. Comprehensive experimental results demonstrate the effectiveness and
stability of AoSRNet compared to other state-of-the-art methods. The source
code is available at https://github.com/LouisYuxuLu/AoSRNet.
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Figure 1: Example of the scene recovery in three different imaging conditions. The upper
triangles in (a)-(c) are degraded patterns, and the corresponding restored patterns by our
method are shown in the lower triangles.

1. Introduction

Imaging quality is typically impacted by unpredictable degradation fac-
tors in adverse imaging environments, such as light scattering and attenu-
ation in inhomogeneous media (e.g., haze and sand dust), local or global
insufficient luminance due to inconsistent light intensity (e.g., low-lightness),
etc [1]. As shown in Fig. 1, the unexpected imaging environment reduces
the contrast and eliminates a substantial amount of color and edge texture
information. Degraded images can lead to a loss of accuracy for sophisti-
cated and advanced vision-driven intelligent devices or systems tasks such
as detection or semantic segmentation [2, 3]. Researchers have focused on
extracting latent feature information from degraded imaging scenes in re-
cent years and conducted extensive research on various degradation factor
categories. Specifically, scene recovery methods are categorized mainly as
traditional- or learning-based.

The traditional scene recovery methods are mainly composed of dark
channel prior (DCP)- [4] and Retinex-based [5] methods. DCP can gen-
erate haze-free images without the need for accurate physical modelling of

wenliu@whut.edu.cn (Ryan Wen Liu), liuj292@nenu.edu.cn (Jun Liu),
yuguo@whut.edu.cn (Yu Guo)

2



the haze, which has reasonable practicability and robustness. DCP has also
been applied to other degradation scenes (e.g. sand dust [6, 1] and low
light [7]). The Retinex theory [5] and its improved methods [8, 9] obtain
the illumination image by filtering the degraded image and finally separate
the illumination image from the original image to generate the latent reflec-
tion image. Nonetheless, the Retinex-based methods require to be improved
in complex imaging degradation scenes, such as inconsistent illumination.
Gamma correction (GC) [10] and linear stretching (LS) [6] are usually used
to optimize the luminance and contrast of the image restored by the DCP-
or Retinex-based methods [11, 12] so that the restored image has a more
natural visual performance.

Learning-based methods can recover images from degraded scenes effec-
tively due to their powerful feature generalization capability. Some learning-
based methods have achieved excellent performance in the field of image
restoration, such as convolutional neural networks (CNN) [13, 14], genera-
tive adversarial networks (GAN) [15, 16], Transformer [17, 18], and denoising
diffusion probabilistic models (DDPM) [19]. However, relying solely on end-
to-end mapping through deep networks can potentially lead to overfitting
and limited generalization ability in various scenes. Consequently, learn-
ing methods that incorporate physical prior models (such as DCP- [20] and
Retinex-guided [21]) have been proposed. The model-driven learning meth-
ods benefit from the constraints of prior features on the learning parameters,
enabling them to be more applicable to diverse scenes and enhancing the
generalization ability and robustness of deep networks.

In this work, we propose an all-in-one scene recovery network via multi-
knowledge integration (termed AoSRNet) to improve the visibility of imag-
ing devices in typical low-visibility imaging scenes (i.e., haze, sand dust,
and low light). Specifically, we combine the gamma correction (GC) and
optimized linear stretching (OLS) with the standard residual block (SRB),
thus proposing the detail enhancement module (DEM) and color restoration
module (CRM) to guide the sub-learning networks to restore the degraded
image. Moreover, we suggest a multi-receptive field (MRF) extraction mod-
ule (MEM) to attenuate the loss of image texture details resulting from GC
nonlinear and OLS linear transformations. DEM and CRM will alleviate the
overfitting of the deep network so that AoSRNet can improve the imaging
quality of the visual sensor more robustly and efficiently in different degra-
dation scenes. The Encoder-Decoder-based fusion module (EDFM) is then
used to refine and fuse the coarse features generated by DEM, CRM, and
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Figure 2: The flowchart of the all-in-one scene recovery network (AoSRNet). It mainly con-
tains gamma correction (GC)-guided detail enhancement module (DEM), optimized linear
stretching (OLS)-guided color restoration module (CRM), multi-receptive field (MRF) ex-
traction module (MEM), and Encoder-Decoder-based fusion module (EDFM). Standard
residual block (SRB) is the basic unit of learning.

MEM to generate the final image restoration. The main contributions of this
work can be summarized as follows

• We propose an all-in-one scene recovery network (AoSRNet) via multi-
knowledge integration to improve imaging performance in various de-
graded scenes (e.g., haze, sand dust, and low light).

• We propose a multi-knowledge (including GC-guided DEM, OLS-guided
CRM, and MEM) integration strategy to achieve more robust image
restoration in unpredictable degraded scenes.

• Without loss of generalization, we conduct extensive experiments to
verify the effectiveness of AoSRNet in three scene recovery tasks with
competitive methods.

The rest of this paper is organized as follows. Section 3 introduces the
proposed AoSRNet. Numerous experiments have been implemented to eval-
uate the performance of AoSRNet in Section 4. Conclusions are given in
Section 5.

2. Related Work

A clear and explicit scene can satisfy the visual needs of humans and
facilitate higher-level processing. This section concisely summarizes related
works conducted under various imaging conditions.
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2.1. Dehazing

Image dehazing methods are generally classified into physical model-
[4, 6, 1] and learning-based [20, 22, 23, 24, 25]. The classic physical model-
methods, that is, dark channel prior (DCP) [4], generate haze-free images by
revealing the statistical laws of hazy images and inverting the atmospheric
scattering model. However, since the DCP-based methods are not fully ap-
plicable in the bright areas of the image (such as the sky and water surface),
the image after dehazing is visually locally distorted [26]. With the applica-
tion of deep learning in the field of low-level vision, end-to-end and physical
model-based learning methods have been proposed. End-to-end methods
(such as FFANet [27] and FSADNet [23]) directly model the mapping from
haze to haze-free images, reducing the need for manual feature extraction
and focusing on the training data itself. However, the end-to-end method is
vulnerable to the influence of training data, resulting in the phenomenon of
network overfitting. Physical model-guided methods can embed the atmo-
spheric scattering model into the network so that the imaging model is still
followed in the restoration process of the degraded image, which can reduce
the risk of overfitting [28]. For example, MSCNN [20] and RefineDNet [22]
use the atmospheric scattering model to reconstruct haze-free images. AOD-
Net [29] reconstructs the atmospheric scattering model, reducing unnatural
dehazed images generated due to inaccurate estimates of transmittance and
atmospheric light values.

2.2. Sand Dust Image Enhancement

The sand dust image enhancement task is comparable to the image dehaz-
ing task, but the atmospheric light value of the red channel of the dust image
is substantially higher than that of the green and blue channels. The blue
channel suffers from severe information loss [30]. Hereby, The performance of
the classic DCP-based methods [4, 31] in the dust image enhancement task is
not significant. Since linear stretching (LS) and Gamma correction (GC) can
adjust the histogram distribution of each channel, the channel of informa-
tion loss is compensated to restore the brightness and contrast of the image.
Therefore, LS or GC will be used for preprocessing of degraded images in
traditional dust image enhancement tasks. For example, Peng et al. [32] in-
corporated adaptive color correction into the image formation model (IFM)
and proposed a generalized dark channel prior for single image restoration.
Wang et al. [33] proposed a color compensation- and affine transform-guided
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fast color balance and multipath fusion method for sand and dust image en-
hancement. Fu et al. [34] combined LS and GC to improve the visibility of
dust images. In addition, to better compensate for the missing channel infor-
mation, literature [35] and [36] map the image to the LAB space. Limited by
paired sand/sand-free image datasets, the learning method is less researched
than the traditional method, but it is still mainly driven by end-to-end [37]
and physical prior models [38, 39]. TOENet [37] reconstructs the features
between the three RGB channels through the channel correlation extraction
module (CCEM) to restore the degraded image. Ding et al. [39] combined
the GAN and DCP to improve the visibility of sand dust images through
unsupervised learning.

2.3. Low-light Image Enhancement

Low-light image enhancement has been widely studied and successfully
applied in different fields. Traditional methods mainly include histogram
equalization (HE)- [40], dehazing- [7] and Retinex-based [5] methods, etc.
HE-based methods [40, 41] accomplish image enhancement by uniformly dis-
tributing the histogram of the image’s pixel intensity or color distribution.
Dehazing-based methods [7, 42] reverse a low-light image into a pseudo-haze
image and then reverse the dehazed image to obtain a normally-illuminated
image. However, there are evident differences between the pseudo-haze and
real-world hazy images, making it difficult for the dehazing method to be
fully applicable. Based on the Retinex theory, researchers have conducted
extensive research and improved enhancement performance [43, 44, 45]. In
complex low-visibility situations, however, applying Retinex-based methods
requires more work. Learning-based methods have been successfully applied
to low-light enhancement tasks in recent years and are mainly researched
from two aspects: end-to-end [46, 47, 48] and physical model-guided learning.
The hybrid deep network proposed by Ren et al. [46] incorporates gradient
features to improve the network’s extraction of edge features covered by dark-
ness. Usually, Retinex theory is used as the basic physical model to guide
learning methods (such as RetinexNet [49], KinD+ [21], and CSDNet[15]).
Physical model-driven learning methods tend to have more stable enhance-
ment performance and more robust scene generalization ability.

2.4. Multi-scene Recovery

The imaging models of different degraded scenes are different, and it is
often difficult for traditional/learning methods to achieve multiple types of
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degraded image inpainting only through a single model [1]. Nevertheless,
researchers still try and propose a lot of work. Traditional learning methods
mainly use LS or GC for color correction, which uses the corrected features
as prior features or post-optimization of the main repair model (e.g., DCP-
[32, 33, 50] and Retinex-driven [8]). Although LS and GC can assist in restor-
ing the brightness and contrast of degraded images, it is difficult to adap-
tively adjust to different degraded scenes and different degraded degrees, and
it is prone to over/underexposure and loss of detail texture. Learning-based
multi-scene restoration methods have been proposed successively, such as
TOENet (for haze and sand dust) [37], LYSNet (for haze and low-light) [51]
and DIA (for haze and low-light) [52]. The learning methods can alleviate
the problem of insufficient adaptive ability of traditional methods through
learnable network parameters. However, they are also easy to overfit, which
leads to the insufficient generalization ability of the network. Therefore, a
key strategy for enhancing multi-scene robustness and generalization abil-
ity is to combine learning methods with traditional physical model or prior
information.

3. All-in-One Scene Recovery Network

Visible light imaging systems have penetrated into various fields of vision-
driven intelligent devices or systems. However, undesired degraded scenes
(e.g., haze, sand dust, and low light) degrade the imaging quality, thus af-
fecting the performance of advanced vision tasks. To address this problem, as
shown in Fig. 2, we propose a novel AoSRNet, which mainly contains gamma
correction (GC)-guided detail enhancement module (DEM), optimized lin-
ear stretching (OLS)-guided color restoration module (CRM), multi-receptive
field (MRF) extraction module (MEM), and Encoder-Decoder-based fusion
module (EDFM). The proposed total loss function consists of ℓ1-norm loss
Lℓ1 , contrastive regularization loss Lcr, and color loss Lcolor. AoSRNet can
achieve satisfactory performance on multi-scene recovery tasks through a
single network.

3.1. Standard Residual Block

Residual learning has demonstrated its efficient performance in different
fields of computer vision. So we propose a standard residual block (SRB,
SRB(·)) as the basic learning unit of the proposed network. As shown in
Fig. 3, a SRB consists of three convolutional layers (ConvL, ConvL(·)),
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Figure 3: Suggested basic composition of (a) Convolutional Layer (ConvL) and (b) stan-
dard residual block (SRB).

and a ConvL sequentially contains convolutional operation (C(·)), layer nor-
malization (LayerNorm, N (·)), and parametric rectified linear unit (PReLU,
P(·)), which can be given as

ConvL(xcl) = P(N (C(xcl))), (1)

where xcl is the input of the ConvL(·). LayerNorm can better balance the
extraction of single-layer channel features and the association of multi-layer
channel features in image restoration tasks. Therefore, the suggested SRB
can be defined as

SRB(xin) = P(N (C(ConvL(ConvL(xin))) + xin), (2)

where xin is the input of the SRB(·). As the basic learning module, SRB
will be applied to construct the all-in-one recovery network with stable en-
hancement performance and low computational cost.

3.2. Detail Enhancement Module

The pixel values of the single/three channels in hazy, sandy, and low-
light scenes are enlarged or reduced nonlinearly, resulting in poor image
contrast and unnatural visual phenomena of overexposure or underexposure.
GC can perform nonlinear operations on the gray value of the degraded
image. By using different γ-coefficients, the gray value of the output image
is exponentially related to the gray value of the input image. GC can achieve
a satisfactory balance between image texture information preservation and
image exposure adjustment.

The brightness and contrast of degraded images are uncertain and com-
plex. For example, images captured under hazy scenes tend to have higher
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Figure 4: Processed results of gamma correction operations of (a) hazy and (b) low-light
image with different γ values (i.e., γ = 1

4 ,
1
2 , 1, 2, and 4).

brightness levels, while the opposite is true for low-light scenes. As shown in
Fig. 4, when γ < 1, GC will increase the brightness of the underexposed im-
age, and when γ > 1, the contrast of the overexposed image will be enhanced.
The contrast of the image can be defined as

ψ(Ω) = IΩmax − IΩmin, (3)

where IΩmax = max{I(x) | x ∈ Ω} and IΩmin = min{I(x) | x ∈ Ω}. I(x)
is the degraded image. Therefore, to meet the correction needs of different
degradation scenes and mine more detailed feature information, Gamma cor-
rection (GC, GC(·)) with four different γ values (i.e., γ = 1

4
, 1
2
, 2, and 4) are

used to obtain the corresponding over/under-exposed images. The intensity
of the globally modified image by a power function transformation can be
expressed as

Igc = ε · Iγ = GC(I), γ =
1

4
,
1

2
, 2, 4, (4)

where ε is a positive real constant, usually ε = 1. We embed GC-guided
features into SRB (i.e., detail enhancement modules, DEM, DEM(·)), which
can more robustly guide the network to extract valuable brightness, local
texture features, etc. Therefore, the DEM can be given as

DEM(I(x)) = SRB(GC(C(I(x)))). (5)

The proposed DEM provides valuable feature guidance for the recovery
network, which can improve the network convergence speed and the general-
ization ability of multi-degradation scenes.

3.3. Color Restoration Module

The gray pixel value of the degraded image concerned in this paper is
distributed in a small range, but the gray level is large, as shown in Fig. 5,
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Figure 5: The atmospheric light value and its corresponding three-channel histogram
distribution of the two types of degraded scenes.

which leads to low utilization of the gray level and a serious decrease in the
contrast of the image. Therefore, to rescale the gray histogram distribution
of degraded images, we adopt OLS to diffuse the pixel distribution in a small
range to the whole gray level range. In general, LS can be defined as

Ils(x) = Imin
ls +

Imax
ls − Imin

ls

Imax − Imin
·
(
I(x)− Imin

)
, (6)

where I(x), Ils(x) are the pixel values of the degraded image and the stretched
image; Imin, Imax are the minimum and maximum value of the degraded
image pixel value; Imin

ls and Imax
ls are the minimum and maximum value of

the stretched image pixel values. Generally, it is assumed that Imin
ls = 0,

Imax
ls = 1. Therefore, Eq. 6 can be redefined as

Ils(x) =
I(x)− Imin

Imax − Imin
. (7)

Different imaging environments have differences in light scattering and
attenuation. Therefore, we recommend optimized linear stretching (OLS,
OLS(·)) to better control the intermediate tones, shadows, and highlights in
the image. It calculates the minimum and maximum stretching values based
on four values, i.e., minimum percentage Pmin, maximum percentage Pmax,
minimum adjustment percentage Pmin

a , and maximum adjustment percentage
Pmax
a . Specifically, OLS first truncates pixels with a large deviation from the

centre value through the Pmin and Pmax, and then obtains the truncated
minimum pixel value Imin

t and maximum pixel value Imax
t image. Finally, we

refine the chosen minimum/maximum pixel values by minimum/maximum
adjustment percentages, i.e.,{

Imin
tp = Imin

t − Pmin
a ∗ (Imax

t − Imin
t )

Imax
tp = Imax

t + Pmax
a ∗ (Imax

t − Imin
t )

, (8)
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where Imin
tp , Imax

tp are the optimized pixel minimum and maximum values. In
this work, Pmin = 0.01, Pmax = 0.99, Pmin

a and Pmax
a are assigned different

values for different degraded scenes, so as to better control the color and
texture features of the restored image. Therefore, the OLS-guided image Iols
can be given as

Iols(x) =
I(x)− Imin

tp

Imax
tp − Imin

tp

= OLS(I(x)). (9)

Similar to Eq. 5, to reduce the loss of texture detail features caused
by OLS, we still suggest two SRBs for feature learning and compensation.
Therefore, the proposed color restoration module (CRM, CRM(·)) can be
given as

CRM(I(x)) = SRB(OLS(C(I(x)))). (10)

The proposed CRM greatly improves the sensitivity of the network to
degraded image color and contrast.

3.4. MRF Extraction Module

In degraded images, important features such as edges and colors are often
damaged or obscured. To address this issue, we extract features of multi-
receptive fields (MRF, MRF(·)) with 4 parallel atrous convolution blocks to
capture enhanced contextual information, which improves the performance
of repairing degraded images. For the input xmin, the relevant operations
involved in this process can be described as

MRF(xmin) = Cat[C3(xmin), C6(xmin), C9(xmin), C12(xmin)], (11)

where Cat[·] represents feature concatenation, C3, C6, C9, and C12 are atrous
convolution operations with rates of 3, 6, 9 and 12, respectively. Therefore,
the proposed MRF extraction module (MEM MEM(·)) can be given as

MEM(I(x)) = SRB(MRF(C(I(x)))). (12)

The MEM can also assist in initial feature extraction so as to weaken the
loss and destruction of initial local features caused by GC and OLS.

3.5. Encoder-Decoder-based Fusion Module

The powerful feature extraction and mapping capabilities of Encoder-
Decoder networks have been widely verified [53]. Therefore, we take SRB as
the basic learning block to build an Encoder-Decoder fusion-based module
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(EDFM) and optimize global feature learning through skip connections. As
shown in Fig. 2, EDFM will perform refined fusion learning on three types
of features (i.e., EDM-, CRM-, and MEM-mapped). To fully extract the
three types of features, we suggest reconstructing and fusing the features
through feature addition and feature concatenation. The channel numbers
of the three scales of EDFM are 16, 32, and 64, respectively. Max pooling
and bilinear interpolation are used for downsampling and upsampling. Skip
connections can improve the phenomenon of vanishing gradients and network
degradation. EDFM can strengthen the extraction and learning of multi-
scene degenerate features (e.g., colors and texture details) while weakening
the initial local feature loss brought about by GC and OLS.

3.6. Loss Function

To achieve a good balance between visual quality and quantitative scores,
we use the linear combination of the ℓ1-norm loss Lℓ1 , contrastive regular-
ization loss Lcr, and color loss Lcolor as the total loss Ltotal, which can be
expressed as

Ltotal = λ1Lℓ1 + λ2Lcolor + λ3Lrc, (13)

where λ1, λ2, and λ3 denote the weight value for each loss term, respectively.
Extensive experimental results show that λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1
will have the best quantitative and qualitative performance.

3.6.1. ℓ1-norm Loss

The loss Lℓ1 can promote the network to learn sparse solutions and ex-
hibit good gradient properties. To verify the effect improvement of our AoS-
RNet for multi-scene recovery, loss Lℓ1 aims to minimize the ℓ1-norm between
ground truth Ig and the recovered image Ir through AoSRNet, i.e.,

Lℓ1 = min ∥Ir − Ig∥1. (14)

3.6.2. Color Loss

The color loss is beneficial to weaken the color distortion caused by the
deep network, which can guide AoSRNet to generate images with natural
colors and normal contrast [54]. Therefore, to balance the sensitivity to color
during multi-scene recovery learning and inference, we suggest introducing a
color loss Lcolor, which can be given as

Lcolor = 1− ⟨Ir, Ig⟩
∥Ir∥2 × ∥Ig∥2

, (15)
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Table 1: The details of datasets used in our experiment.
Datasets Train Test Depth Haze Sand Low-light

RESIDE-OTS [56] 1200 200 " " " "

RESIDE-SOTS [56] 0 200 "

SMD [57] 600 200 " "

where ⟨, ⟩ indicates the inner product. By considering the direction of the
color vector in the restoration process, the closer the restored image Ir is to
the color of the ground true Ig, the closer the Lcolor is to zero.

3.6.3. Contrastive Regularization Loss

Contrastive regularization (CR) pulls out ”positive” pairs in some met-
ric space and separates representations between negative pairs, leading the
network to generate better restored images [55]. The mathematical repre-
sentation of the contrastive loss is

Lcr =
n∑

i=1

ωi ·
∥ψi (Ir)− ψi(Ig)∥1
∥ψi(I)− ψi(Ig)∥1

, (16)

where ψi(·), .i = 1, 2, · · ·n, refer to extracting the i-th hidden features from
the VGG-19 network pre-trained. Ir, I, and Ig are the images restored by
AoSRNet, the degraded image, and the real value. ωi are weight coefficients,
and we set ω1 =

1
32
, ω2 =

1
16
, ω3 =

1
8
, ω4 =

1
4
, and ω5 = 1.

4. Experiments and Discussion

In this section, we perform extensive experiments to demonstrate the
remarkable low-visibility enhancement performance of AoSRNet. Firstly, we
provide an overview of the train/test datasets and explain implementation
details. To showcase the superiority of our method, we quantitatively and
qualitatively compare it with several state-of-the-art methods using synthetic
and real-world three types of low-visibility images. Furthermore, we conduct
ablation studies to analyze the parameter value of OLS and the significance
of each module.

4.1. Dataset and Implementation Details

4.1.1. Train and Test Datasets

The application scenes discussed in this work primarily focus on imag-
ing terrestrial and oceanic environments. As shown in Table 1, the training
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Table 2: Methods for comparison with AoSRNet.
Methods Publication Learning Haze Sand Low Light

Fusion [34] MMSP (2014) "

Retinex [8] ICIP (2014) "

CBF [50] TIP (2017) "

SDD [58] TMM (2020) " "

CCDID [59] TCSVT (2021) " "

Kind+ [21] IJCV (2021) " "

Ako [60] MTA (2022) "

ACDC [11] JOE (2022) " "

CEEF [12] TMM (2022) " "

ROP+ [1] TPAMI (2023) " " "

PCDE [61] SPL (2023) " "

SMNet [62] TMM (2023) " "

TOENet [37] TIM (2023) " " "

AoSRNet — " " " "

dataset comprises RESIDED-OTS (which incorporates depth information)
[56] for land scenes, the Singapore maritime dataset (SMD) [57] for water
scenes. To generate more realistic degraded images, including haze and sand
dust, we extract atmospheric light values from real-world conditions. These
values, in conjunction with an atmospheric scattering model, are used to
generate the degraded images. Specifically, we carefully select atmospheric
light values for haze and sand dust (named AoSRNet-A), and release them
for future scene restoration work. The synthesis of low-visibility image is
achieved through the application of the Gamma transformation and Retinex
theory. The synthesis of degraded images that closely resemble real-world
conditions can address the limitation of insufficient paired training datasets,
hence enhancing the restoration performance of the network. When evalu-
ating the inference capabilities of AoSRNet, we employ a range of synthetic
and real-world low-visibility images. Specifically, we consider three types of
datasets: RESIDED-OTS, RESIDED-SOTS, and SMD. RESIDED-OTS en-
compasses hazy, sandy, and low-light images, while RESIDED-SOTS focuses
on sand dust. SMD covers hazy and low-light scenes.

4.1.2. Competitive Methods

To evaluate the effectiveness of the proposed method, we conduct a com-
parative analysis between AoSRNet and various state-of-the-art methods, as
shown in Table 2. The methods being compared encompass both traditional
and learning-based, with the majority of them demonstrating the ability to
recover low-visibility images in at least two different types of scenes. To

14



ensure the integrity and objectivity of the experiments, all the compared
methods are obtained from the source code released by the author.

4.1.3. Evaluation Metrics

To conduct a quantitative evaluation of the recovery performance of the
different methods, we have selected a set of evaluation metrics. These metrics
include reference evaluation metrics (i.e., peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM), and the no-reference evaluation metric (i.e.,
natural image quality evaluator (NIQE)), which serve as quantitative mea-
sures for evaluating the effectiveness of the enhancement methods under con-
sideration. A higher value of PSNR and SSIM indicates superior performance
in image recovery. Conversely, the NIQE has an inverse relationship, where a
lower value signifies greater recovery performance. It should be noted that all
evaluation metric values in this paper are derived based on the RGB channels
of the images.

4.1.4. Experiment Platform

The AoSRNet is trained for 100 epochs with 1800 images. The adap-
tive moment estimation (ADAM) optimizer is responsible for updating the
network parameters. The initial learning rate for the AoSRNet is set at
1 × 10−3 and then reduced by a factor of 10 at the 30th, 60th, and 90th
epochs. The AoSRNet was trained and evaluated within the Python 3.7 en-
vironment using the PyTorch package with 2 Xeon Gold 37.5M Cache, 2.50
GHz @2.30GHz Processors and 4 Nvidia GeForce RTX 4090 GPUs.

4.2. Quantitative Analysis and Comparison

4.2.1. Haze

Table 3 displays the objective evaluation metrics for various image dehaz-
ing methods on the RESIDE-OTS dataset for land scenes and the SMD for
sea scenes. SDD attempts to improve image quality by transforming hazy
images into pseudo-low-light images. However, the resulting restored images
fail to meet the desired imaging requirements due to noticeable disparities
between the two images. ROP+ refines the transmittance estimation, leading
to improved adaptability to various hazy situations and a higher evaluation
index value. Since there is more land scene data in the training set,
the performance of the learning-driven TOENet in the land scene is better
than that in the water scene, which reflects that the learning-based method
often has a high dependence on the training dataset. In comparison, the
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Table 3: PSNR, SSIM, and NIQE results of various dehazing methods on RESIDE-OTS
[56] and SMD [57].

PSNR ↑ SSIM ↑ NIQE ↓ PSNR ↑ SSIM ↑ NIQE ↓
RESIDE-OTS [56] SMD [57]

SDD [58] 14.270±2.667 0.797±0.115 4.178±1.408 13.709±2.444 0.820±0.092 6.647±0.959
CCDID [59] 16.168±3.424 0.827±0.063 3.503±0.996 17.381±3.178 0.907±0.042 5.948±1.410
ACDC [11] 17.345±2.402 0.743±0.062 3.419±0.899 18.196±1.925 0.745±0.057 5.762±1.533
CEEF [12] 13.837±2.586 0.789±0.067 3.458±0.892 12.723±2.637 0.854±0.062 5.581±0.981
ROP+ [1] 19.118±3.604 0.865±0.059 3.518±1.040 18.402±2.945 0.883±0.048 6.289±1.550
PCDE [61] 16.446±2.877 0.777±0.062 3.684±1.275 14.276±2.288 0.755±0.098 6.960±4.777
TOENet [37] 22.729±4.185 0.903±0.052 0.983±0.012 18.619±3.289 0.891±0.077 5.522±1.092
AoSRNet 22.939±4.575 0.910±0.054 3.328±1.025 20.030±3.641 0.962±0.033 5.826±1.145

Table 4: PSNR, SSIM, and NIQE results of various sandy enhancement methods on
RESIDE-OTS [56] and RESIDE-SOTS [56]

PSNR ↑ SSIM ↑ NIQE ↓ PSNR ↑ SSIM ↑ NIQE ↓
RESIDE-OTS[56] RESIDE-SOTS [56]

Fusion [34] 18.518±3.248 0.781±0.103 4.557±1.870 19.719±4.844 0.800±0.151 3.609±1.077
Retinex [8] 16.965±2.742 0.752±0.081 3.969±0.793 18.208±2.594 0.807±0.059 3.500±0.611
CBF [50] 13.419±2.491 0.749±0.093 3.712±0.849 13.446±2.362 0.773±0.098 3.342±0.747
CCDID [59] 12.028±3.283 0.735±0.096 3.746±1.093 12.874±3.439 0.788±0.085 3.262±0.985
Ako [60] 15.017±2.812 0.757±0.072 3.323±0.819 17.283±3.378 0.804±0.086 2.886±0.692
ROP+ [1] 15.284±3.629 0.790±0.087 3.689±1.116 18.717±5.976 0.849±0.101 3.071±0.764
TOENet [37] 18.839±4.421 0.851±0.080 3.546±0.980 21.363±4.843 0.901±0.089 3.132±0.688
AoSRNet 19.341±3.441 0.858±0.073 3.500±0.954 22.134±4.922 0.909±0.065 3.115±0.738

Table 5: PSNR, SSIM, and NIQE results of various low-light enhancement methods on
RESIDE-OTS [56] and SMD [57].

PSNR ↑ SSIM ↑ NIQE ↓ PSNR ↑ SSIM ↑ NIQE ↓
RESIDE-OTS [56] SMD [57]

SDD [58] 16.304±3.238 0.784±0.131 4.670±1.376 15.182±3.407 0.853±0.094 6.505±0.926
KinD+ [21] 15.792±2.263 0.643±0.120 4.019±0.995 18.286±3.076 0.899±0.063 5.887±0.919
ACDC [11] 18.601±2.868 0.738±0.078 3.458±0.950 16.892±2.729 0.700±0.071 4.755±0.804
CEEF [12] 10.216±2.093 0.569±0.147 3.832±1.003 7.611±1.123 0.534±0.076 5.326±0.790
ROP+ [1] 19.284±4.400 0.812±0.106 3.874±1.057 16.468±3.636 0.844±0.072 5.464±1.023
PCDE [61] 13.955±2.408 0.511±0.133 4.374±1.285 11.193±1.976 0.606±0.129 4.029±0.546
SMNet [62] 16.459±2.762 0.800±0.107 4.436±1.446 14.621±3.730 0.848±0.087 5.983±0.785
AoSRNet 26.691±4.436 0.924±0.044 3.742±1.110 25.139±5.119 0.981±0.013 5.762±0.990

utilization of DEM and CRM enabled AoSRNet to evolve beyond exclusive
reliance. These modules enable the preprocessing of degraded images using
both nonlinear and linear transformations and exhibit robust scene general-
ization capabilities. Hence, AoSRNet obtained better rankings in different
evaluation metrics.
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Figure 6: Visual comparisons of scene recovery performance from synthetic three types of
low-visibility images.

4.2.2. Sand Dust

Sand dust presents a greater level of complexity compared to haze, pri-
marily due to the presence of inconsistent atmospheric light levels. This
characteristic poses challenges for the application of DCP-based methods in
sand dust image enhancement. To address this issue, most sand dust image
enhancement methods employ GC or LS as either pre-processing or post-
processing procedures. As shown in Table 4, Fusion successfully combines
GC and LS while disregarding the atmospheric scattering model, making it
effective for generating synthetic sandstorm images. However, in instances
where the degradation scene shows a high level of complexity, the perfor-
mance of Fusion is expected to see a substantial decline. The Retinex can
effectively decompose degraded images and shows satisfactory recovery per-
formance. CBF and CCDID lack the ability for dense sandstorm scene re-
covery, leading to poor evaluation index values. The metric values of Ako
and ROP+ show a degree of similarity, but their performance in complex
sand and sand dust scenes is deemed inadequate. The learning-based meth-
ods demonstrate a comparatively elevated assessment metric, with AoSRNet
showing superior stability in comparison to TOENet.

4.2.3. Low Light

The restoration ability of AoSRNet is demonstrated in Table 5. It can be
seen from the evaluation indicators that compared to other competing meth-
ods, AoSRNet exhibits significant advantages in restoring low-visibility im-
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Figure 7: Visual comparisons of scene recovery performance from real-world three types
of low-visibility images.

ages that are synthesized using Retinex theory and Gamma transformation.
Traditional low-light enhancement methods are generally more robust across
different scenes. However, complex low-light degraded images often deviate
from the original imaging model, leading to poor enhancement performance
of traditional methods, especially in scenarios with uneven illumination or
multiple light sources. It is also important to note that learning-based meth-
ods may have limitations in terms of over-reliance on the training dataset,
which can result in insufficient scene generalization ability. In comparison, In
comparison, AoSRNet can combine the advantages of traditional and learning
methods and weaken the shortcomings, achieving satisfactory performance.

4.3. Visual Analysis and Comparison

4.3.1. Visual Comparison with Reference

We conducted a visual analysis of degraded images with references to as-
sess the generalization ability of AoSRNet in different scenes. To evaluate its
performance, as shown in Fig. 6, we selected classic low-visibility images of
land and ocean under various degradation scenes. The RESIDE-OTS, which
includes depth information, was observed to produce low-visibility images
that closely resembled real degraded images. However, traditional methods
struggle to obtain depth information on the degraded image, resulting in
either over-enhancement of local areas and loss of texture details or under-
enhancement, allowing degradation factors to persist. We also conducted fair
tests on RESIDE-SOTS and SMD, where depth information was not consid-
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Figure 8: Visual results of our method for underwater image enhancement.

ered. Most methods still faced challenges in accurately extracting valuable
information from these degraded images. The complexity of the imaging envi-
ronment often deviates from the original degradation imaging model, making
it difficult for traditional methods to achieve satisfactory visual restoration
performance in different degradation scenes. Additionally, learning-based
methods rely heavily on training data and lack generalization ability, making
achieving good visual restoration results in unpredictable imaging degrada-
tion environments challenging. However, AoSRNet combines the advantages
of network models and physical prior information, enabling it to achieve sat-
isfactory visual performance in various degraded environments.

4.3.2. Visual Comparison without Reference

This subsection focuses on restoring real-world degraded images without
any references. We selected the top-performing methods for a comparative
analysis. As shown in Fig. 7, it is worth noting that real-world imaging degra-
dation is significantly more intricate and challenging to estimate accurately.
Traditional methods often struggle with issues such as over-enhancement or
under-enhancement. In contrast, learning methods risk overfitting the data,
resulting in unsatisfactory visual performance of the restored image in both
global and local areas. However, compared to competing methods, AoSRNet
demonstrates strong scene generalization ability and restoration robustness,
delivering the best visual performance.

4.3.3. Generalization Performance of AoSRNet

The proposed all-in-one scene recovery network generalizes well to un-
derwater image enhancement without any parameter fine-tuning. As shown
in the bottom row of Fig. 8, the images enhanced by AosRNet are visually
pleasing, meanwhile, the contrast and details are well enhanced. Moreover,
the details and visibility are well enhanced. These enhanced results are
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Figure 9: The impact of the values of Pmin
a and Pmax

a in the Eq. 8 on the performance of
AoSRNet, where 1 means the best performance, and 0 means the worst performance.

yielded by our method without parameters fine-tuning, which demonstrates
the good generalization performance of our method.

4.4. Ablation Study

4.4.1. Parametric Analysis of OLS

Different degradation factors have different parameter requirements for
the suggested OLS, and a better restoration effect can be achieved by fine-
tuning the parameters of the OLS. To this end, this part will adjust the OLS
suitable for the three degradation scenes (i.e., Pmin, Pmax, Pmin

a , and Pmax
a

in the Eq. 8) to obtain the best parameters. We first determine Pmin and
Pmax as the general 0.01 and 0.99, then mainly perform linear transformation
on Pmin

a and Pmax
a , and finally make statistics on the objective evaluation

indicators of the restored image. As shown in Fig. 9, the optimal choices
for Pmin

a and Pmax
a are significantly different for the three degradation scenes.

Therefore, to better optimize AoSRNet, we selected three optimal (Pmin
a ,

Pmax
a ) embedding networks and performed joint optimization.

4.4.2. Effect of DEM and CRM

We conduct ablation experiments to verify the significance of DEM and
CRM for AoSRNet to learn inference. As shown in Table 6, when AoSR-
Net lacks the auxiliary learning of DEM and CRM, its performance is the
worst among the three restoration tasks. Furthermore, by respectively em-
bedding DEM and CRM into the main network, we observed improvements
in the objective evaluation index values of AoSRNet. And when AoSRNet
integrates both DEM and CRM, it exhibits the best restoration performance.
This highlights the synergistic effect of these components and their combined
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Table 6: Ablation study on different modules in AoSRNet.
MEM CRB DEM PSNR ↑ SSIM ↑

20.363±3.926 0.903±0.071

" 20.983±3.409 0.908±0.050

" " 20.993±3.497 0.913±0.051

" " 21.202±3.038 0.912±0.047

" " 21.306±3.773 0.915±0.063

" " " 21.475±3.732 0.918±0.058

Table 7: Ablation study on different loss function in AoSRNet.
Lℓ1 Lcolor Lrc PSNR ↑ SSIM ↑
" 20.093±4.114 0.894±0.066

" " 20.450±3.764 0.903±0.061

" " 20.655±3.672 0.908±0.055

" " " 21.475±3.732 0.918±0.058

contribution towards improving the overall performance of AoSRNet. Ad-
ditional nonlinear and linear transformations reduce the risk of the network
being prone to overfitting when propagating learning, and gamma correction
and optimized linear stretching also provide AoSRNet with rich and valuable
prior feature information.

4.4.3. Effect of Loss Function

A suitable loss function is an important part of ensuring that a deep net-
work model works in the expected way. To this end, this subsection conducts
ablation learning on the proposed three loss functions to verify the important
role each loss function plays in the learning process of AoSRNet. As shown
in Table 7, on the basis of ℓ1-norm loss Lℓ1 as the basic loss function, color
loss Lcolor and contrastive regularization loss Lrc can improve the restoration
performance respectively, and when the three loss functions are available at
the same time, the convergence speed and restoration performance of the
network reach the best excellent condition.

4.5. Limitation

In this work, the parameters of OLS and GC (i.e., γ, Pmin
a , and Pmax

a ) are
preset. However, different degradation scenarios will only have an optimal
set of OLS and GC parameter combinations. Although AoSRNet presets
four sets of parameters respectively, and performs learning and reasoning
through deep networks. However, inappropriate OLS and GC in specific
imaging scenarios may still have a negative impact on the final restoration
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results. Therefore, how to further optimize OLS and GC to more robustly
adapt to complex imaging environments is what AoSRNet needs to continue
to study in depth.

5. Conclusion

In this work, we propose a general all-in-one scene recovery network via
multi-knowledge integration (termed AoSRNet) to improve the visibility of
imaging devices in three common low-visibility imaging scenes (i.e., haze,
sand dust, and low light). Specifically, we combine the gamma correction
(GC) and optimized linear stretching (OLS) with the standard residual blocks
respectively, thus proposing the detail enhancement module (DEM) and color
restoration module (CRM) to guide the sub-learning networks to restore the
degraded image. In addition, we suggest a multi-receptive field extraction
module (MEM) to attenuate the loss of image texture details caused by GC
nonlinear and OLS linear transformations. DEM and CRM will alleviate the
overfitting of the deep network so that AoSRNet can improve the imaging
quality of the visual sensor more robustly and efficiently in different degra-
dation scenes. Finally, we refine and fuse the coarse features generated by
DEM, CRM, and MEM through the Encoder-Decoder-based fusion module
to generate the final restored image. Comprehensive experimental results
demonstrate that our method is efficient and stable compared with other
state-of-the-art methods for image restoration tasks in vision-driven intelli-
gent devices and systems.
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