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CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity
Learning
Shunpan Liang,Xiang Li,Shi Mu,Chen Li,Yu Lei,Yulei Hou,Tengfei Ma

• We use causal inference to uncover the true causal relationships between diseases/procedures and medications,
reducing spurious correlations, thereby minimizing recommendation bias and enhancing the interpretability of
recommendations.

• We consider both coarse-grained information at the entity level and fine-grained information at the molecular level,
leveraging the collaboration between this dual-granularity information to enhance the model’s learning capacity.

• We use a bias correction module as a post-processing intervention method during the model recommendation phase to
refine the initial results and further optimize the model’s predictive performance.

• Extensive experiments demonstrate that CIDGMed significantly outperforms current state-of-the-art models across
multiple metrics, achieving a 2.54% increase in accuracy, a 3.65% reduction in side effects, and a 39.42% improvement
in time efficiency.

• An intricate and elaborate case study based on a real medical record is designed to elucidate the effectiveness and
rationality of the model based on causal inference.

ar
X

iv
:2

40
3.

00
88

0v
2 

 [
cs

.I
R

] 
 3

0 
O

ct
 2

02
4



CIDGMed: Causal Inference-Driven Medication Recommendation
with Enhanced Dual-Granularity Learning
Shunpan Lianga,b, Xiang Lia,c, Shi Mua, Chen Lia,∗, Yu Leia, Yulei Houa and Tengfei Mad

aYanshan University, QinHuangDao, 066004, China
bXinjiang College of Science & Technology, Korla, 841000, China
cPeking University, Beijing, 100091, China
dHunan University, ChangSha, 410012, China

A R T I C L E I N F O
Keywords:
Medication Recommendation
Intelligent Healthcare Management
Causal Inference
Recommender Systems

A B S T R A C T
Medication recommendation aims to integrate patients’ long-term health records to provide accurate
and safe medication combinations for specific health states. Existing methods often fail to deeply
explore the true causal relationships between diseases/procedures and medications, resulting in biased
recommendations. Additionally, in medication representation learning, the relationships between
information at different granularities of medications—coarse-grained (medication itself) and fine-
grained (molecular level)—are not effectively integrated, leading to biases in representation learning.
To address these limitations, we propose the Causal Inference-driven Dual-Granularity Medication
Recommendation method (CIDGMed). Our approach leverages causal inference to uncover the
relationships between diseases/procedures and medications, thereby enhancing the rationality and
interpretability of recommendations. By integrating coarse-grained medication effects with fine-
grained molecular structure information, CIDGMed provides a comprehensive representation of med-
ications. Additionally, we employ a bias correction model during the prediction phase to further refine
recommendations, ensuring both accuracy and safety. Through extensive experiments, CIDGMed
significantly outperforms current state-of-the-art models across multiple metrics, achieving a 2.54%
increase in accuracy, a 3.65% reduction in side effects, and a 39.42% improvement in time efficiency.
Additionally, we demonstrate the rationale of CIDGMed through a case study.

1. Introduction
As society advances and the population grows, the

healthcare system is facing unprecedented pressures, includ-
ing the imbalance of medical resources and the complexity
of disease diagnosis and treatment, which have become
prominent issues in the medical field. In this context, ar-
tificial intelligence (AI)–based medication recommenda-
tions [51, 3, 21] emerge as a key component, bringing
new hope to healthcare. Compared to traditional manual
methods, this system, based on extensive patient data, can
make rapid responses and decisions, significantly addressing
the issue of scarce medical resources. Furthermore, by con-
sidering patients’ individual characteristics, medical history,
and current health status 1, the medication recommendation
system can provide accurate and safe medication combina-
tions, playing a key role in alleviating medical pressures and
enhancing treatment outcomes.

Compared to recommendation systems (RSs) in other
domains, medication recommendation faces unique and
significant challenges that prevent the direct application
of methodologies from other RSs [26, 45, 32, 4]. These
challenges primarily lie in the following two aspects. Firstly,
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1Patients’ health status encompasses the health status of individuals,
including diseases and procedures in healthcare encounters.

medication recommendation involves the complex rela-
tionships among various medical concepts (medications,
diseases, procedures) and the extensive chemical and molec-
ular structure knowledge inherent in medications. Secondly,
when evaluating recommendation performance, medication
recommendation not only focuses on accuracy but also
places a high emphasis on safety concerns. This is because
drug-drug 2 interactions (DDI)s [2, 25, 6] can cause side
effects in patients.

Early medication RSs [40, 1, 43] primarily focused
on analyzing patients’ current health status, while over-
looking their long-term medical histories. Subsequent re-
searches [20, 16, 59] began to recognize the importance
of longitudinal medical records and modelled patients’
historical records based on time series analysis. Although
these studies improved the accuracy of medication recom-
mendations to some extent, they neglected the safety of
medication recommendations, which is crucial in this field.
Consequently, some studies [27, 5] have considered drug-
drug interactions as the main factor affecting safety and
have focused on reducing the impact of these interactions to
enhance the safety of medication recommendation systems.
Despite the significant achievements in existing research,
there remain considerable biases in the recommendation
results, primarily stemming from the following aspects:

(1) Unclear Relationships between Disease/Procedure
and Medication.

2The terms "drug" and "medication" are used interchangeably in this
paper.
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Figure 1: A case where a method based on co-occurrence relation-
ships leads to erroneous recommendation results.

Previous co-occurrence-based researches [23, 55, 54] as-
sumed that high co-occurrence implies a direct relationship
or influence between diseases and medications. However,
this is not always the case. As shown in Figure 1, the results
learned using the co-occurrence method indicate a correla-
tion between each disease (𝑑1, 𝑑2, 𝑑3) and each medication
(𝑚1, 𝑚2). In reality, the correct relationships should be that
𝑑1 causes 𝑑2, which in turn causes 𝑑3, while 𝑚1 specifically
targets 𝑑1, and 𝑚2 specifically targets 𝑑3. When models
encounter a new combination of diseases (𝑑1, 𝑑2), the co-
occurrence method mistakenly recommends both𝑚1 and𝑚2,
resulting in inaccurate and potentially harmful outcomes.

Hence, these studies [23, 55, 54] addressing multi-
disease issues relied solely on co-occurrence to determine
the relationships between diseases and medications, failing
to identify the clear relationships between them. This bias
can be amplified through feedback, affecting the accuracy
and safety of the recommendations.

(2) Unintegrated Dual-Granularity Information. In
medication recommendation research, there are two main
approaches: one is to directly learn the coarse-grained rep-
resentation of medications from data, and the other, given
that most medications consist of multiple molecules 3, maps
medications to individual molecules and treats them as sub-
stitutes for the medication itself, emphasizing the impor-
tance of the molecular (fine-grained) level. In particular, us-
ing only coarse-grained information [46, 21] fails to capture
the chemical and molecular structure information, making
it difficult to identify medications with similar compound
structures and to analyze medication-medication interac-
tions. On the other hand, using only fine-grained information
[51, 52], although it can provide detailed chemical infor-
mation, the ultimate task of medication recommendation
is to recommend the entire medication, not just a single

3https://atcddd.fhi.no/atc/structure_and_principles/

molecule, and this can introduce noise into the training
process, affecting the stability and robustness of the model.

However, current methods typically focus only on either
the coarse-grained level or the fine-grained level of medica-
tions, failing to effectively integrate information from both
granularities. This leads to biases in representation learning
and recommendation results.

Therefore, to address the above limitations, we design a
Causal Inference-driven Dual-Granularity Medication Rec-
ommendation method named CIDGMed. The main contri-
butions of our method are summarized as follows:

• We introduce causal inference techniques that can un-
cover the causal relationships between diseases/procedures
and medications, enhancing the rationality and inter-
pretability of medication recommendations.

• A dual-granularity fusion method is proposed. At the
coarse-grained level, it learns the effects of entire
medications, while at the fine-grained level, it mines
richer relationships from molecular structures.

• We employ a post-processing intervention method by
introducing a bias correction model. This model fur-
ther adjusts the generated recommendations using the
established causal relationships during the prediction
phase, thereby enhancing the accuracy and safety of
the model.

• Extensive experiments on real-world datasets demon-
strate superior performance compared to existing
state-of-the-art models. Our approach achieves a 2.54%
increase in accuracy and a 3.65% enhancement in
safety. Additionally, we demonstrate the interpretabil-
ity of CIDGMed through a case study. Our code is
publicly available at GitHub4.

We provide an overview of the different sections of the
paper: (1) Introduction: Introduces the main innovations
and the motivation behind this work. (2) Related Work:
Summarizes typical studies and current trends in medication
recommendations and causal inference in RSs. (3) Problem
Definition: Clearly explains the inputs and outputs and the
special terms mentioned in this paper. (4) Methods: Presents
the core ideas of the model and the specific technical de-
tails of its implementation. (5) Experiments: Introduces the
experimental background and results, and presents a series
of supportive experiments to provide an in-depth analysis
of the results. A specific case study of the workflow in
this paper can be found in Subsection 5.8. (6) Conclusion:
Summarizes the research findings and offers perspectives on
future research directions.

2. Related Works
In this section, we describe related work in the areas of

medication recommendation and causal inference in RSs.
4https://github.com/lixiang-222/CIDGMed
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2.1. Medication Recommendation

In recent years, the field of medication recommendation
has developed rapidly, and mainstream medication recom-
mendation models can be broadly categorized into three
main directions:

The first category mainly focuses on the technical aspect
of medication recommendation. The earliest methods [40,
1, 43] use statistical data approaches. With the development
of collaborative filtering methods, Medicine-LDA [39] pro-
posed a context-aware collaborative model based on Latent
Dirichlet Allocation (LDA) to integrate multiple types of
information. CompNet [24] addresses recommendation is-
sues by framing the task as an order-free Markov decision
process (MDP) problem. In recent years, deep learning has
achieved tremendous success, leading to the emergence of
medication recommendation methods using this technology.
For example, RETAIN [8] is based on a two-level neural
attention model that can detect influential past visits and
significant information within those visits. The study [17]
develops three different LSTMs to model heterogeneous
data interactions for predicting next-period prescriptions.
GAMENet [35] leverages Graph Neural Networks (GNN)
to enhance medication recommendation systems. Similarly,
COGNet [46] utilizes the Transformer architecture for medi-
cation recommendations, adopting a translation approach to
infer medications from diseases/procedures.

The second category of research focuses more on the
relationships between diseases/procedures and medications.
It constructs relational networks to explore the potential
connections among various medical entities. For example,
DPR [60] classifies the interactions between different med-
ications and represents them as graphs, designing a medi-
cation package recommendation framework based on graph
neural networks to integrate medication interaction infor-
mation. DPG [61] considers the interaction effects between
medications affected by patient conditions, initializes the
medication interaction graph based on medical records and
domain knowledge, and uses an RNN to capture medication
interactions. StratMed [21] utilizes a dual-property network
to address the mutual constraints between the safety and
accuracy of medication combinations, synergistically en-
hancing these two properties.

The third category of research underscores the im-
portance of incorporating domain-specific knowledge to
enhance the relationships among various medical entities
within the dataset. By integrating more expert knowledge
beyond the dataset, these approaches aim to improve the
accuracy and safety of medication recommendations. For
instance, SafeDrug [51] introduces detailed molecular in-
formation to characterize the relationships between medi-
cations. This approach aims to reduce the risk of adverse
drug-drug interactions (DDI) and provide safer medication
combinations. By focusing on molecular details, SafeDrug
enhances our understanding of how different medications in-
teract at a molecular level, contributing to safer prescription
practices. Similarly, MoleRec [52] improves the relation-
ships between medications by simulating specific molecular

substructures within the medications. This method allows
for a more accurate and precise representation of DDIs,
enabling more reliable predictions of potential interactions.
MoleRec’s approach highlights the importance of detailed
molecular simulation in understanding medication interac-
tions. And Carmen [3] incorporates patient records into the
molecular representation learning process to enhance the
ability to differentiate between molecular differences.

Despite the success of the aforementioned methods, they
have certain limitations: (1) they primarily rely on the co-
occurrence relationships among various medical entities in
patient historical records, failing to uncover the underly-
ing causal relationships; (2) they do not consider the use
of both coarse-grained medication information and fine-
grained molecular information for collaborative supplemen-
tary learning and recommendation, which could signifi-
cantly enhance the accuracy, safety, and interpretability of
medication recommendations.
2.2. Causal Inference in RSs

In the real world, causality drives the system, prompting
researchers in recommender systems to leverage causal in-
ference to extract causal relationships and thereby enhance
the RS. Formally, causality can be defined as the relation-
ship between cause and effect, where the cause is partly
responsible for the effect [44]. Causal inference, on the
other hand, refers to the process of identifying and utilizing
causal relationships based on experimental or observational
data [53]. Causal relationships are primarily applied in three
key stages of RSs:

(1) Data preprocessing: In recent years, some meth-
ods [11, 57, 10] have utilized causal relationships to address
issues such as data debiasing or data augmentation. Specifi-
cally, causal theory empowers us to pinpoint the underlying
cause of data bias by thoroughly examining the generation
process of recommendation data. Hence, through causal
inference, some studies can effectively mitigate the impact of
bias. (2) Model development: Causal inference contributes
to enhancing the interpretability of the model itself [36,
42, 37, 58, 56, 48, 41]. (3) Recommendation outcomes:
This is a postprocessing mechanism that incorporates causal
relationships into the obtained recommendation results to
correct bias issues in the model learning process, thereby
enhancing their accuracy and interpretability [11, 47, 38].

Building on the powerful inferential capabilities of
causal inference, this paper innovatively introduces it into
the field of medication recommendation. Specifically, we
employ a causal inference-based approach to mine poten-
tial links between medications and diseases/procedures,
eliminating spurious correlations arising from co-occurring
relationships and providing more precise causal relation-
ships. Additionally, during the recommendation phase of
the model, we leverage the learned causal relationships
to correct model biases, thereby enhancing the model’s
performance and interpretability.
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3. Problem Definition
3.1. Medication Combination Recommendation

Medical Entity. Medical entities, in this article, include
diseases, procedures, and medications, and these are denoted
by the symbols  = {𝑑1, 𝑑2,…},  = {𝑝1, 𝑝2,…}, and
 = {𝑚1, 𝑚2,…} respectively.

Input and Output. This paper uses Electronic Health
Records (EHR) as its data source 5, covering a wide range
of patient visits and treatment records. Each patient’s record
is denoted as , containing longitudinal visit records  =
{𝑣1, 𝑣2,… , 𝑣𝑡}, where 𝑣𝑡 is the clinical information associ-
ated with the 𝑡𝑡ℎ visit. Each visit record 𝑣𝑡 = {𝑡,𝑡,𝑡}includes three elements: 𝑡 ⊂ , 𝑡 ⊂  , 𝑡 ⊂ , rep-
resenting the patient’s historical and current visit’s medical
data. If it is the first visit, prior records will be absent. These
elements are encoded using a multi-hot encoding technique.
Our model’s output, denoted as ̂𝑡, predicts the medication
combination for the visit 𝑣𝑡.
3.2. Safety of Medication Combination

Safety is particularly important in medication recom-
mendation, as certain medication combinations can pose
significant health risks. To ensure the safety of these com-
binations, it is necessary to incorporate DDI-related knowl-
edge and minimize the occurrence of DDIs as much as
possible. Inspired by SafeDrug [51], DDI information is
extracted from the Adverse Event Reporting System [14].
In our model, DDI information is represented in a matrix
format 𝐌𝑑𝑑𝑖 ∈ {0, 1}||×||, where 𝐌𝑑𝑑𝑖

𝑚𝑖𝑚𝑗
= 1 indicates

an interaction between 𝑚𝑖 and 𝑚𝑗 . A higher frequency of
DDI indicates a greater potential for safety issues in the
recommended results.
3.3. Causal Discovery and Inference

As discussed in Section 2.2, causal discovery and infer-
ence are crucial for understanding the interactions between
entities [12], helping to estimate genuine causal effects and
thereby enhancing interpretability, particularly in complex
data scenarios. Therefore, causal discovery and inference are
crucial for identifying the underlying causal relationships
between different medical entities. For example, through
these uncovered relationships, it can be discovered that
Amoxicillin can treat Strep Throat. This not only enhances
the accuracy and safety of the recommendations but also ex-
plains why Amoxicillin is effective for treating Strep Throat,
thereby improving interpretability. Such relationships can-
not be well identified through traditional methods that rely
on co-occurrence relationships, leading to inappropriate rec-
ommendations. For instance, co-occurrence-based methods
might recommend Ibuprofen for patients with Strep Throat,
resulting in irrational suggestions and introducing biases that
impact the performance of the recommendations. Specifi-
cally, we use statistical algorithms and machine learning to

5MIMIC-III and MIMIC-IV are two extensively utilized medical
datasets derived from real-world clinical records in intensive care units,
employed for the research and analysis of clinical data in critical care
settings.

Table 1
Notations and Descriptions.

Notations Descriptions
, , disease set, procedure set, medication set

||, ||, || number of disease / procedure / medication
|| number of molecule

𝑑, 𝑝, 𝑚 disease, procedure, medication
 patient’s history record
𝑣𝑡 clinical information of the 𝑡-th visit

𝐌𝑑𝑑𝑖 DDI matrix
𝐌𝑑𝑚, 𝐌𝑝𝑚 causal effect matrice between

disease / procedure and medication
𝐺, 𝐺′ causal graph, enhanced graph
𝑋𝑖 the 𝑖-th entity in Bayesian network

𝐡𝑑𝑖 ,𝐡𝑝𝑗 embedding of entity 𝑑𝑖 / 𝑝𝑗
 relevance stratification structure

𝑟𝑑𝑚𝑙 , 𝑟𝑝𝑚𝑙 relationship between disease
/ procedure and medication at the 𝑙-th layer

𝐀 medication-molecule relationship matrix
𝑎𝑖𝑗 importance of molecule𝑠𝑗 in medication 𝑚𝑖.
𝐡𝑠𝑗 molecule embedding of 𝑠𝑗
𝐡𝑚𝑖

medication embedding of 𝑚𝑖
 𝑒𝑛 set of medical entities
𝑚𝑜 set of molecules
𝑐 relationships between medical entities
𝑓 relationships between molecules
𝐡𝑚𝑜,𝑙𝑖 representation of molecule 𝑖 at layer 𝑙
𝐡𝑒𝑛,𝑙𝑖 representation of entity 𝑖 at layer 𝑙
𝐡𝑣𝑡 final represen- tation of the current visit 𝑣𝑡
𝐡𝐻 patient representation
𝜏1, 𝜏2 magnitude of adjustment required
𝛿1, 𝛿2 threshold value of causal matrix
𝑃 (𝑚𝑖) recommendation probability of 𝑚𝑖
𝑃 ′(𝑚𝑖) recommendation probability of 𝑚𝑖after bias correction

exclude meaningless relationships in the data through back-
door [29] paths, thereby identifying potential causal rela-
tionships. Furthermore, causal inference uses observational
data to quantify the impacts of these relationships, which
is crucial for decision-making and policy formulation. It is
important to note that in this paper, the causal mechanism
permeates two aspects: the model and the recommendation
results. In the model aspect, we leverage a causal graph to
explore the relationships among diseases, procedures, and
medications, enhancing the model’s inferential capabilities.
In the recommendation results aspect, we employ learned
causal effects to further correct biases in the recommenda-
tion results. These specific details will be provided in the
following section.

4. Methods
Figure 2 illustrates our model, which consists of three

main components. In this study, we aim to mine and uti-
lize the causal relationships among various medical entities
across three distinct stages to achieve personalized medica-
tion recommendations. For ease of reading, we list important
notations and their explanations in Table 1 of this paper.

First, in the Relationship Mining stage, we extract
patient information (i.e., diseases, procedures, and med-
ications) from EHRs. Using causal discovery, we learn

Shunpan L, Xiang L: Preprint submitted to Elsevier Page 4 of 20
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Figure 2: CIDGMed Flowchart: The Relationship Mining module on the left side of the figure utilizes causal discovery and causal inference
on the EHR to generate causal graphs and causal effect matrices. The Representation Learning module at the top of the figure builds on
this foundation with dual granularity at the medication level and the molecular level to learn patient representations and recommend
preliminary medication probabilities. The Bias Correction module at the bottom of the figure corrects the recommended probabilities for
each medication based on the causal effects and recommends the final combination of medications.

the causal relationships among these medical entities and
construct personalized causal graphs for each patient. This
process involves obtaining the causal effect matrices 𝐌𝑑𝑚

and 𝐌𝑝𝑚, which represent the relationships between dis-
eases/procedures and medications. Next, in the Represen-
tation Learning stage, we refer to a medication dictionary
6 to establish mappings between each medication and its
molecular components. We employ the causal effect matrix
constructed during the relationship mining phase (based on
the coarse-grained relationships at the medication level) and
integrate the relationships between molecules and medi-
cations, as well as between molecules themselves (based
on the fine-grained relationships at the molecular level),
to form a dual-granularity representation message passing
method. These representations help the study categorize and
aggregate medical entities within the causal graph more
precisely, forming a visit-level detailed representation h𝑣. By
incorporating patients’ historical data, we ultimately derive
the medication recommendation probability 𝑃 (). Finally,
in the Bias Correction stage, we adjust the probabilities for
each medication based on the initial causal matrices 𝐌𝑑𝑚

6https://go.drugbank.com/releases/latest

and 𝐌𝑝𝑚 to correct biases that arise during the model train-
ing process, thus recommending medication combinations
that are both effective and safe.
4.1. Relationship Mining

At this stage, our objective is to leverage causal discov-
ery to deeply investigate the relationships between medical
entities and to quantify these causal relationships as causal
effects through causal inference. This will lay the essential
groundwork for graph networks in subsequent representation
learning and for bias correction methods in the recommen-
dation phase.

Firstly, we explore the relationships among homoge-
neous entities, that is, entities of the same type, such as
disease 𝑑2 being caused by disease 𝑑1. Based on the data
distribution 𝑈 within the EHR, we employ a causal discov-
ery algorithm to construct causal graphs among the same
type of medical entities. Given the extensive and discrete
nature of medical data, we select the Greedy Intervention
Equivalence Search (GIES) algorithm [28] for the causal
discovery module. This method not only learns from the
data but also iteratively optimizes Bayesian equivalence
classes [30], enabling us to accurately determine the most
suitable causal graph. Finally, we use an equivalence score

Shunpan L, Xiang L: Preprint submitted to Elsevier Page 5 of 20
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criterion  (𝐺,𝑈 ), which generates Bayesian equivalence
classes, to assess the quality of the generated causal graph.
Algorithm 1 The Algorithm of Causal Discovery

1: Input: data distribution of EHR 𝑈
2: Output: causal graph 𝐺′

3: randomly initialize a graph 𝐺
4: do:
5:  (𝐺,𝑈 )← compute equivalent classes (eq1)
6: 𝐺′ ← update causal graph (eq2)
7: while 𝐺′ ≠ 𝐺
8: return causal graph 𝐺′

As depicted in Figure 3, traditional co-occurrence-based
methods suggest that both 𝑑1 and 𝑑2 are associated with 𝑚1.
However, through causal discovery, we determine that 𝑑2is a disease caused by 𝑑1, and 𝑚1 is a medication specifi-
cally prescribed for 𝑑1, with no direct relevance to 𝑑2. The
causal relationships established by this approach, based on
the backdoor criterion [29], effectively eliminate spurious
associations between medications and diseases. The entire
causal discovery process is shown in algorithm 1.

These findings provide a robust foundation for the de-
tailed examination of the relationships between medications
and diseases or procedures in future tasks. The analytical
approach applied is captured in the following formula:

 (𝐺,𝑈 ) =
𝑛
∑

𝑖=1
𝑓 (𝑋𝑖,𝐺

𝑋𝑖
), (1)

𝐺′ = GIES( , 𝐺), (2)
where 𝑛 represents the number of medical entities (i.e.,
diseases, procedures, and medications) in the Bayesian net-
work, 𝑋𝑖 denotes the 𝑖-th entity in the network, and 𝐺

𝑋𝑖stands for the parents of 𝑋𝑖 in the graph 𝐺, representing
the set of entities that directly influence 𝑋𝑖 according to the
Bayesian network’s structure. 𝑓 (⋅) is a Bayesian evaluation
function that evaluates the relationship between a given node
and its parent node in a Bayesian network. The GIES(⋅)
optimizes and learns an enhanced graph 𝐺′ from the initial
graph 𝐺 and the equivalence score  .

In addition to causal relationships existing among the
same medical entities, there are also causal relationships be-
tween different medicinal entities. As shown in Figure 3, 𝑚1is a medication specifically for 𝑑1. Hence, for heterogeneous
relationships, we utilize causal inference to demonstrate
the impact of medications on diseases or procedures. This
straightforward approach clearly shows whether medications
are effective against various diseases or procedures, thereby
uncovering their direct relationships. Specifically, the causal
graph𝐺′ is represented as a binary variable, and a discretized
Generalized Linear Model (GLM) [13] is employed to model
the causal effects between diseases/procedures and medica-
tions. The specific formula is as follows:

GLM(𝜇) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +…+ 𝛽𝑛𝑋𝑛, (3)

causal discovery

co-occurence relationship true relationship

Discovering true
relationship

Eliminating false
relationship

Candidal
esophagitis

Mineral
supplements

B complex
deficiency

Figure 3: A real example of using causal discovery to correct in-
correct relationships from co-occurrence relationships to generate
true relationships.

where GLM(⋅) denotes the logit link function, 𝜇 repre-
sents the probability of a binary variable, 𝛽0 is the inter-
cept, and 𝛽1, 𝛽2,… , 𝛽𝑛 are the corresponding coefficients.
𝑋1, 𝑋2,… , 𝑋𝑛 represent the model’s independent variables,
including the records of diseases/procedures and medica-
tions. In this model, the probability 𝜇 of the binary variable
indicates the likelihood of a positive response from med-
ications to patients with identified diseases or procedures,
elucidating the causal effect of a specific disease or proce-
dure on medication. Ultimately, the causal effect matrices
for diseases-medications and procedures-medications can
be obtained, denoted as 𝐌𝑑𝑚 ∈ ℝ||×|| and 𝐌𝑝𝑚 ∈
ℝ||×||, respectively.
4.2. Representation Learning

The main objective of this phase is to obtain detailed
entity representations, visit representations, and ultimately
comprehensive patient representations, built upon multiple
causal-based relational networks, and to recommend prelim-
inary medication probabilities.
4.2.1. Medical Entity Learning

This subsection describes the construction of dual-
granularity relationship network and the process of obtain-
ing entity representations.

In the real-world diagnosis and treatment process, doc-
tors determine prescriptions based on the patient’s current
health status and their historical medical records. In our
model, we use the current disease 𝑡 and procedure 𝑡 to
represent the current health status and regard the diseases
𝑡−1, procedures 𝑡−1 and medications 𝑡−1 from the last
visit as the historical medical record. These combined data
sources provide a comprehensive overview of the current
visit, helping us to simulate the real-world medical con-
sultation process. We initially establish embedding tables
𝐄𝑑 ∈ ℝ||×𝑑𝑖𝑚 and 𝐄𝑝 ∈ ℝ||×𝑑𝑖𝑚 for diseases and pro-
cedures, with each row corresponding to a specific disease

Shunpan L, Xiang L: Preprint submitted to Elsevier Page 6 of 20



CIDGMed
or procedure.

𝐡𝑑𝑖 = 𝐄𝑑(𝑑𝑖), 𝐡𝑝𝑗 = 𝐄𝑝(𝑝𝑗), (4)
where 𝑑𝑖 ⊂ 𝑡, 𝑝𝑗 ⊂ 𝑡 represent specific medical entities,
𝐡𝑑𝑖 ∈ ℝ𝑑𝑖𝑚, 𝐡𝑝𝑗 ∈ ℝ𝑑𝑖𝑚 represent the embedding for entity
𝑑𝑖 and 𝑝𝑗 , respectively.

Coarse Granularity: First, we establish and apply a
coarse-grained relationship network. Based on the previ-
ously generated 𝐌𝑑𝑚 and 𝐌𝑝𝑚, we introduce a relevance
stratification strategy [21]. This strategy adaptively layers
all relationships in 𝐌𝑑𝑚 and 𝐌𝑝𝑚 according to their values,
using a gradient  to generate an 𝑛-layered relevance
stratification structure 𝑑𝑚 = {𝑟𝑑𝑚1 , 𝑟𝑑𝑚2 ,… , 𝑟𝑑𝑚𝑛 } and
𝑝𝑚 = {𝑟𝑝𝑚1 , 𝑟𝑝𝑚2 ,… , 𝑟𝑝𝑚𝑛 }. The stratification follows a
pyramid structure, with more relationships at the lower
layers and fewer at the upper layers. By assigning different
weights to each layer in subsequent steps, we enhance the
learning strength for rare data, addressing the imbalance
in the data and obtaining coarse-grained relationships. The
specific formulas are as follows:

|𝑟𝑑𝑚𝑗 | = |𝑟𝑑𝑚1 |𝑗−1, |𝑟𝑝𝑚𝑙 | = |𝑟𝑝𝑚1 |𝑙−1, (5)
where, 𝑟𝑑𝑚𝑙 refers to the 𝑙𝑡ℎ layer of the medication-disease
relationship, |𝑟𝑝𝑚𝑙 | denotes the number of relationships at this
layer,  represents the hierarchical gradient.

Fine Granularity: Next, we mine fine-grained informa-
tion, i.e., detailed information originating from the molec-
ular structure level. By importing a pre-defined dictionary
of medications, we obtain a precise mapping between med-
ications and their molecular structures. Different structures
may exist within the same medication, indicating that similar
actions may be triggered; hence there is some connection
between the molecular structures of the medication.

At the same time, most medications are composed
of multiple molecular structures, and the same molecular
structure may also exist in different medications, sharing
the same representation. Therefore, we develop a learnable
medication-molecule relationship matrix (𝐀 ∈ ℝ||×||),
where 𝑎𝑖𝑗 ⊂ 𝐀 represents the importance of molecule 𝑠𝑗 in
medication 𝑚𝑖.We apply a method similar to that used for constructing
entity embeddings to build a molecule embedding table
𝐄𝑠 ∈ ℝ||×𝑑𝑖𝑚. And, to accurately represent the medica-
tions, we construct medication embeddings (𝐡𝑚) based on
their molecular composition structures and the importance
of each molecule, thereby constructing fine-grained connec-
tions between medications at the structural level.

𝐡𝑠𝑗 = 𝐄𝑠(𝑠𝑗), (6)

𝐡𝑚𝑖
=

||
∑

𝑗=1
𝑎𝑖𝑗 ⋅ 𝐡𝑠𝑗 , (7)

where 𝐡𝑠𝑗 ∈ ℝdim represents the molecule 𝑠𝑗 , 𝐡𝑚𝑖
is the em-

bedding of medication 𝑚𝑖, 𝑎𝑖𝑗 represents learnable weight.

Dual Granularity Fusion: To integrate relationships of
different granularities, we use  = ( 𝑒𝑛,𝑚𝑜, 𝑐 , 𝑓 ),
a bipartite graph containing both coarse-grained and fine-
grained information. ′ is a bipartite graph where  𝑒𝑛

represents the set of all medical entities (coarse-grained
medications) contained in the visit records, 𝑚𝑜 represents
the set of molecules (fine-grained medications) involved
in the medications from the visit records, 𝑐 represents
the relationships between medical entities (coarse-grained
relationships), and 𝑓 represents the relationships between
molecules (fine-grained relationships).

This graph starts learning at the fine-grained relationship
level, and medications are used as intermediaries, interacting
with information from other medical entities through coarse-
grained relationships, thereby enriching the representation
of medications at different granularities. Specifically:

First, for the fine-grained relationships, we construct
fully connected graphs between molecular structures be-
longing to the same medication and use Graph Isomorphism
Networks (GIN) [49] for efficient message passing. This
approach updates the representation h𝑚𝑜 = {h𝑠} of the
molecule within the medication, significantly enhancing the
fine-grained relationships between the molecules. The spe-
cific formula is as follows:

𝐡𝑚𝑜,𝑙+1𝑖 = 𝜎

⎛

⎜

⎜

⎜

⎝

(1 + 𝜖)𝐡𝑚𝑜,𝑙𝑖 +
∑

𝑗∈𝑚𝑜
𝑒𝑓 ,𝑖

𝐡𝑚𝑜,𝑙𝑗

⎞

⎟

⎟

⎟

⎠

, (8)

where 𝑖, 𝑗 ∈ 𝑚𝑜 is a node in the node set 𝑚𝑜, 𝐡𝑚𝑜,𝑙+1𝑖represents the updated feature representation of molecule
node 𝑖 at layer 𝑙 + 1, 𝜖 is a learnable parameter that controls
the influence of the original feature representation, 𝑚𝑜

𝑒𝑓 ,𝑖denotes the set of neighbouring molecules of 𝑖 within the
medication, 𝐡𝑚𝑜,𝑙𝑖 represents the original feature representa-
tion of molecule 𝑖 at layer 𝑙, and 𝐡𝑚𝑜,𝑙𝑗 represents the original
feature representation of neighboring molecule 𝑗 at layer 𝑙.

Next, for the coarse-grained relationships, we perform
adaptive adjustments based on the Relational Graph Con-
volutional Network [34], mapping the 𝑛 levels of entity
relevance 𝑝𝑚 and 𝑑𝑚 onto the 𝑐 of graph ′. By coarse-
grained partitioning of the same relationships, we construct a
Weighted-RGCN (W-RGCN) with coarse-grained weights.
Through message passing on ′, we update the representa-
tions of diseases, procedures, as well as the representations
of medications h𝑒𝑛 = {h𝑑 ,h𝑝,h𝑚}. In the face of coarse-
grained relationships, the specific formula is as follows:

𝐡𝑒𝑛,(𝑙+1)𝑖 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑒𝑐∈𝑐

1
𝑞𝑒𝑛𝑒𝑐 ,𝑖

∑

𝑗∈ 𝑒𝑛
𝑒𝑐 ,𝑖

𝐖𝑙
𝑒𝑐𝐡

𝑒𝑛,𝑙
𝑗

⎞

⎟

⎟

⎠

, (9)

𝐖𝑙
𝑒𝑐 = 𝑟𝑒𝑐 + Δ𝐖𝑙

𝑒𝑐 , (10)
where 𝑖, 𝑗 ∈  𝑒𝑛 is a medical entity in the entity node

set  𝑒𝑛, 𝐡𝑒𝑛,(𝑙+1)𝑖 is the updated representation of the node
𝑖 at layer 𝑙 + 1, 𝜎 is the activation function, 𝑐 is the set
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Figure 4: A real example of DAC, we analyze the causal position
of each node in the causal graph 𝐺𝑑

𝑣𝑡
to gauge its influence on the

patient’s current state. For instance, if 𝑑3 is identified as a causal
disease, it is classified as 𝐷1

𝑡 .

of edges related to the medical entities, 𝑞𝑒𝑛𝑒𝑐 ,𝑖 is a learnable
normalization constant, ensuring the output features are
appropriately scaled,  𝑒𝑛

𝑒𝑐 ,𝑖 is the set of neighboring nodes
of 𝑖 related to edge 𝑒𝑐 , 𝐖𝑙

𝑒𝑐 is the weight matrix for edge
𝑒𝑐 at layer 𝑙, and 𝑟𝑒𝑐 and Δ𝐖𝑙

𝑒𝑐 represents the relationship
relevance and the weight update matrix for edge 𝑒𝑐 at layer
𝑙, respectively.

Finally, within graph 𝐺′, we will propagate the molec-
ular representations obtained from fine-grained relational
learning to medications and further propagate the learning
on coarse-grained relationships. This fusion of coarse and
fine-grained propagation is fed back into the network in
a recursive loop, achieving a dual-granularity fusion. Ul-
timately, we obtain the representations of various medical
entities (diseases, procedures, and medications) integrating
both granularities, respectively: h𝑑 ,h𝑝, and h𝑚.
4.2.2. Clinical Visit Learning

Due to the varying physical constitutions of different pa-
tients, the same disease can have different impacts on differ-
ent individuals. Moreover, different diseases also influence
each other, and this varies from person to person. Based on
this, the study employs a Dynamic Adaptive Categorization
mechanism (DAC) [22] to learn about the effects of diseases
in various clinical contexts, thereby enhancing personalized
learning for patients.

DAC learns interactions between similar medical entities
from causal graphs and integrates them into clinical visit
representations. As shown in Figure 4, taking diseases as
an example, based on the causal positions of entities in the
session graph 𝐺𝑑

𝑣𝑡
, we divide 𝑡 into four sets 𝑗

𝑡 : (1) Causal
Disease 1

𝑡 : Diseases capable of causing the occurrence
of other diseases, acting as the root cause in the pathway,
representing the primary diseases in this clinical visit. (2)
Effect Disease 2

𝑡 : Diseases influenced by other diseases,
serving as the result in the pathway, representing secondary
symptoms in the visit. (3) Middle Disease 3

𝑡 : Diseases
capable of causing the occurrence of other diseases while
being influenced by other diseases, acting as intermediate
nodes in the causal pathway. (4) Independent Disease 4

𝑡 :

Diseases existing independently in this visit without a direct
causal relationship with other diseases.

Based on DAC, entities can be categorized into four
types according to their positions in the causal graph of each
user. This paper uses diseases as an example, with medica-
tions and treatments being similar. As shown in Figure 4,
the four categories of diseases are as follows: (1) Source
Diseases (1

𝑡 ), which trigger other diseases and are the cause
of some diseases; (2) Intermediate Diseases (3

𝑡 ), which
can be caused by other diseases and can also cause other
diseases; (3) Resultant Diseases (2

𝑡 ), which can be caused
by other diseases; (4) Independent Diseases (4

𝑡 ), which
have no causal relationships with other diseases. The specific
formula is as follows:

𝑗
𝑡 = Classify(𝑑𝑖, 𝐺𝑑

𝑣𝑡
), (11)

where Classify(⋅) assigns 𝑑𝑖 to a specific category 𝑗
𝑡 .Since the same disease occupies different positions in

the causal graphs of different patients, resulting in different
categorizations by DAC, they are classified into different cat-
egories. Therefore, this paper enhances user personalization
by dynamically adjusting the impact of diseases on patients
and assigning different weights to various disease categories.
The specific formula is as follows:

𝑤𝑗
𝑡 =

exp(𝐖 ⋅ h𝑗
𝑡
+ 𝑏)

∑4
𝑘=1 exp(𝐖 ⋅ h𝑘

𝑡
+ 𝑏)

, (12)

h𝑡
=

|𝑡|
∑

𝑖=1
h𝑑𝑖 ⋅𝑤

𝑗
𝑡 , (13)

where 𝑤𝑗
𝑡 is the adaptive weight, 𝐖 and 𝐛 are the

trainable weight matrix and bias term, and 𝐡𝐭
is the final

representation of the diseases. Similarly, the final represen-
tations for procedures and medications can also be obtained,
denoted as 𝐡𝐭

and 𝐡𝐭
respectively. Therefore, the final

representation of the visit is as follows:

h𝑣𝑡 = [h𝑡
||h𝑡

||h𝑡
]. (14)

4.2.3. Patient Learning
Given the robust capability of Gated Recurrent Unit

(GRU) [7] to manage complex sequential challenges, this
study employs GRUs to analyze historical records, aiming
to elucidate the sequential dependencies inherent in the
progression of patients’ historical diseases, procedures and
medications {𝐡𝑣1 ,𝐡𝑣2 ,… ,𝐡𝑣𝑡}. Then, a Multi-Layer Percep-
tron (MLP) with powerful nonlinear modelling capabilities
is used to obtain the final representation of the patient. The
specific formula is as follows:

𝐨𝑣𝑡 = GRU(𝐨𝑣𝑡−1 ,𝐡𝑣𝑡 ), (15)
𝐡𝐻 = MLP(𝑜𝑣𝑡 ) (16)
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where 𝐨𝑣𝑡−1 is an intermediate variable generated by the
GRU(⋅), and we represent 𝐨𝑣0 with a zero vector. Finally,
we use a nonlinear activation function 𝜎 to transform the
patient embeddings to the predicted probability 𝑃 () for
each medication 𝑚𝑖.

𝑃 (𝑚𝑖) = 𝜎(𝐡𝐻 ), (17)
where 𝐡𝐻 is the patient representation, and 𝜎 is a nonlinear
activation function that is used to obtain the predicted prob-
abilities for the medication 𝑚𝑖.
4.3. Bias Correction

Due to the inevitable errors that may arise during the
model training process, to mitigate these errors, this paper
applies bias correction to the predicted medications using
the previously generated causal relationships, thereby more
accurately capturing the impact of medications on specific
diseases or procedures. Specifically, based on the causal
effect matrices𝐌𝑑𝑚 and𝐌𝑝𝑚, for any medication𝑚𝑖 that has
a significant therapeutic effect on a specific disease or pro-
cedure, we encourage its recommendation and increase its
recommendation probability. Conversely, if the medication’s
therapeutic effect on any disease or procedure during this
visit is below a certain quantified treatment effect threshold,
we prefer to decrease its probability.

𝑃 ′(𝑚𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑃 (𝑚𝑖) + 𝜏1, 𝑚𝑎𝑥{𝐌𝑑𝑚
𝑚𝑖−𝐷𝑡

,𝐌𝑝𝑚
𝑚𝑖−𝑃𝑡

} ≥ 𝛿1
𝑃 (𝑚𝑖), 𝛿1 > 𝑚𝑎𝑥{𝐌𝑑𝑚

𝑚𝑖−𝐷𝑡
,𝐌𝑝𝑚

𝑚𝑖−𝑃𝑡
} ≥ 𝛿2

𝑃 (𝑚𝑖) − 𝜏2, 𝑚𝑎𝑥{𝐌𝑑𝑚
𝑚𝑖−𝐷𝑡

,𝐌𝑝𝑚
𝑚𝑖−𝑃𝑡

} < 𝛿2

,

(18)
where 𝜏1 and 𝜏2 represent the magnitudes of adjustment
required for the predicted probability of a medication, while
𝛿1 and 𝛿2 are the thresholds derived from the causal matrix.
When these thresholds are met, it indicates that the medica-
tion has a beneficial effect on the disease (or procedure), thus
warranting a correction to the original predicted probability
𝑃 (𝑚𝑖) of the medication. The adjusted probability, 𝑃 ′(𝑚𝑖), is
the recommended probability after applying bias correction.
Finally, based on the recommended probability of each
medication, we generate the final medication combination.
4.4. Model Training

We define the medication recommendation process as
a multi-label binary classification task and employ both
the binary cross-entropy loss function 𝐿𝑏𝑐𝑒 and the multi-
label margin loss function 𝐿𝑚𝑢𝑙𝑡𝑖. Additionally, a DDI loss,
𝐿𝑑𝑑𝑖, is implemented to enhance the safety of medication
recommendations by calculating the occurrence probability
of medication pairs with potential DDI risk within the med-
ication combination. The specific formulas for the three loss
functions are as follows:

𝑏𝑐𝑒 = −
||

∑

𝑖=1
𝑚𝑖 log(𝑚̂𝑖) + (1 − 𝑚𝑖) log(1 − 𝑚̂𝑖), (19)

𝑚𝑢𝑙𝑡𝑖 =
∑

𝑖,𝑗∶𝑚𝑖=1,𝑚𝑗=0

max(0, 1 − (𝑚̂𝑖 − 𝑚̂𝑗))
||

, (20)

𝑑𝑑𝑖 =
||

∑

𝑖=1

||

∑

𝑗=1
𝐌𝑑𝑑𝑖

𝑚𝑖𝑚𝑗
⋅ 𝑚̂𝑖 ⋅ 𝑚̂𝑗 , (21)

where 𝑚𝑖 represents the ground truth, and 𝑚̂𝑖 represents the
model’s predicted value for the medication.

A lower DDI can enhance the safety of recommenda-
tions, but pursuing the lowest DDI rate without considering
the clinical context may compromise the effectiveness of the
prescription. In other words, further blindly reducing DDI
would decrease the efficacy of the medication combination,
and there is no need to reduce DDI further. Therefore, in
constructing the loss function, methods consistent with prior
research [52] are employed to ensure a balanced considera-
tion of each loss function.

 = 𝛼(𝛽𝑏𝑐𝑒 + (1 − 𝛽)𝑚𝑢𝑙𝑡𝑖) + (1 − 𝛼)𝑑𝑑𝑖, (22)

𝛼 =

{

1, 𝐫𝐚𝐭𝐞𝑑𝑑𝑖 ≤ 𝛾
max{0, 1 − 𝐫𝐚𝐭𝐞𝑑𝑑𝑖−𝛾

𝑘𝑝 }, 𝐫𝐚𝐭𝐞𝑑𝑑𝑖 > 𝛾
, (23)

where 𝛽 represents hyperparameters that control model
complexity or regularization strength, 𝛼, related to 𝑟𝑎𝑡𝑒𝑑𝑑𝑖,serves as a controllable factor that adjusts the influence of
the DDI rate on the model’s decision-making process. 𝛾 ,
ranging from 0 to 1, signifies a DDI acceptance rate that
determines the threshold at which the predicted DDI level
is deemed acceptable for clinical use. Lastly, 𝑘𝑝 acts as a
correction factor, adjusting the strength of the information
based on proportionality.

The overall optimization process of the algorithm is
shown in Algorithm 2.

5. Experiments
In this section, we conduct extensive experiments on

our proposed CIDGMed, aiming to answer the following
research questions (RQ):

• RQ1: Does CIDGMed significantly outperform other
state-of-the-art models in terms of accuracy, safety,
and time efficiency?

• RQ2: Do the key modules proposed in this paper
enhance the model’s performance?

• RQ3: Can the dual-granularity architecture in our
proposed model recommend medications better than
a single-granularity architecture?

• RQ4: What specific structures are captured by our
causal inference method, and how do they contribute
to the model’s performance?

• RQ5: Why does our approach enhance both effective-
ness and interpretability simultaneously?
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Algorithm 2 The Algorithm of CIDGMed

1: Input: patient data , training epoch 𝑒𝑝
2: Output: predicted value of medication 𝑚̂
3: randomly initialize all model parameters
4: preprocess the EHR data
5:
6: #relationship mining
7: 𝐺′ ← GIES generate causal graph (eq2)
8: 𝐌← GLM generate casual effect (eq3)
9:

10: for 𝑖 in 𝑒𝑝:
11: #medical entity learning
12: 𝐡𝑑 ← compute disease representation (eq4)
13: 𝐡𝑝 ← compute procedure representation (eq4)
14: 𝐡𝑠 ← compute molecular representation (eq6)
15: 𝐡𝑚 ← aggregate 𝐡𝑠 into medication (eq7)
16:
17: #fine granularity fusion
18: pass messages between 𝐦(eq8)
19: #coarse granularity fusion
20: pass messages between 𝐝/𝐩 and 𝐦 (eq9)
21:
22: #clinical visit learning
23: ℎ ← integrate entity via causal graph 𝐺′ (eq13)
24:
25: #bias correction
26: 𝑚̂ ← correct bias using causal effect 𝐌 (eq18)
27:
28: update model parameters with loss (eq22)
29: return predicted value of medication 𝑚̂

Table 2
Statistics of the datasets.

Item MIMIC-III MIMIC-IV
# patients 6,350 60,125
# visits 15,032 156,810

# diseases 1,958 2,000
# procedures 1,430 1,500
# medications 131 131
avg. # of visits 2.37 2.61

avg. # of medications 11.44 6.66

5.1. Datasets
As shown in Table 2, this paper utilizes the MIMIC-

III [19] and MIMIC-IV [18] datasets, which are widely used
in clinical research and analysis in the Intensive Care Unit
(ICU). The data include comprehensive ICU patient clini-
cal records, physiological monitoring data, laboratory test
results, and medication records, among other information.
We adopt the same data preprocessing method as described
in previous work [22]. For the MIMIC-III dataset, we utilize
ICD-9 codes for disease and procedure records, while for the
MIMIC-IV dataset, we use both ICD-9 and ICD-10 codes for
the relevant data, with medications mapped to ATC-3 codes.

We retain only those visit records that include information on
diseases, procedures, and medications.
5.2. Baselines

To validate our model, we select the following high-
performing methods as baseline models for comparison.

LR [15] (Logistic Regression) is a linear classification
algorithm that estimates the probability of an outcome be-
longing to a certain category by a linear combination of
input features, widely used in probability prediction and data
classification tasks.

ECC [33] (Ensemble of Classifier Chains) employs a
series of interconnected classifiers to enhance the precision
of predictions, where each classifier uses its output as the
input for the next classifier. This method is specifically de-
signed for multi-label classification tasks and can effectively
improve the overall performance of the model.

RETAIN [8] is an attention-based model tailored for
sequence data analysis, adept at integrating temporal dynam-
ics and specific features for accurate disease forecasting and
disease. By dynamically capturing critical clinical events of
a patient’s history, RETAIN offers medication combinations.

GAMENet [35] is a medication recommendation that
integrates the strengths of graph neural networks with mem-
ory networks and effectively discerns patterns and temporal
sequences within medical data, thereby enhancing the preci-
sion of its predictions.

SafeDrug [51] leverages the combination of patients’
health status and medication-related molecular knowledge.
This approach, by reducing the impact of DDIs, can recom-
mend safer medication combinations.

MICRON [50] focuses on customizing medication rec-
ommendation plans based on the dynamic changes in pa-
tient’s health status. It does not produce new recommen-
dations but updates medication combinations according to
patients’ new symptoms to enhance therapeutic effects while
reducing potential side effects.

COGNet [46] employs the Transformer architecture for
medication recommendations, using a translation approach
to infer medications from illnesses. It also features a copy
mechanism to integrate beneficial medications from past
prescriptions into new recommendations.

MoleRec [52] delves into the importance of specific
molecular substructures in medications. This approach en-
hances the precision of medication recommendations by
leveraging finer molecular representations.

CausalMed [22] utilizes causal discovery based on pa-
tient status to identify primary and secondary diseases,
thereby enhancing personalized patient representation.
5.3. Evaluation Metrics

We delve into the performance evaluation of our method
using four principal metrics [51]: Jaccard index, DDI rate, F1
score, and PRAUC. These metrics provide comprehensive
insights into the effectiveness and safety of our approach.

Jaccard (Jaccard Similarity Score) is employed to gauge
the similarity between two sets. In medication recommen-
dation, a higher Jaccard score indicates that the predicted
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prescription is more consistent with the actual medication
regimen, indicating higher accuracy.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑡) =
|{𝑖 ∶ 𝑚̂𝑖 = 1}| ∩ |{𝑖 ∶ 𝑚𝑖 = 1}|
|{𝑖 ∶ 𝑚̂𝑖 = 1}| ∪ |{𝑖 ∶ 𝑚𝑖 = 1}|

, (24)

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 1
𝑁ℎ

𝑁ℎ
∑

𝑡=1
𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑡), (25)

where 𝑚̂𝑖 represents the predicted outcome,𝑚𝑖 represents the
real label, and 𝑁ℎ represents the total number of visits for
patient ℎ.

DDI (Drug-Drug Interaction Rate) measures the occur-
rence of interactions within the recommended combinations,
a lower rate indicates higher safety of the medications.

𝐷𝐷𝐼 =

∑𝑁
𝑖=1

∑

𝑘,𝑙∈{𝑗∶𝑚̂𝑗 (𝑡)=1} 1{𝑎
𝑑𝑑𝑖
𝑘𝑙 = 1}

∑𝑁
𝑖=1

∑

𝑘,𝑙∈{𝑗∶𝑚𝑗 (𝑡)=1} 1
, (26)

where 𝑚(𝑡) and 𝑚̂(𝑡) denote the real and predicted multi-
label at the visit 𝑡, 𝑚𝑗(𝑡) denotes the 𝑗𝑡ℎ entry of 𝑚(𝑡), 𝑎𝑑𝑑𝑖 is
the prior DDI relation matrix and 1 is an indicator function
which returns 1 when 𝑎𝑑𝑑𝑖 = 1, otherwise 0.

F1 (F1-score) combines precision and recall, reflecting
the model’s ability to accurately identify correct medications
while ensuring comprehensive coverage.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡) =
|{𝑖 ∶ 𝑚̂𝑖 = 1} ∩ {𝑖 ∶ 𝑚𝑖 = 1}|

|{𝑖 ∶ 𝑚̂𝑖 = 1}|
, (27)

𝑅𝑒𝑐𝑎𝑙𝑙(𝑡) =
|{𝑖 ∶ 𝑚̂𝑖 = 1} ∩ {𝑖 ∶ 𝑚𝑖 = 1}|

|{𝑖 ∶ 𝑚𝑖 = 1}|
, (28)

𝐹1(𝑡) = 2
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡) +
1

𝑅𝑒𝑐𝑎𝑙𝑙(𝑡)

, (29)

𝐹1 = 1
𝑁ℎ

𝑁ℎ
∑

𝑖=1
𝐹1(𝑖). (30)

PRAUC (Precision-Recall Area Under Curve) assesses
model performance across different recall levels, indicating
the ability to maintain precision with increasing recall.

𝑃𝑅𝐴𝑈𝐶𝑡 =
|𝑀|

∑

𝑘=1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘𝑡 △ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘𝑡 , (31)

△𝑅𝑒𝑐𝑎𝑙𝑙𝑘𝑡 = 𝑅𝑒𝑐𝑎𝑙𝑙𝑘𝑡 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑘−1𝑡 , (32)
where |𝑀| denotes the number of medications, 𝑘 is the
rank in the sequence of the retrieved medications, and
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘(𝑡) represents the precision at cut-of 𝑘 in the
ordered retrieval list and △𝑅𝑒𝑐𝑎𝑙𝑙𝑘𝑡 denotes the change in
recall of a medication’s ranking from 𝑘−1 to 𝑘. We averaged
the PRAUC across all of the patient’s visits.

𝑃𝑅𝐴𝑈𝐶 = 1
𝑁ℎ

𝑁ℎ
∑

𝑖=1
𝑃𝑅𝐴𝑈𝐶(𝑡). (33)

Avg.#Med (Average number of medications) indicates
the average medications per recommendation. A higher

value suggests more complex combinations, potentially
increasing the risk of adverse reactions, while a lower value
indicates safer, more minimalistic treatment plans. This
metric should be used as a reference only and not as a strict
evaluative criterion.

𝐴𝑣𝑔.#𝑀𝑒𝑑 = 1
𝑁ℎ

𝑁ℎ
∑

𝑖=1
|𝑀̂(𝑖)|, (34)

where |𝑀̂(𝑖)|) denotes the number of predicted medications
in visit 𝑖 of patient ℎ.
5.4. Implementation Details
5.4.1. Configuration and Parameter

For all entity embeddings, the optimal dimension is set to
64. The GIN has only 1 layer and W-RGCN has 2 layers. The
activation function of the MLP in this paper is the Sigmoid
function, with a dropout rate of 0.5. In the bias correction
module, the upper bound 𝛿1 is set to 0.97, and the lower
bound 𝛿2 is set to 0.90. In the loss function, 𝛽 is set to 0.95, 𝑘𝑝
is set to 0.05, and the acceptance rate 𝛾 is set to 0.06. Training
epoch 𝑒𝑝=20, using the Adam optimizer with a learning rate
of 𝑙𝑟 = 0.0005 and a regularization factor 𝑅𝑒𝑔 = 0.05, and
no batch is used in the training process.
5.4.2. Sampling Approach

Due to the limited availability of publicly accessible
EHR data, we adopt bootstrapping sampling in this phase,
following the approach recommended in [51]. This tech-
nique is particularly effective in scenarios where sample
sizes are small, as detailed in [31] and [9].
5.4.3. Experimental Environment and Scalability

The experimental environment employed in this study
consists of an Ubuntu 22.04 operating system, a 12-core
CPU with 64.3% utilization on a single core, 3.4 GB of
memory usage out of 30 GB available, and a 24 GB NVIDIA
RTX 3090 GPU. The software dependencies include Py-
Torch version 2.0.0 and CUDA version 11.7.
5.5. Performance Comparison (RQ1)

In this section, we compare our model with baseline
models, focusing on the accuracy, safety, and time efficiency
of each.
5.5.1. Effectiveness Analysis

Table 3 and 4 details the results of the effectiveness com-
parison. Utilizing traditional machine learning approaches,
LR and ECC demonstrate modest accuracy and, despite
prescribing fewer medications, still encounter a higher DDI
rate. In contrast, sequence-based models like LEAP, which
employ advanced deep learning techniques, fail to surpass
these traditional methods in effectiveness, highlighting the
potential limitations of generative models in this domain.
Furthermore, RETAIN, which introduces sequence models
in medication recommendation, neglects the interactions
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Table 3
The performance of each model on the MIMIC-III test set regarding accuracy and safety. The best and the runner-up results are highlighted
in bold and underlined respectively under t-tests, at the level of 95% confidence level.

Model Jaccard↑ DDI↓ F1↑ PRAUC↑ Avg.#Med
LR 0.4924±0.0011 0.0830±0.0025 0.6490±0.0019 0.7548±0.0009 16.0489±0.0015

ECC 0.4856±0.0017 0.0817±0.0018 0.6438±0.0012 0.7590±0.0024 16.2578±0.0007
RETAIN 0.4871±0.0008 0.0879±0.0022 0.6473±0.0027 0.7600±0.0010 19.4222±0.0017

LEAP 0.4526±0.0007 0.0762±0.0015 0.6147±0.0021 0.6555±0.0014 18.6240±0.0019
GAMENet 0.4994±0.0013 0.0890±0.0006 0.6560±0.0016 0.7656±0.0023 27.7703±0.0018
SafeDrug 0.5154±0.0015 0.0655±0.0021 0.6722±0.0011 0.7627±0.0008 19.4111±0.0022
MICRON 0.5219±0.0009 0.0727±0.0028 0.6761±0.0013 0.7489±0.0016 19.2505±0.0007
COGNet 0.5312±0.0018 0.0839±0.0005 0.6744±0.0023 0.7708±0.0014 27.6335±0.0011
MoleRec 0.5293±0.0020 0.0726±0.0024 0.6834±0.0008 0.7746±0.0012 22.0125±0.0006

CausalMed 0.5389±0.0011 0.0709±0.0007 0.6916±0.0022 0.7826±0.0010 20.5419±0.0028
CIDGMed 0.5526±0.0016 0.0684±0.0014 0.7033±0.0009 0.7955±0.0026 22.4693±0.0013

Table 4
The performance of each model on the MIMIC-IV test set regarding accuracy and safety. The best and the runner-up results are highlighted
in bold and underlined respectively under t-tests, at the level of 95% confidence level.

Model Jaccard↑ DDI↓ F1↑ PRAUC↑ Avg.#Med
LR 0.4569±0.0011 0.0783±0.0013 0.6064±0.0016 0.6613±0.0019 8.5746±0.0012

ECC 0.4327±0.0014 0.0764±0.0011 0.6129±0.0018 0.6530±0.0017 8.7934±0.0010
RETAIN 0.4234±0.0017 0.0936±0.0015 0.5785±0.0013 0.6801±0.0012 10.9576±0.0018

LEAP 0.4254±0.0013 0.0688±0.0011 0.5794±0.0017 0.6059±0.0018 11.3606±0.0012
GAMENet 0.4565±0.0018 0.0898±0.0012 0.6103±0.0019 0.6829±0.0017 18.5895±0.0015
SafeDrug 0.4487±0.0012 0.0604±0.0010 0.6014±0.0017 0.6948±0.0018 13.6943±0.0014
MICRON 0.4640±0.0017 0.0691±0.0015 0.6167±0.0016 0.6919±0.0014 12.7701±0.0011
COGNet 0.4775±0.0014 0.0911±0.0013 0.6233±0.0019 0.6524±0.0018 18.7235±0.0015
MoleRec 0.4744±0.0013 0.0722±0.0014 0.6262±0.0018 0.7124±0.0017 13.4806±0.0015

CausalMed 0.4899±0.0014 0.0677±0.0017 0.6412±0.0013 0.7338±0.0019 14.4295±0.0012
CIDGMed 0.5019±0.0012 0.0644±0.0016 0.6524±0.0014 0.7449±0.0018 18.4956±0.0015

Jaccard

1/DDI

F1

PRAUC

1/Avg.#Med

GAMENet
SafeDrug
MICRON
COGNet
MoleRec
CausalMed
CIDGMed

Figure 5: Comparison with recent outstanding works across all
metrics in MIMIC-III.

between medications, consequently leading to an increased
DDI rate.

We conduct a comprehensive comparison and discussion
of several recent and high-performing baselines, as shown

in Figure 5. It is important to note that there are substantial
differences in the metrics across different models. For ease of
presentation, these metrics undergo standard normalization.
Among the five indicators, the Jaccard index, F1 score,
and PRAUC are used for accuracy testing, while DDI and
Avg.#Med are used for safety testing. Considering that lower
values of DDI and the Average Number of medications
indicate improved safety, their reciprocals are represented in
Figure 5.

First, GAMENet, COGNet, and MICRON do not per-
form well in terms of accuracy and safety. Although COGNet
shows a decent Jaccard index, its performance on other accu-
racy metrics is poor. MICRON performs reasonably well on
the Avg.#Med metric, but its DDI metric is unsatisfactory.
This is because, despite considering patient history, these
models do not fully explore the fine-grained relationships
between diseases/procedures and medications, resulting in
some errors in the recommendation outcomes and affecting
the models’ performance.

Secondly, SafeDrug and MoleRec conduct detailed anal-
yses of fine-grained molecular-level data of medications.
While their accuracy needs improvement, their safety is
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Table 5
The performance of recent excellent models in training and infer-
ence efficiency.

Model Convergence
Epoch

Training Time
/Epoch(s)

Total Training
Time(s)

Inference
Time(s)

GAMENet 39 45.31 1767.09 19.27
SafeDrug 54 38.32 2069.28 20.15
MICRON 40 17.48 699.20 14.48
COGNet 103 38.85 4001.55 142.91
MoleRec 25 249.32 6233.00 32.10

CausalMed 33 164.77 5437.41 18.29
CIDGMed 10 329.41 3294.10 21.85

guaranteed. This proves that fine-grained molecular struc-
tures of medications can help models avoid the adverse
effects of medication interactions during recommendations.
However, they only use a single-granularity approach and do
not consider or explore the direct impact of the medication
as a whole (coarse-granularity) on the disease or procedure.
CausalMed is a patient-centred representation that empha-
sizes sequencing between diseases through causal discovery
with a significant improvement in accuracy, but fails to take
into account medication-patient associations at the molecu-
lar level of action. Consequently, their effectiveness is not as
good as the method proposed in this paper, CIDGMed.

Therefore, our CIDGMed achieves excellent results in
both accuracy and safety, further demonstrating the effec-
tiveness of our approach by exploring causal relationships
and combining dual-granularity information.
5.5.2. Time Efficiency Analysis

As shown in Table 5, this paper compares and studies
the time efficiency of CIDGMed in terms of average training
time per epoch, convergence epoch, total training time, and
inference time against representative recommendation algo-
rithms. To ensure fairness, all experiments are conducted in
the experimental environment mentioned in 5.4.3. From the
table 5 and Figure 5, we observe that CIDGMed achieves
a better balance between time efficiency, recommendation
accuracy, and safety.

Additionally, we present the time complexity of CIDGMed
in detail. Specifically, In the relationship mining module,
the main task is to utilize causal discovery to unearth the
relationships between various entities and quantify these re-
lationships through causal inference, with a time complexity
of 𝑂(𝑛 ⋅ 𝑑𝑖𝑚2), where 𝑛 represents the number of samples
and 𝑑𝑖𝑚 represents the dimension of the features.

Next, the representation learning stage employs attention
mechanisms, GIN, and W-W-RGCN for computation, along
with GRU and MLP. The time complexity of this stage is
primarily influenced by the length of the input sequence (𝑛)
and the dimension of the model (𝑑𝑖𝑚). The time complexity
of the attention mechanism is 𝑂(𝑛2 ⋅ 𝑑𝑖𝑚), while that of
GIN and W-RGCN is𝑂(𝑛2). Additionally, the computational
cost of integrating embeddings through adaptive classifiers
and attention mechanisms is 𝑂((𝑛2 + 1) ⋅ 𝑑𝑖𝑚). The time

complexity of GRU and MLP is related to the time steps 𝑇 of
each GRU unit, expressed as 𝑂(𝑇 ⋅𝑑𝑖𝑚2+𝑑𝑖𝑚2). Therefore,
the overall time complexity of the representation learning
stage can be expressed as 𝑂(𝑇 ⋅ 𝑑𝑖𝑚2 + 𝑑𝑖𝑚2 + 𝑛2 ⋅ 𝑑𝑖𝑚 +
𝑑𝑖𝑚 + 𝑛2).

Finally, in the bias correction stage, the data originates
from the causal inference. The main task of this stage is to
evaluate and adjust probability values, with a time complex-
ity of 𝑂(𝑛). Ultimately, the total complexity of the entire
model is:

𝑂((𝑛 + 𝑇 + 1)𝑑𝑖𝑚2 + (𝑛2 + 1)𝑑𝑖𝑚 + 𝑛2 + 𝑛). (35)
In analyzing the time consumption of models, we ob-

serve that models with higher time costs often employ com-
plex network structures of up to 3 to 5 layers, especially
in the application of GNNs. In contrast, our design graph
network construction method requires fewer layers, thereby
significantly reducing the time overhead. Moreover, the bias
correction mechanism we propose utilizes a method based
on statistical principles and rules, which greatly alleviates
the computational burden.

When assessing through both individual metrics and an
overall view, CIDGMed significantly outshines other base-
line models. Utilizes the best current model CausalMed as
a comparative benchmark, CIDGMed notably lowers safety
risks by reducing the DDI rate by 3.65%, boosts accuracy
metric Jaccard by 2.54%, and also cuts down on training
time by 39.42%, showcasing its efficiency and effectiveness
in medication recommendation.
5.6. Ablation Study (RQ2&RQ3&RQ4)

To assess the contribution of different components of
the proposed model CIDGMed, we test their importance by
removing key modules.

CIDGMed 𝑤∕𝑜 C: removes the coarse-grained rela-
tionship learning based on causal inference in the rep-
resentation learning module. The relationships between
diseases/procedures and medications use traditional co-
occurrence relationships, meaning there is an edge between
each pair of diseases/procedures and medications, with edge
weights derived from co-occurrence rates.

CIDGMed 𝑤∕𝑜 F: removes fine-grained relationships
from the molecular structure level in the representation
learning module. This eliminates structural connections be-
tween medications. Medication representations are obtained
through random initialization.

CIDGMed 𝑤∕𝑜 C+F: simultaneously removes the rep-
resentation learning methods for both coarse-grained and
fine-grained relationships based on causal inference. Instead,
medication representations are obtained purely through ran-
dom initialization while constructing the graph network
using co-occurrence rates.

CIDGMed 𝑤∕𝑜 BC: removes the bias correction mod-
ule. The model does not perform bias correction based on
causal relationships and uses the initial probabilities ob-
tained from representation learning to recommend medica-
tion combinations.
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Table 6
The performance of each ablation model on the test set regarding accuracy and safety. The best and the runner-up results are highlighted
in bold and underlined respectively under t-tests, at the level of 95% confidence level.

Model MIMIC-III MIMIC-IV
Jaccard↑ DDI↓ F1↑ PRAUC↑ Jaccard↑ DDI↓ F1↑ PRAUC↑

CIDGMed 𝑤∕𝑜 C 0.5484 0.0689 0.6954 0.7902 0.4874 0.0673 0.6382 0.7274
CIDGMed 𝑤∕𝑜 F 0.5494 0.0726 0.6992 0.7905 0.4863 0.0701 0.6389 0.7318

CIDGMed 𝑤∕𝑜 C+F 0.5477 0.0724 0.6924 0.7895 0.4856 0.0702 0.6366 0.7254
CIDGMed 𝑤∕𝑜 BC 0.5357 0.0672 0.6888 0.7815 0.4798 0.0637 0.6307 0.7244

CIDGMed 𝑤∕𝑜 C+F+BC 0.5336 0.0721 0.6875 0.7781 0.4836 0.0649 0.6346 0.7209
CIDGMed 0.5526 0.0684 0.7033 0.7955 0.5019 0.0644 0.6524 0.7449

CIDGMed 𝑤∕𝑜 C+F+BC: removes most of the in-
novations from this paper. The model constructs graphs
and recommends medications solely based on co-occurrence
rates, without considering causal relationships or perform-
ing bias correction.

The results of the ablation study are shown in Table 6.
Specifically, CIDGMed 𝑤∕𝑜 C significantly decreases rec-
ommendation accuracy, indicating that the coarse-grained
method based on causal inference can uncover the true
causal relationships between medication entities, playing
an essential role in improving overall accuracy. CIDGMed
𝑤∕𝑜 F significantly decreases safety while slightly reducing
recommendation accuracy, indicating that the fine-grained
relationships based on molecular structure provide a cru-
cial representation foundation for the safety relationships
between medications and play a significant role in reducing
safety hazards. The results of CIDGMed 𝑤∕𝑜 C+F show
that removing both coarse-grained and fine-grained repre-
sentations significantly decreases performance. Thus, com-
bining these representations compensates for deficiencies in
safety and accuracy, leading to better and more balanced
outcomes.

The results of CIDGMed 𝑤∕𝑜 BC show a substantial
decrease in accuracy, clearly indicating that the bias cor-
rection module significantly improves accuracy. This im-
provement is due to the module combining the causal re-
lationships between diseases/procedures and medications,
performing post-intervention processing during the recom-
mendation phase to correct biases in the model learning
process, ultimately enhancing accuracy. Additionally, safety
shows a slight improvement.

The result of CIDGMed 𝑤∕𝑜 C+F+BC shows that all
metrics decline, clearly indicating a synergistic effect among
our proposed innovations, and combining them results in
significantly better improvements.

In summary, the results of multiple ablation experiments
demonstrate the rationality and effectiveness of our modules,
indicating that the design of the causal-based module is
indispensable as it significantly enhances the model’s accu-
racy and safety. Additionally, the dual-grained framework
ensures more accurate and safer medication combinations,
with the coarse-grained approach better serving model ac-
curacy, while the fine-grained approach enhances the safety

of medication recommendations. We also observe that in the
field of medication recommendation, safety and accuracy
often constrain each other, and achieving optimal results
typically involves balancing both aspects effectively.
5.7. Parameter Sensitivity

To thoroughly explore the impact of model parameters
on performance, we conduct a sensitivity analysis on five
key parameters using the MIMIC-III dataset. The results,
shown in Figure 6, demonstrate consistent trends in both
MIMIC-III and MIMIC-IV validations. However, due to
space limitations, we only present the detailed validation
results for MIMIC-III.

Figure 6a shows the model’s performance under different
embedding dimensions. When the embedding dimension is
set to 64, the model’s accuracy significantly surpasses other
settings, and its safety performance is nearly identical to
that at 128. As mentioned earlier, increasing the embedding
dimension raises the model’s time cost quadratically. Thus,
considering accuracy, safety, and time cost, we select 64 as
the optimal embedding dimension.

Secondly, the paper focuses on two core parameters
when constructing the W-RGCN graph network: the number
of layers and the number of node categories. The impact of
the W-RGCN layers is illustrated in Figure 6b, showing that
the model performs extremely poorly in accuracy when the
number of layers is 1. While the accuracy performance does
not differ much between 2, 3, and 4 layers, lower numbers
of layers bring better safety. This is because an increase in
layers can lead to overfitting, causing the model to overly
pursue accuracy in combinations while neglecting medi-
cation safety, potentially leading to a slightly higher DDI
index. Additionally, an increase in layers significantly raises
the time cost. Hence, after comprehensive consideration, we
chose 2 layers as the best setting.

The results regarding the number of relationships in W-
RGCN categories are shown in Figure 6c. Finer division
leads to fewer categories, and many different relationships
are classified into the same category, making it difficult to
express the differences between them. On the other hand,
if there are too few categories, each category might lack
enough samples, hindering the model’s ability to be ade-
quately trained and capture a generalized representation at
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Figure 6: Experiments on parameter sensitivity on MIMIC-III dataset.

that level. Therefore, dividing into 5 categories was chosen
as the optimal setting.

Regarding the setting of upper and lower bounds, it
is crucial for the function of the probability adjustment
module. It is worth mentioning that, in this experiment, both
the upper and lower bounds were tested by incrementing
from 0.5 to 1 in steps of 0.01. Ultimately, the four most
representative values were selected for presentation. Figures
6e and 6d demonstrate that when the causal effect of a med-
ication on a specific disease/procedure is below 0.90, such
medication can be considered to have a low association with
the disease, implying that the data correlation between the
medication and disease is not directly caused by their causal
relationship but may be due to co-occurrence phenomena
caused by other entities slightly related to them. Conversely,
when the causal effect is above 0.97, we regard it as having
a direct causal relationship.

5.8. Case Study (RQ4&RQ5)
Figure 7 illustrates the workflow of this paper, especially

the explanation of the bias correction process. To further
elucidate the effectiveness and rationality of the model based
on causal inference, we randomly selected some real cases
in the MIMIC-III dataset.

As shown in figure 8, we randomly select two patients
(𝑃𝑎𝑡𝑖𝑒𝑛𝑡1 and 𝑃𝑎𝑡𝑖𝑒𝑛𝑡2) from our dataset to demonstrate the
recommendation process based on the method proposed in
this paper.
5.8.1. Causal Inference

We use traditional co-occurrence analysis methods and
causal inference techniques, respectively, to explore the as-
sociations between these diseases and treatments. The casual
inference part in figure 8 shows the relationships between
diseases/ procedures and candidate medications. Taking pa-
tient 1 as an example, in the traditional co-occurrence-based
relationship graph, almost every disease/procedure has a
direct connection with medications, resulting in an overly
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complex and ambiguous network. Thus, the co-occurrence
method cannot effectively capture the true underlying rela-
tionships between different entities, severely affecting the
accuracy and safety of the recommendations and making
it difficult to explain the reasons for the recommendations.
In contrast, causal inference significantly clarifies the rela-
tionships between medications and diseases/procedures. For
instance, in the co-occurrence relationships, 𝑚9 is connected
to 𝑑2, 𝑑3, 𝑑1, and 𝑝1, but causal inference reveals that 𝑚9(other mineral supplements) is only related to 𝑑3 (B complex
deficiency).
5.8.2. Bias Correction

We use the case of two patients to illustrate how bias
correction is performed in this study. The detailed process
is illustrated in Figure 8. Specifically, by reviewing their
current disease conditions and procedure records, we first
illustrate how the proposed method originally recommends
medications (before bias correction) for each patient. Next,
the bias correction module then utilizes the causal matrix
to refine and adjust these original recommendations. This
step-by-step process provides a clear demonstration of how
the system works, from the original recommendation to the
correction phase, ultimately enhancing the accuracy of the
medication recommendations.

Through an in-depth analysis of the recommendation
process using the bias correction module for 𝑃𝑎𝑡𝑖𝑒𝑛𝑡1 and
𝑃𝑎𝑡𝑖𝑒𝑛𝑡2, we summarize it into the following three scenar-
ios.

Scenario 1: causal effect greater than the upper bound of
0.97. These medications have a highly relevant causal effect
with the disease or procedure (greater than 0.97), indicating
a strong connection to the patient’s condition. As a result,
they are considered more suitable for the patient, and their
recommendation probability is increased accordingly. For
example: medications 𝑚1, 𝑚5, and 𝑚7 in 𝑃𝑎𝑡𝑖𝑒𝑛𝑡1, as well
as 𝑚2, 𝑚3, and 𝑚6 in 𝑃𝑎𝑡𝑖𝑒𝑛𝑡2.

Table 7
The statistical analysis of the error in our method across both
datasets.

Dataset FN rate FP rate
MIMIC-III 0.2392 ± 0.0050 0.0652 ± 0.0006
MIMIC-IV 0.2489 ± 0.0031 0.0712 ± 0.0008

Scenario 2: causal effect less than the lower bound of
0.90. These medications exhibit no significant causal effect
with the disease or procedure (less than 0.90), making them
less likely to be relevant to the patient’s condition. As a
result, their recommendation probability is reduced to avoid
unnecessary or ineffective treatments. For example: medica-
tions 𝑚2, 𝑚3, and 𝑚8 in 𝑃𝑎𝑡𝑖𝑒𝑛𝑡1.

Scenario 3: causal effect between 0.90 and 0.97. These
medications have a causal effect with the disease or proce-
dure between 0.90 and 0.97, so no adjustment in their recom-
mendation probability is needed, and the recommendation
remains unchanged. For example: medications 𝑚4 and 𝑚9 in
𝑃𝑎𝑡𝑖𝑒𝑛𝑡1, and 𝑚4 in 𝑃𝑎𝑡𝑖𝑒𝑛𝑡2.

In summary, bias correction of medications based on the
causal matrix between diseases/procedures and medications
can significantly improve the performance of medication
recommendations. Additionally, the in-depth analysis pre-
sented above enhances the interpretability of the proposed
method, further validating its effectiveness.
5.9. Error Analysis and Limitation

We perform an error analysis of the model’s recommen-
dation results to better understand its limitations and identify
areas for improvement. The prescription errors observed can
be classified into two categories:

The first type of error is False Negative (FN), where the
model fails to recommend necessary medications, leading
to omissions. This occurs mainly due to the infrequent
appearance of certain medications in the records, which is
also known as data sparsity in recommendation systems,
making it difficult for the model to learn their relationships
with associated diseases or procedures.

The second type of error is False Positive (FP), where
the model recommends medications that should not have
been prescribed. This mainly occurs because certain disease
or procedure and medication combinations are imbalanced
in the training data, causing the model to favour recom-
mending frequently occurring medications, leading to over-
recommendation.

For these two cases, we conduct a statistical analysis
of error, as shown in table 7. We find that the FN value is
slightly higher than the FP not only due to the data sparsity
but also because medication recommendation involves sug-
gesting a set of medications. If any medication in the set is
not recommended, it is considered an FN. This differs from
other domains, where only a single item is recommended,
resulting in a higher FN value in our case. Although the FP
is higher than the FN, it remains within a reasonable range,
as both the accuracy and safety of our model are greatly
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Figure 8: A detailed explanation of the process in this paper, using the real cases of two patients as examples.
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improved compared to other baselines. In the future, we aim
to further resolve the issue of over-recommendation.

6. Conclusion and Future Work
This paper introduces our developed medication recom-

mendation system, CIDGMed. By applying causal infer-
ence, CIDGMed uncovers the causal relationships between
diseases/procedures and medications at both the coarse-
grained and fine-grained levels, achieving dual-granularity
feature fusion. Furthermore, CIDGMed employs a post-
processing intervention method, bias correction, during
model recommendation. Through a series of rigorous ex-
periments on publicly available clinical datasets, we signif-
icantly improve the model’s accuracy and safety. Addition-
ally, the case study analysis further validates the rationality
of CIDGMed. In summary, the results fully demonstrate the
superior performance of our method in terms of accuracy,
safety, time efficiency, and rationality.

However, it has not yet been evaluated in real medical
environments due to ethical considerations and data protec-
tion concerns. In the future, we aim to deploy this method in
practical settings and engage with domain experts to refine
our approach. Their feedback will be crucial for optimizing
our framework to meet the specific needs of real-world
medical applications, thereby enhancing its practical value
and effectiveness.
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