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Abstract
As 3D point cloud analysis has received increas-
ing attention, the insufficient scale of point cloud
datasets and the weak generalization ability of net-
works become prominent. In this paper, we pro-
pose a simple and effective augmentation method
for the point cloud data, named PointCutMix, to
alleviate those problems. It finds the optimal as-
signment between two point clouds and generates
new training data by replacing the points in one
sample with their optimal assigned pairs. Two
replacement strategies are proposed to adapt to
the accuracy or robustness requirement for dif-
ferent tasks, one of which is to randomly se-
lect all replacing points while the other one is
to select k nearest neighbors of a single random
point. Both strategies consistently and signifi-
cantly improve the performance of various mod-
els on point cloud classification problems. By
introducing the saliency maps to guide the se-
lection of replacing points, the performance fur-
ther improves. Moreover, PointCutMix is vali-
dated to enhance the model robustness against
the point attack. It is worth noting that when
using as a defense method, our method outper-
forms the state-of-the-art defense algorithms. The
code is available at: https://github.com/

cuge1995/PointCutMix.

1. Introduction
With the rapid development of autonomous driving and
robotics industries, making machines understand the real
three-dimensional world has become a guarantee for safe
and efficient task execution (Guo et al., 2020). As a com-
monly used format for 3D data representation that can
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be directly obtained by Light Detection And Ranging (Li-
DAR) sensors, the point cloud has been widely applied in
many computer vision fields (Lang et al., 2019; Chen et al.,
2019; Rao et al., 2020), such as 3D object detection (Shi
et al., 2020; Bhattacharyya & Czarnecki, 2020), point cloud
segmentation (Liu et al., 2020b), and point cloud classi-
fication (Qi et al., 2017b; Liu et al., 2019c; Wang et al.,
2019). Following the pioneering work of PointNet (Qi et al.,
2017a), a series of deep-learning-based methods brought
the performance of these tasks to a higher level. However,
due to the complexity and costs of fine-grained 3d point
cloud annotations (Xu & Lee, 2020), the scale of existing
point cloud datasets is much smaller than that of the image
datasets (Chen et al., 2020), resulting in the overfitting and
poor generalization of these methods (Jing & Tian, 2020).
Although researchers have explored several data augmen-
tation techniques for point cloud analysis, such as rotation,
scaling, and jittering (Yan et al., 2020; Liu et al., 2020b),
these kinds of augmentations ignore the shape complexity
of the samples (Li et al., 2020), thus lead to insufficient
training.

Over the past few years, mixed sample data augmentation
(MSDA) for images has attached increasing interest which
aims to create new training data by mixing the original train-
ing samples according to some rules (Harris et al., 2020;
Guo et al., 2019). There are two mainstream methods in
MSDA. The first one is MixUp (Zhang et al., 2018), which
interpolates between training samples by performing weight-
ing on the whole image and its label. Another method is
CutMix (Yun et al., 2019). It inserts a rectangle region from
one image into another and then performs weighting on
the image and its label by the ratio of the region size. In
comparison, CutMix achieves better results across various
models and datasets in image classification, weakly super-
vised object localization, and transfer learning to object
detection.

In this paper, inspired by the success of MSDA in the image
domain, we propose an MSDA strategy to the point cloud
data, named PointCutMix. To adapt to its unordered feature,
we first calculate the optimal assignment of two point clouds
refer to MSN (Liu et al., 2020a). Then, two PointCutMix
methods that replace the points in one sample with their op-
timal assigned pairs in another sample are formulated, i.e.,
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Figure 1. Some mixed samples produced by PointCutMix-R (top row) and PointCutMix-K (bottom row). The data generated by
PointCutMix-R looks like two objects cross each other while the samples from PointCutMix-K are the obvious combination of two object
parts.

PointCutMix-R and PointCutMix-K. The former randomly
selects all replacing points while the latter selects k nearest
neighbors of one random chosen point. Experimental results
demonstrate that both methods achieve consistent and sig-
nificant improvements in object-level classification task on
ModelNet40 (Wu et al., 2015) and ModelNet10 (Wu et al.,
2015) datasets. We also at the first time exploit PointCut-
Mix for point-wise classification, i.e., point cloud segmen-
tation task. It is observed that PointCutMix can evidently
improve the recognition accuracy for the uncommon cat-
egories. Inspired by the successful use of attention maps
in CutMix (Walawalkar et al., 2020), we further introduce
the saliency maps to guide the selection of replacing points
which achieves better results. Additionally, we validate that
PointCutMix can enhance the robustness of different mod-
els under the point cloud attack. When using as a defense
method, under the point dropping attack (Zheng et al., 2019),
our PointCutMix-ModelNet40 pre-trained models surpass
the state-of-the-art defense algorithm IF-Defense (Wu et al.,
2020) by a large margin without using any transformation
on the adversarial point clouds. We also perform defense to
other point cloud attacks and achieve promising results. Ex-
tensive experiments verify the effectiveness of our method.
We believe this simple regularization strategy could be ap-
plied to various tasks and help future research in the 3D
computer vision community.

2. Related Work
Deep learning on point cloud. PointNet (Qi et al., 2017a)
is the first work that processes the point cloud using deep
neural networks where the shared pointwise multi-layer per-
ceptions (MLPs) followed by the max-pooling operation
are used for point cloud learning. After that, the recent
works focus on efficiently capturing local features (Qi et al.,

2017b; Yan et al., 2020; Zhao et al., 2019; Yang et al.,
2019b) and investigating convolutional kernels for 3D point
clouds. Liu et al. (Liu et al., 2019c) proposed RS-CNN
which implemented the convolution using an MLP in the lo-
cal subset of points. DensePoint (Liu et al., 2019b) defined
a single-layer perceptron with a nonlinear activator as con-
volution. In KPConv (Thomas et al., 2019), by using a set
of learnable kernel points, the rigid and deformable Kernel
point convolution operators were proposed. Some other re-
searchers have explored graph-based networks, where each
point in a point cloud is considered as a vertex of a graph.
DGCNN (Wang et al., 2019) constructed a graph in the
feature space and MLP is used for each edge. To simplify
the process of points agglomeration, the Dynamic Points
Agglomeration Module based on graph convolution was
proposed by Liu et al. (Liu et al., 2019a). In RGCNN (Te
et al., 2018), a graph was constructed by connecting all
points with each other in the point cloud. To utilize the local
structural information, LocalSpecGCN (Wang et al., 2018)
used the spectral convolution network to a local graph.

Mixed sample data augmentation. Mixed Sample Data
Augmentation (MSDA) is a strategy that produces new train-
ing data by mixing samples according to some rules (Harris
et al., 2020). Training with the mixed data, the model would
learn multiple features in a balanced way (Taghanaki et al.,
2020) and achieve better performance. Therefore, MSDA
has become the mainstream data augmentation approach
and dominated modern image classification for years (Harris
et al., 2020; Guo et al., 2019; Zhang et al., 2018; Yun et al.,
2019; Verma et al., 2019). Among them, MixUp (Zhang
et al., 2018) and Cutmix (Yun et al., 2019) are two classical
methods that have been widely used in various computer
vision research (He et al., 2019) and competition (Dolhan-
sky et al., 2020). MixUp (Zhang et al., 2018) interpolates
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the training samples by performing weighting on the whole
image and its label. CutMix (Yun et al., 2019) inserts a
rectangle region from one image into another one and then
performing weighting on the image and its label by the ra-
tio of the region size. The experiment results show that
CutMix has better performance improvement across differ-
ent datasets and networks. Our work can be viewed as an
extension of CutMix (Yun et al., 2019) for the point cloud.

Data augmentation on point cloud. Although random ro-
tation, jittering, and scaling are commonly used in point
cloud learning (Qi et al., 2017a;b), the data augmentation
for point clouds has obviously not been studied systemati-
cally compared to the image domain. Recently, PointAug-
ment (Li et al., 2020) and PointMixup (Chen et al., 2020)
were proposed for point cloud data augmentation. PointAug-
ment is the first auto-augmentation framework for the point
cloud which optimizes the augmentor and classifier net-
works jointly. However, the additional augmentor network
and the complicated adversarial training process makes it
less practical. PointMixup extents Mixup (Zhang et al.,
2018) to point cloud by interpolation between point cloud
samples. However, for point cloud networks like Point-
Net++ (Qi et al., 2017b) and RS-CNN (Liu et al., 2019c)
that local features are important for point cloud learning,
this approach is easy to fall into locally ambiguous and un-
natural. In this paper, we proposed PointCutMix to naturally
combine two point clouds.

3. PointCutMix
3.1. Problem setting

The goal of a standard point cloud classification task is to
learn a function f : x→ [0, 1]

C that maps a point cloud to a
one-hot class label for a total of C classes. Here x ∈ RN×d

represents a set of 3D points {Pi|i = 1, ..., N} which either
sampled from a shape or pre-segmented from a scene point
cloud. N is the point number and each point Pi is a vector
with d channels. In this paper, we simplicit use the 3d
coordinate features. So d = 3 and Pi ∈ R3. The optimal
parameters θ of function f can be learned by minimizing
the loss as

θ∗ = argmin
θ

∑
x∈D
LD(f(x), y) (1)

where f(x) is the network output, y is the ground truth
with respect to x, D is the training set, and L represents the
training loss function.

3.2. Optimal assignment of point clouds.

To perform MSDA, it requires a one-to-one correspondence
between the minimal unit of two samples. For image, this
unit is pixel while for point cloud data, that is a single point.

In the image domain, the pixels are arranged in a grid form.
By merely resizing or cropping two images to the same
size, it is natural to make them correspond according to
their coordinate. However, the point clouds are permutation-
invariant and orderless. It is essential to define the one-to-
one correspondence between points based on rules other
than position.

Following the method in PointMixup (Chen et al., 2020)
and MSN (Liu et al., 2020a), we define the optimal assign-
ment φ∗ between two point clouds x1, x2 as the optimal
assignment of Earth Mover’s Distance (EMD) (Rubner et al.,
2000) function. The EMD calculates the minimum total dis-
placement required for matching each point in x1 to the
corresponding point in x2. We define the assignment func-
tion in the EMD as:

φ∗ = argmin
φ∈Φ

∑
i

∥∥x1,i − x2,φ(i)

∥∥
2

(2)

where Φ = {{1, . . . , N} 7→ {1, . . . , N}} give one-to-one
correspondences between the two point clouds. After given
the optimal assignment φ∗ (Chen et al., 2020), the EMD is
then defined as:

EMD =
1

N

∑
i

∥∥x1,i − x2,φ∗(i)

∥∥
2

(3)

where φ∗(i) denotes the index of optimal assignment point
of x1,i in x2.

3.3. Algorithm

The key idea of PointCutMix is to create a new training point
cloud (x̃, ỹ) given two distinct training point clouds (x1, y1)
and (x2, y2). Here, x is the training point cloud and y is the
corresponding label. After obtaining the optimal assignment
φ∗ between two samples, we define ˜x2,i = x2,φ∗(i) and the
combining operation as

x̃ = B · x1 + (IN −B) · x̃2

ỹ = λy1 + (1− λ)y2
(4)

where B = diag{b1, b2, · · · , bN} and bi ∈ {0, 1} indicates
which sample the point belongs to. When bi = 1, the
ith point is chosen from x1, otherwise it will replaced by
the optimal assigned point in x2. IN is an identity matrix.
λ ∈ [0, 1] is the PointCutMix ratio, sampled from the beta
distribution Beta(β, β), which means n = bλ×Nc points
will be kept and the rest points will be replaced.

To perform cutting and pasting in the point cloud, we pro-
pose two replacement methods to construct the diagonal
matrix B. The first method, abbreviated as PointCutMix-
R, is to randomly sample n points from x1 as a subset xs1.
Those points are marked 1 in B, indicating that they will
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Figure 2. The visualization of the mixed samples between a plane and a chair under different replacement ratio λ. The samples in the first
and second row are generated by PointCutMix-R and PointCutMix-K respectively.

not be replaced. The rest points are marked 0. In addition,
to retain the local characteristics of the point cloud, we
come up with the second method, noted as PointCutMix-K,
which randomly sample one central point p from x1, and
then finding its n− 1 nearest neighbors. We combine p and
its nearest neighbors to form xs1 and marked those points
as 1 in B. Similarly, the rest points are marked 0 and be
replaced. In Figure 1, we show the visualization of some
mixed samples of PointCutMix-R and PointCutMix-K. It
can be seen that the samples produced by PointCutMix-R
look like two objects cross together while the mixed data
from PointCutMix-K are the obvious combination of two
object parts.

We also introduce a hyperparameter ρ ∈ [0, 1] to indicate
the probability of each point cloud to be augmented during
the training. When ρ = 0, PointCutMix will not be used
which is equivalent to the baseline model. On the contrary,
ρ = 1 means all point clouds will be augmented. Therefore,
the training loss can be denoted as

∑
x∈D

(1− 1ρ)LD(f(x), y) + 1ρLD(f(x̃), ỹ) (5)

where 1ρ = 1 with a probability ρ, otherwise it equals to 0.

3.4. Analysis

The difference of replacement methods. In Figure 2, we
list the visualization of mixed samples between a plane
and a chair produced by PointCutMix-R (top row) and
PointCutMix-K (bottom row) under different replacement
ratios λ. The ratios from left to right are 0, 0.2, 0.4, 0.6, 0.8,

Figure 3. Saliency maps of different point clouds. Points with
higher values are colored as red and the color of irrelevant points
is closer to blue.

and 1.0. We can see that the samples in the top row are a
little messy and like two objects fuse. Especially when λ
close to 0 or 1, such as λ = 0.2 or λ = 0.8, only one of
the objects can be easily recognized. Those hard to distin-
guished points actually perform like a kind of noise. We
infer that this characteristic will impair the performance for
learning classification task, but can improve the robustness
of the model. This assumption has been verified in the ex-
periment in Section 4. On the contrary, the mixed samples
from PointCutMix-K are relatively regular, like a natural
combination of two object parts. Since at least a part of
each object can be identified, it provides more features for
learning the classification task.

Is attention works for PointCutMix? Inspired by the
successful use of attention maps to guide the cutting and
pasting region of an object in CutMix (Walawalkar et al.,
2020), we speculate that the selection of central point p in
PointCutMix-K can also be guided rather than random. So



PointCutMix

Figure 4. Mixed samples of point cloud segmentation problem
using PointCutMix-K.

we try to obtain the contribution of each point to the classifi-
cation result with saliency map (Zheng et al., 2019). Then
the point with greater contribution has a higher probability
to be selected as the central point. Through the visualiza-
tion of the saliency maps shown in Figure 3, we find that
the points with high contributions (in red color) are not
scattered uniformly. For example, they gather more in the
lampshades, the seat of the chair, and the fuselage of the
airplane. In the next section, we will examine whether this
strategy improves the accuracy of the model.

Extending to point cloud segmentation. So far, we have
elaborated on how to apply our method to the object-level
classification. Natural intuition is to extend to the point-
wise classification problem, i.e., point cloud segmentation.
However, we find that the existing augmentation methods
are limited by their fusion strategies, thus fail to complete
this task. For example, when applying PointMixup to fuse a
new point cloud, the semantic information of each point has
lost, making it hard to get the semantic labels for new data.
On the contrary, since our method is simply cutting and
pasting points, the semantic information can be persisted.
So in this paper, we at the first time perform augmentation
to point cloud segmentation task. Specifically, we mix two
point clouds using the same method mentioned before. The
point-wise labels are replaced along with the points. For
datasets that also contain object-level labels, the object-level
annotation is fused referred to Section 3.3. In Figure 4, we
show some mixed samples for the point cloud segmentation
problem.

4. Experiments
In this section, we conduct extensive experiments to ver-
ify the effectiveness of PointCutMix. At first, we find the
optimal hyperparameters through several comparative ex-
periments. Then we assess our method from two aspects,
one of which is to evaluate how much it improves the accu-
racy of object-level point cloud classification and point-wise
segmentation while the other one is to evaluate the gener-
alization ability and robustness of the model trained with
augmented data provided by PointCutMix.

4.1. Setup

Datasets. We evaluate PointCutMix on two object-level
point cloud classification datasets and a point-wise segmen-
tation dataset, i.e., ModelNet40 (Wu et al., 2015), Mod-
elNet10 (Wu et al., 2015), and ShapeNet Parts (Yi et al.,
2016). ModelNet40 contains 12311 samples in 40 cate-
gories. Among them, 9843 samples are used for training
and 2468 for testing. ModelNet10 is a subset of Model-
Net40. It contains a total of 4899 samples in 10 categories,
of which 3991 samples are used for training and the rest
are used for testing. ShapeNet Parts consists of 16,880 3D
samples in 16 categories and 50 part labels, of which 14,006
for training and 2,874 for testing.

Networks. Since PointCutMix is a general data augmenta-
tion method, it is agnostic to the network architecture that
is employed. Therefore, we select four popular networks
in 3D computer vision area (Li et al., 2020; Zhao et al.,
2020) for evaluation, i.e., PointNet (Qi et al., 2017a), Point-
Net++ (Qi et al., 2017b), RS-CNN (Liu et al., 2019c), and
DGCNN (Wang et al., 2019). As mentioned in Section 2,
PointNet only uses global information while other three
models take the local information into account.

Implementation details. Our work is implemented using
PyTorch (Paszke et al., 2017) on NVIDIA GeForce GTX
2080Ti GPU. All networks take 1024 points as input and are
trained for 300 epochs with a batch size of 16. For PointNet,
PointNet++, and RS-CNN, we use the Adam (Kingma &
Ba, 2014) optimizer with an initial learning rate of 0.001
and a decay rate of 0.5 every 20 epochs, which is the same
configuration as the original released paper and code. We
train DGCNN with SGD optimizer with an initial learning
rate of 0.1. The minimum learning rate is 0.001 and the
momentum of SGD is 0.9. The cosine annealing strategy is
used to decay the learning rate.

4.2. Comparative experiments

We perform the comparative experiments in ModelNet40
dataset using the experimental settings described in imple-
mentation details.

Influence of ρ. We first compare the performance of
PointCutMix-K on four representative models under dif-
ferent values of ρ to figure out whether our method is useful
and how much of the data need to be augmented during the
training. The results are illustrated in Figure 5. For point-
Net++, RS-CNN, and DGCNN, we observe that even with
only 25% of the samples are augmented (ρ = 0.25), the
accuracy is greatly improved, which proves that our method
is very essential and effective. Under different values of ρ,
there is no much difference in accuracy for three models.
However, PointNet performs in a completely different way.
It is improved when ρ is small, but the accuracy is signif-



PointCutMix

Figure 5. Performance of various models with PointCutMix-K un-
der different value of ρ and β. In the upper plot, β = 1. In the
lower plot, ρ = 1.

icantly dropped when ρ reaches 1. We speculate that this
is because the coordinate feature of a single point has no
actual information. The object-level classification must rely
on the learning of the relationship between points. However,
PointNet lacks the ability to learn local features since it
performs MLP for all points in the object together, which
makes it difficult to distinguish the replaced region.

In the following experiments, although each model reaches
its optimal performance with different values of ρ, we
choose ρ = 1.0 for the object-level point cloud classifi-
cation task in order to make a fair comparison to other
augmentation methods. Here we do not report PointNet
since our method is not suitable for it. While for the point
cloud segmentation task, we select ρ = 0.5 for better per-
formance.

Influence of β. Next, we investigate the influence of β,
i.e., whether there is a difference in choosing the different
number of replaced points at augmentation. From the results
in Figure 5, it can be seen that the difference of accuracy
under various values of β for PointNet++ and DGCNN is
very small, but RSCNN prefers a small value of β. To use

Table 1. ModelNet40 classification results. PointMixup-U and
PointMixup-A represent the results on unaligned and pre-aligned
ModelNet40 with input mixup.

Method PointNet++ RS-CNN DGCNN

baseline 90.7 91.7 92.3
PointMixup-U 91.7 - -
PointMixup-A 92.7 - 92.9
PointAugment 92.9 92.7 93.4

PointCutMix-R 92.8 91.9 92.8
PointCutMix-K 93.4 92.5 93.1
PointCutMix-S 93.4 92.7 93.2

Table 2. ModelNet10 classification results.

Method Pointnet++ RS-CNN DGCNN

baseline 93.3 94.2 94.8
PointAugment 95.8 96.0 96.7

PointCutMix-R 96.3 95.7 95.2
PointCutMix-K 95.7 95.6 95.7

the same hyperparameter for all models and simplify the
selecting process of α, we select the Beta(1, 1), i.e., the
uniform distribution in the subsequent experiments.

4.3. Point cloud classification

After determining the hyperparameters, we conduct point
cloud classification experiments on ModelNet40 and Mod-
elNet10 to evaluate various data augmentation methods,
including conventional data augmentation (baseline) (Qi
et al., 2017b), PointMixup (Chen et al., 2020), PointAug-
ment (Li et al., 2020), PointCutMix-R, and PointCutMix-
K. In addition, to verify the influence of attention maps
mentioned in Section 3.4, we introduce the saliency map
to guide the selection of central point p. This strategy is
named PointCutMix-S. The results of baseline models refer
to PointAugment. The models trained with PointCutMix
methods are implemented with the settings in our imple-
mentation details. The saliency maps are produced by cor-
responding pre-trained baseline models during the training.
The results of PointMixup and PointAugment refer to their
original papers.

From Table 1 and Table 2, we observe that our methods
consistently outperform PointMixup and have comparative
results to PointAugment. This is a very impressive result
because PointCutMix is much simpler than the existing
methods. PointMixup needs to pre-align the point clouds of
the training and test sets in the horizontal facing direction.
But our method does not rely on any pre-process for the in-
put point clouds. PointAugment uses an additional network
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Table 3. Comparison on the ShaperNet part segmentation dataset. pIoU means part-average Intersection-over-Union. We perform the
experiment using the settings described in Section 4.4.

Method pIoU
air-

plane
bag cap car chair

ear-
phone

guitar knife lamp laptop
motor-
bike

mug pistol rocket
skate-
board

table

PointNet++ 85.0 82.2 81.7 81.5 77.7 90.1 76.7 90.9 87.3 83.8 95.2 69.9 94.2 82.6 56.2 76.6 82.8
+PointCutMix 85.5 82.6 85.9 83.7 78.3 90.7 72.5 90.9 87.7 84.3 95.3 70.7 95.1 82.4 62.3 74.9 83.4

for data augmentation. It requires much more memory cost,
which is not practical in real applications. In comparison,
PointCutMix uses little computing resources and time but
still achieves better performance.

PointCutMix-R occasionally has better results than
PointCutMix-K on ModelNet10. However, in most cases
across two datasets, PointCutMix-K performs better. The re-
sults also show that the saliency maps have limited help for
the performance. Considering the addition calculation time
and memory consumption used for generating the saliency
maps during training, we hold that PointCutMix-K is a more
versatile and efficient strategy.

4.4. Point cloud segmentation

To explore the extensibility of our method, we at the first
time apply augmentation to the point cloud segmentation
task. Here we train the baseline model and PointCutMix-
S for 251 epochs with a batch size of 16. We use
Adam (Kingma & Ba, 2014) optimizer with an initial learn-
ing rate of 0.001 and a decay rate of 0.5 every 20 epochs. In
Table 3, we report the part-average Intersection-over-Union
results. It shows that PointCutMix makes an improvement
of 0.5% over the PointNet++ baseline. Although the im-
provement is not as significant as that for the object-level
classification task, there is a special finding that the accu-
racy gains mainly come from the uncommon categories.
Specifically, the ShapeNet Parts dataset (Yi et al., 2016) has
an uneven distribution of training data, where the table has
5271 samples but the bag, cap, and rocket have only 76, 55,
and 66 samples respectively. Training with our PointCutMix
augmentation method, over 6.1 pIoU improvement is made
for the rocket part-segmentation.

We infer the reason is that through the fusion of training
samples in PointCutMix, the frequency of occurrence of
uncommon categories is greatly increased. This also en-
lightens us that by carefully adjusting the ratio of selecting
different categories of samples for augmentation, the unbal-
anced distribution problem might be effectively alleviated,
which is worth exploring in the future.

4.5. Robustness test

After verifying the accuracy improvement of PointCutMix
on the point cloud classification, we then use the adversarial

Table 4. Classification accuracy of ModelNet40 under point drop-
ping attack (Zheng et al., 2019) , the dropping points is 200.

Model Baseline PointCutMix-R PointCutMix-K

PointNet++ 68.96 86.18 87.97
RS-CNN 56.97 82.50 83.10
DGCNN 55.06 81.16 85.86

attack to investigate whether this regularization strategy can
enhance the robustness of the model. As we know, deep neu-
ral networks are vulnerable to adversarial examples, which
have been extensively studied in 2D images (Dong et al.,
2018; Akhtar & Mian, 2018). Recently, point perturbation
attack (Xiang et al., 2019), kNN attack (Tsai et al., 2020),
and point dropping attack (Zheng et al., 2019) are proposed
for 3D point cloud. In this paper, our method is trained after
the normalization of point clouds. Since the point perturba-
tion attack and the kNN attack don’t perform normalization
of point clouds during the attack and the generated point
clouds may not center within a unit sphere, we only consider
the point dropping attack in our robustness test.

We report the recognition accuracy after the point dropping
attack on the test set of ModelNet40 in Table 4, where the
results of baseline models refer to IF-Defense (Wu et al.,
2020). It is observed that the baseline model dramatically
degrade. But all models trained with PointCutMix-R and
PointCutMix-K still have more than 80% accuracy. It veri-
fies that our method can significantly improve the robustness
of the model.

4.6. Point cloud defense

Motivated by the impressive performance under point drop
attack, we consider applying our method to the point cloud
defense. We surprisingly find that using the pre-trained
models trained with PointCutMix augmentation as defense
methods outperforms the state-of-the-art defense algorithm
IF-Defense (Wu et al., 2020) by a large margin. Specifically,
we first generate adversarial point clouds by point dropping
attack on the pre-trained baseline model provided by (Wu
et al., 2020). We then compare the classifiers trained using
PointCutMix augmentation method on these generated ad-
versarial point clouds to several recent developed defense
methods, i.e., SRS (Yang et al., 2019a), SOR (Zhou et al.,
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Table 5. Classification accuracy of various defense methods on ModelNet40 under point dropping attack (Zheng et al., 2019), kNN
attack (Tsai et al., 2020) and point perturbation attack (Xiang et al., 2019). Drop 200 and Drop 100 denote the dropping points is 200 and
100 respectively. ∗ denotes that results are reported in IF-Defense (Wu et al., 2020). We report the best result of three IF-Defense methods.
The best and second-place results for each row are emphasized as blue and bold.

Attack Model No Defense∗ SRS∗ SOR∗ DUP-Net∗ IF-Defense∗ PointCutMix-R PointCutMix-K

Drop 200
PointNet++ 68.96 39.63 69.17 72.00 79.09 87.32 89.02

DGCNN 55.06 23.82 59.36 36.02 73.30 87.36 88.82

Drop 100
PointNet++ 80.19 64.51 74.16 76.38 84.56 89.51 91.17

DGCNN 75.16 49.23 64.68 44.45 83.43 89.59 91.05

kNN
PointNet++ 0.00 49.96 61.35 74.88 85.62 83.35 70.71

DGCNN 20.02 41.25 55.92 35.45 82.33 80.27 68.76

point perturbation
PointNet++ 0.00 73.14 77.67 80.63 86.99 86.71 84.93

DGCNN 0.00 50.20 76.50 42.67 85.53 83.14 76.69

2019), DUP-Net (Zhou et al., 2019) and IF-Defense (Wu
et al., 2020). From the results listed in Table 5, we observe
that PointCutMix-R and PointCutMix-K consistently sur-
pass all defense methods under two point dropping attacks.
The improvement of recognition accuracy can reach up to
15% in a certain case, which fully proves the scalability and
effectiveness of our method. It is worth noting that unlike
previous defense methods that need to alter the adversar-
ial point clouds which might cause information loss, our
method just uses very limited computing power to classify
the adversarial point clouds, which is a more natural defense
approach.

Moreover, to verify the generalization of PointCutMix in
defense, we also test with the kNN attack (Tsai et al., 2020)
and the point perturbation attack (Xiang et al., 2019). We
first perform normalization on the generated adversarial
point clouds to limit all points into a unit sphere and then
test it with deep point cloud classification networks trained
using PointCutMix-K and PointCutMix-R. The kNN at-
tack smoothes the attack by using a k-Nearest Neighbor
loss, which is hard to defense by the simple method such
as statistical outlier removal (Zhou et al., 2019). On the
contrary, for the point perturbation attack (Xiang et al.,
2019) where the attacked point clouds are messy, it can
be easily defended by simple random sampling and sta-
tistical outlier removal (Zhou et al., 2019). As shown in
Table 5, although these two attacks are very unfavorable for
our models that are trained with normalized point clouds,
PointCutMix-R still achieves second place and has a very
close performance to the state-of-the-art defense method in
all cases. We can also find that PointCutMix-R constantly
surpasses PointCutMix-K in the defense of two attacks,
proving the assumption in Section 3.4 that models trained
with PointCutMix-R achieve better robustness.

From the above analysis, we can conclude that PointCutMix
has strong generalization ability across various point cloud
attack algorithms and the defense approach is very simple
and computing cost-effective.

5. Conclusion
In this paper, we propose PointCutMix, a regularization
strategy for point cloud classification. We conduct exten-
sive experiments to verify the effectiveness of our method.
For the object-level point cloud classification problem, the
results show that PointCutMix evidently improves the per-
formance of networks that learned with local features. While
for the point-wise segmentation task, PointCutMix allevi-
ates the unbalanced distribution problem and enhances the
performance of uncommon categories. We also validate that
PointCutMix significantly enhances the robustness of the
model. By applying our method as a defense method, it out-
performs the SOTA defense algorithm. We hope this simple
regularization strategy could be applied to more tasks and
help future researches.

In the future, we plan to extend our work to 3D object
detection (Shi et al., 2020). However, due to the point
cloud is different from images, there are still some chal-
lenges. For example, in 3D object detection, the point
cloud of KITTI (Geiger et al., 2012) and ModelNet are
very different, thus it is hard to directly use the pre-trained
model of the classification network in the 3D detection task.
Moreover, we also plan to apply our PointCutMix-R and
PointCutMix-K to defense methods to recently proposed
attacks AdvPC (Hamdi et al., 2020) and LG-GAN (Zhou
et al., 2020).



PointCutMix

References
Akhtar, N. and Mian, A. Threat of adversarial attacks on

deep learning in computer vision: A survey. Ieee Access,
6:14410–14430, 2018.

Bhattacharyya, P. and Czarnecki, K. Deformable pv-rcnn:
Improving 3d object detection with learned deformations.
arXiv preprint arXiv:2008.08766, 2020.

Chen, Y., Liu, S., Shen, X., and Jia, J. Fast point r-cnn. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9775–9784, 2019.

Chen, Y., Hu, V. T., Gavves, E., Mensink, T., Mettes, P.,
Yang, P., and Snoek, C. G. Pointmixup: Augmentation
for point clouds. In European Conference on Computer
Vision, pp. 330–345. Springer, 2020.

Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R.,
Wang, M., and Ferrer, C. C. The deepfake detection chal-
lenge dataset. arXiv preprint arXiv:2006.07397, 2020.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and
Li, J. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 9185–9193, 2018.

Geiger, A., Lenz, P., and Urtasun, R. Are we ready for
autonomous driving? the kitti vision benchmark suite. In
2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3354–3361. IEEE, 2012.

Guo, H., Mao, Y., and Zhang, R. Mixup as locally linear
out-of-manifold regularization. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 3714–3722, 2019.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun,
M. Deep learning for 3d point clouds: A survey. IEEE
transactions on pattern analysis and machine intelligence,
2020.

Hamdi, A., Rojas, S., Thabet, A., and Ghanem, B. Advpc:
Transferable adversarial perturbations on 3d point clouds.
In European Conference on Computer Vision, pp. 241–
257. Springer, 2020.

Harris, E., Marcu, A., Painter, M., Niranjan, M., and Hare,
A. P.-B. J. Fmix: Enhancing mixed sample data augmen-
tation. arXiv preprint arXiv:2002.12047, 2(3):4, 2020.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M.
Bag of tricks for image classification with convolutional
neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
558–567, 2019.

Jing, L. and Tian, Y. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., and
Beijbom, O. Pointpillars: Fast encoders for object detec-
tion from point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12697–12705, 2019.

Li, R., Li, X., Heng, P.-A., and Fu, C.-W. Pointaugment:
an auto-augmentation framework for point cloud classi-
fication. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6378–
6387, 2020.

Liu, J., Ni, B., Li, C., Yang, J., and Tian, Q. Dynamic points
agglomeration for hierarchical point sets learning. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7546–7555, 2019a.

Liu, M., Sheng, L., Yang, S., Shao, J., and Hu, S.-M. Morph-
ing and sampling network for dense point cloud comple-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 11596–11603, 2020a.

Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., and Pan, C.
Densepoint: Learning densely contextual representation
for efficient point cloud processing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 5239–5248, 2019b.

Liu, Y., Fan, B., Xiang, S., and Pan, C. Relation-shape
convolutional neural network for point cloud analysis. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8895–8904, 2019c.

Liu, Z., Hu, H., Cao, Y., Zhang, Z., and Tong, X. A closer
look at local aggregation operators in point cloud analysis.
In European Conference on Computer Vision, pp. 326–
342. Springer, 2020b.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017a.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep
hierarchical feature learning on point sets in a metric
space. arXiv preprint arXiv:1706.02413, 2017b.



PointCutMix

Rao, Y., Lu, J., and Zhou, J. Global-local bidirectional
reasoning for unsupervised representation learning of 3d
point clouds. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
5376–5385, 2020.

Rubner, Y., Tomasi, C., and Guibas, L. J. The earth mover’s
distance as a metric for image retrieval. International
journal of computer vision, 40(2):99–121, 2000.

Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., and
Li, H. Pv-rcnn: Point-voxel feature set abstraction for
3d object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 10529–10538, 2020.

Taghanaki, S. A., Hassani, K., Jayaraman, P. K., Khasah-
madi, A. H., and Custis, T. Pointmask: Towards inter-
pretable and bias-resilient point cloud processing. arXiv
preprint arXiv:2007.04525, 2020.

Te, G., Hu, W., Zheng, A., and Guo, Z. Rgcnn: Regularized
graph cnn for point cloud segmentation. In Proceedings
of the 26th ACM international conference on Multimedia,
pp. 746–754, 2018.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B.,
Goulette, F., and Guibas, L. J. Kpconv: Flexible and
deformable convolution for point clouds. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 6411–6420, 2019.

Tsai, T., Yang, K., Ho, T.-Y., and Jin, Y. Robust adversarial
objects against deep learning models. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 954–962, 2020.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas,
I., Lopez-Paz, D., and Bengio, Y. Manifold mixup: Better
representations by interpolating hidden states. In Interna-
tional Conference on Machine Learning, pp. 6438–6447.
PMLR, 2019.

Walawalkar, D., Shen, Z., Liu, Z., and Savvides, M. Atten-
tive cutmix: An enhanced data augmentation approach
for deep learning based image classification. In ICASSP
2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3642–3646.
IEEE, 2020.

Wang, C., Samari, B., and Siddiqi, K. Local spectral graph
convolution for point set feature learning. In Proceedings
of the European conference on computer vision (ECCV),
pp. 52–66, 2018.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph cnn for learning on
point clouds. Acm Transactions On Graphics (tog), 38
(5):1–12, 2019.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1912–
1920, 2015.

Wu, Z., Duan, Y., Wang, H., Fan, Q., and Guibas,
L. J. If-defense: 3d adversarial point cloud defense
via implicit function based restoration. arXiv preprint
arXiv:2010.05272, 2020.

Xiang, C., Qi, C. R., and Li, B. Generating 3d adversarial
point clouds. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
9136–9144, 2019.

Xu, X. and Lee, G. H. Weakly supervised semantic point
cloud segmentation: Towards 10x fewer labels. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 13706–13715, 2020.

Yan, X., Zheng, C., Li, Z., Wang, S., and Cui, S. Pointasnl:
Robust point clouds processing using nonlocal neural
networks with adaptive sampling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5589–5598, 2020.

Yang, J., Zhang, Q., Fang, R., Ni, B., Liu, J., and Tian,
Q. Adversarial attack and defense on point sets. arXiv
preprint arXiv:1902.10899, 2019a.

Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., and
Tian, Q. Modeling point clouds with self-attention and
gumbel subset sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 3323–3332, 2019b.

Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su,
H., Lu, C., Huang, Q., Sheffer, A., and Guibas, L. A
scalable active framework for region annotation in 3d
shape collections. ACM Transactions on Graphics (ToG),
35(6):1–12, 2016.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 6023–6032, 2019.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In ICLR.
OpenReview.net, 2018.

Zhao, H., Jiang, L., Fu, C.-W., and Jia, J. Pointweb: En-
hancing local neighborhood features for point cloud pro-
cessing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5565–
5573, 2019.



PointCutMix

Zhao, Y., Wu, Y., Chen, C., and Lim, A. On isometry ro-
bustness of deep 3d point cloud models under adversarial
attacks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1201–
1210, 2020.

Zheng, T., Chen, C., Yuan, J., Li, B., and Ren, K. Pointcloud
saliency maps. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1598–1606,
2019.

Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., and
Yu, N. Dup-net: Denoiser and upsampler network for 3d
adversarial point clouds defense. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 1961–1970, 2019.

Zhou, H., Chen, D., Liao, J., Chen, K., Dong, X., Liu,
K., Zhang, W., Hua, G., and Yu, N. Lg-gan: Label
guided adversarial network for flexible targeted attack of
point cloud based deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10356–10365, 2020.


