
Online learning and generalization of parts-based image
representations by Non-Negative Sparse Autoencoders

Andre Lemmea,∗, René Felix Reinharta, Jochen Jakob Steila

aResearch Institute for Cognition and Robotics (CoR-Lab),
Bielefeld University, Universitätsstr. 25, 33615 Bielefeld

Abstract

We present an efficient online learning scheme for non-negative sparse coding
in autoencoder neural networks. It comprises a novel synaptic decay rule that
ensures non-negative weights and an intrinsic self-adaptation rule that opti-
mizes sparseness of the non-negative encoding. We show that non-negativity
constrains the space of solutions such that overfitting is prevented and very
similar encodings are found irrespective of the network initialization and size.
We benchmark the novel method on real-world datasets of handwritten digits
and faces. The autoencoder yields higher sparseness and lower reconstruction
errors than related batch algorithms based on matrix factorization. It general-
izes to new inputs both accurately and without costly computations, which is
fundamentally different from the classical matrix factorization approaches.

Keywords: autoencoder, non-negativity, sparse coding

1. Introduction

Unsupervised learning techniques that can find filters for relevant parts in
images are particularly important for visual object classification [1]. The goal
is to learn latent causes such that simple addition of these causes can explain
a set of images. There is strong evidence that such parts-based representations
exist in the mammalian brain and strongly contribute to object recognition
[2]. In addition, parts-based representations are easy to interpret for humans
which is an important advantage in several application areas [3]. We model
the learning of parts-based representations in a novel autoencoder neural net-
work. Technically speaking, non-negativity of the neural encodings is required,
i.e. network parameters and states are constrained to be positive only. Beside
non-negativity, neural physiological evidence as well as energy constraints [4]
motivate to encode sensory inputs with only a few neurons active at a specific

∗Corresponding author
Email addresses: alemme@CoR-Lab.Uni-Bielefeld.de (Andre Lemme),

freinhar@CoR-Lab.Uni-Bielefeld.de (René Felix Reinhart),
jsteil@CoR-Lab.Uni-Bielefeld.de (Jochen Jakob Steil)

Preprint submitted to Elsevier March 10, 2011

point in time. This strategy of encoding is commonly referred to as sparse cod-
ing. Describing patterns with less active neurons minimizes the probability of
destructive cross talk [4] and enhances the probability of linear separability, a
crucial feature for object classification [5]. To address these requirements, sev-
eral matrix factorization approaches have been developed that decompose a set
of patterns into parts and their configuration which both are non-negative and
sparse. We discuss these approaches in Sec. 2. Unfortunately, matrix factor-
ization turns out to have serious drawbacks: On the one hand, generalization
to new patterns is either computationally expensive or does not respect non-
negativity. On the other hand, reconstruction accuracy is naturally impaired by
the additional non-negativity constraints in contrast to unconstrained methods
that allow negative components. The interest in factorization methods therefore
has somewhat declined in recent years though still successful applications are
frequently reported.

Since the groundbreaking introduction of layer-wise pretraining to deep ar-
chitectures [6, 7], stacked autoencoder networks have proven to be excellent
models for pattern recognition (see [8] for a thorough discussion). In particular,
autoencoders with tied weights, i.e. utilizing the same weights for pattern encod-
ing and decoding, can be trained efficiently by contrastive divergence or simple
error-correction learning rules without backpropagation of errors. Moreover, au-
toencoders with tied weights provide a generic model for efficient encoding and
decoding of new inputs by simply propagating activities through the network.
These feed-forward networks achieve very good generalization performance but
have not yet been combined with non-negativity and sparseness constraints.

We combine non-negativity and sparseness in a novel autoencoder model
that was first introduced in [9]. Non-negativity of input connection weights is
enforced by a novel asymmetric weight decay function that punishes negative
weights more than positive ones. Logistic activation functions in the hidden
layer map neural activities to strictly positive outputs. Sparseness of the en-
codings is achieved by an unsupervised self-adaptation rule, which adapts the
non-linear activation functions based on the principle of intrinsic plasticity [10].
Both synaptic and intrinsic online learning rules work in parallel, use only local
information and are very efficient to compute. The autoencoder enables fast en-
coding of new inputs by simple forward propagation of activities without costly
and iterative constraint satisfaction.

We first show the basic features of the non-negative autoencoder on a syn-
thetic dataset. In a next step, we compare the reconstruction performance as
well as the generated encodings and basis images of the introduced model to
the non-negative offline algorithms NMF and NMFSC on a benchmark dataset
of handwritten digits. The efficient online implementation outperforms the of-
fline algorithms with respect to reconstruction errors and sparseness of the basis
images as well as the encodings, which underlines the excellent generalization
abilities of the autoencoder. Finally, we show that the autoencoder robustly
identifies distinct parts-based representations for real-world datasets of hand-
written digits and faces irrespective of the network size and initialization.

2

2. Related work on learning parts-based representations

Lee and Seung proposed a non-negative matrix factorization (NMF) in [3]
to produce non-negative encodings of input images by combining a linear ma-
trix factorization approach with non-negativity constraints. In [11], Hoyer in-
troduced the non-negative sparse coding (NNSC) approach which learns non-
negative and sparse representation. Later, Hoyer also added a sparseness con-
straint to the non-negative matrix factorization [12]. The difference between
NMF with sparseness constraint (NMFSC) and NNSC is that NMFSC provides
two parameters that control the degree of sparseness of the basis images and
the encodings, respectively. The batch algorithms NMF and NMFSC are based
on the matrix factorization equation X ≈ WH, where X is a non-negative
data matrix. The factorization process starts from the initial basis1 W and
code matrix H. Then, iterative updates of the encodings and basis images are
conducted in order to reduce the reconstruction error while complying with
non-negativity and sparseness constraints for both the basis W and the en-
codings H. The main drawback of the matrix factorization approach is that
generalization to new input patterns is not easily possible: The encoding of
novel inputs with respect to the previously trained basis W requires either to
compute the pseudo-inverse of the basis W+ [13] which, however, does not
preserve the non-negativity constraint of the encodings [14], or to conduct the
constrained optimization of the encodings H for the new inputs with fixed ba-
sis W [12]. The latter approach does preserve non-negativity but introduces
considerable computational costs and does not guarantee the unique mapping
from inputs to encodings due to the iterative process which depends on initial
conditions. Therefore, NMF is not suited for problems that require efficient real-
time processing of inputs with encodings based on the same basis and encodings
that fulfill the non-negativity and sparseness constraints. Despite these massive
drawbacks of the NMF approach, NMF and NNSC are successfully applied in
hierarchical models for object recognition [15, 16] and yield superior results on
various datasets and conditions for face recognition compared to other state-
of-the-art feature extraction methods [13]. We conclude that non-negativity is
beneficial for pattern recognition, but the commonly applied matrix factoriza-
tion methodology to achieve non-negativity suffers from serious shortcomings,
in particular the inefficient and iterative encoding of novel inputs.

The problem of non-negativity and computational efficiency is addressed by
the non-negative and online version of the principle component analysis intro-
duced in [17]. However, non-negative PCA does not produce a sparse encoding
of the inputs, which is generally a drawback for later object classification layers.

In the following, we introduce a novel autoencoder that combines sparseness
and non-negativity with efficient encoding of new stimuli.

1Though the term basis is slightly abusive because the basis images are not linearly inde-
pendent and can be over-complete, we stick to this common terminology.

3

x x̂

h

W WT

input image reconstruction

Fig. 1: Autoencoder network with input image x (left) and reconstructed image x̂ (right).
W ≡ WT is the tied weight matrix and h the hidden network state.

3. Non-negative sparse autoencoder (NNSAE)

We modify an autoencoder network in order to obtain non-negative and
sparse encodings with only positive network weights from non-negative input
data. The network architecture is shown in Fig. 1. We denote the input by
x ∈ RD and the network reconstruction by x̂ = WT f(Wx), where W ∈ RN×D

is the weight matrix and f(·) are parameterized activation functions

fi(gi, ai, bi) =
1

1 + e(−aigi−bi)
∈ [0, 1] (1)

with slopes ai and biases bi that are applied component-wise to the neural
activities g = Wx (g ∈ RN). Non-negative encodings h are already assured by
the logistic activation functions fi(gi, ai, bi).

3.1. Learning to reconstruct

Learning of the autoencoder is based on minimizing the reconstruction error

E =
1

K

K∑
i=1

||xi − x̂i||2 (2)

on the training set. Note that W ≡WT is the same matrix for encoding and
decoding, i.e. the autoencoder has tied weights, which reduces the number of
parameters to be adapted and is in general motivated by the idea that a neuron
should contribute to the reconstruction only the parts it detects in the input.
Tied weights result in a dual role of the network weights: On the one hand, each
row of the weight matrix wi serves as filter when encoding the input (left part
in Fig. 1). On the other hand, each weight vector contributes as basis image
to the reconstruction in the decoding step (right part in Fig. 1). We refer to
rows of the weight matrix W as basis images in the remaining text in order
to facilitate the discussion. Moreover, using tied weights means that learning
does not require backpropagation of errors through the hidden layer. With tied

4

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

weight w

p
ri

o
r

d
is

tr
ib

u
ti

o
n
 P

(w
)

−1 −0.5 0 0.5 1

−0.2

0

0.5

1

weight w

d
ec

ay
 f

u
n

ct
io

n
 d

(w
)

−α w −β w

Fig. 2: Skewed prior probabilities for a non-negative weight distribution (left). The corre-
sponding decay functions (right) with two parameters α and β. These parameters control the
weight decay depending on the sign of w.

weights, learning reduces to the following online error correction rule applied
after presentation of example x:

∆wij = η (xi − x̂i)hj + d(w̃ij), (3)

where wij is the connection from hidden neuron j to the output neuron i and hj
is the activation of neuron j. We use an adaptive learning rate η= η̃ (||h||2+ ε)−1

that scales the gradient step size η̃ by the inverse network activity and is similar
to backpropagation-decorrelation learning in reservoir networks [18]. The decay
function d(w̃ij) will be discussed in the next section.

3.2. Asymmetric decay enforces non-negative network parameters

In order to enforce non-negative weights, we introduce a novel asymmetric,
piecewise linear decay function:

d(w̃ij) =

{
−α w̃ij if w̃ij < 0

−β w̃ij else,
(4)

where w̃ij = wij + ∆wij is the new computed weight after error correction
according to (Eq. 3). Typically, a quadratic cost term λ||W||2 is added to
the error function (Eq. 2) which serves as regularization and is equivalent to a
Gaussian prior distribution of the network weights. Using gradient descent, the
Gaussian prior results in a so-called decay term d(wij) =−λwij . We assume a
virtually deformed Gaussian prior that is skewed with respect to the sign of the
weight. Gradient descent then yields the asymmetric decay function (Eq. 4).
The principal relation between skewed prior distribution for the weights and
the asymmetric decay function is illustrated in Fig. 2. The main advantage
of (Eq. 4) is the parameterized decay behavior depending on the sign of the
weight: It is possible to allow a certain degree of negative weights (0≤α� 1)
or to prohibit negative weights completely (α=1). The decay function (Eq. 4)
reduces to the standard case of a symmetric prior for α=β. Setting α = 1 and
applying the decay on the updated weights w̃ij ensures that the weight matrix
W has strictly non-negative values.

5

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

f(x) = (1 + exp(−a x − b))
−1

a = 1.00

b = 0.00

µ

<f(x)>

x

y
 =

 f
(x

)
IP−−−−−−→

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

f(x) = (1 + exp(−a x − b))
−1

a = 5.61

b = −4.71

µ ≈ <f(x)>

x

y
 =

 f
(x

)

Fig. 3: IP learning maximizes a neuron’s information transmission properties by adapting
the slope a and bias b of the activation function: Initial activation function with input and
output distributions (left). Optimized activation function after IP training with approximately
exponential output distribution (right).

3.3. Adaptation of non-linearities achieves sparse encodings

To enforce sparseness of the encodings, we apply the intrinsic plasticity (IP)
mechanism introduced by Triesch in [10]. IP is a biologically inspired learning
rule and produces energy-efficient, sparse encodings. The idea is to adjust the
parameters ai, bi of the logistic activation function (Eq. 1) in order to optimize
information transmission of the neurons. More formally, the Kullback-Leibler
divergence of the neuron’s output distribution with respect to a desired, ex-
ponential output distribution is minimized. The mean activity level µ of the
desired output distribution appears as global parameter in the learning process.
We yield the following online gradient rule with learning rate η

IP
:

∆bi = η
IP

(
1−

(
2 +

1

µ

)
hi +

1

µ
h2i

)
, (5)

∆ai = η
IP

1

ai
+ gi ∆bi. (6)

This unsupervised self-adaptation rule is local in time and space and therefore
efficient to compute. Note that IP optimizes the lifetime sparseness of a neuron
(sparse activation of one neuron over time), which is different from the typi-
cal approach to increase the population sparseness. But by coupling synaptic
and intrinsic plasticity, the population sparseness is effectively optimized if di-
verse basis images are learned. We use a small learning rate η

IP
= 0.0001 if

not otherwise stated and set the desired mean activity µ= 0.2 throughout the
experiments. We initialize the parameters of the activation functions a=1 and
b=−3 in order to accelerate convergence.

In the context of the non-negative autoencoder, IP is not only important
for increased sparseness of the encodings. The strictly non-negative input dis-
tribution caused by the non-negative weight and data matrices is particularly
challenging and requires special attention for the activation function selection.
For instance, an unbiased logistic function degrades to half of its output range
for non-negative inputs (compare Fig. 3 (left)). IP adapts the activation func-
tions to these non-negative input distributions and ensures optimal information
transmission (compare Fig. 3 (right)).

6

4. Identifying a parts-based representation

We first use a synthetic dataset which is constructed out of known parts
and show that the non-negative sparse autoencoder (NNSAE) identifies the
underlying image components.

4.1. The BARS dataset and network training

The non-linear BARS problem was introduced by Földiák [19]. The dataset
contains 9×9 pixel images with randomly positioned horizontal and vertical
bars and comprises 10.000 trainings and 50.000 test images. We scale the pixel
intensities into the interval [0.00, 0.25]. There are at least two bars present per
image, but maximally two horizontal and two vertical bars. Hence, 18 basis
images each containing one bar are needed to perfectly describe the data. The
unsupervised learning problem is to compute a basis comprising all independent
components, i.e. bars. Some examples of the dataset are shown in Fig. 4(a).

The networks have D = 9×9 = 81 input neurons. We select different sizes
N for the hidden layer in the experiments. The weight matrix W is initialized
randomly according to a uniform distribution in [0.00, 0.05]. We set the learning
rate in (Eq. 3) to η̃= 0.01. Each autoencoder is trained for 100 epochs, where
the entire training set is presented to the model in each epoch. We train strictly
non-negative autoencoders in this section using α=1 and β=0.

4.2. Parts-based representation of the BARS dataset

We systematically change the size of the hidden layer to investigate whether
all basis images are found by the model and how a too large hidden layer with
N>18 affects the learned representation.

In the first experiment, we use less than the required 18 neurons in the
hidden layer. The resulting basis images are shown in Fig. 4(b) for a network
with N = 15 neurons. The model finds basis images corresponding to the bars
the data is constructed from, but the basis images contain more than one bar
(see Fig. 4(b)). The network is forced to find a suboptimal solution with multiple
bars per neuron in order to minimize the reconstruction error.

In the next experiment, we use 18 neurons in the hidden layer which matches
the number of basis images used for data construction. The basis images learned
by the model exactly represent the 18 bars underlying the data (see Fig. 4(c)).
Though the dataset is rather simple, this result is remarkable for an online
learning algorithm. Does the NNSAE also identify these 18 basis images when
equipped with more than 18 hidden neurons?

In the next experiments, we equip the hidden layer with 20 and 50 neurons.
The resulting basis images are shown in Fig. 4(d) and Fig. 4(e). All 18 basis im-
ages are found by the model irrespective of the hidden layer size. The remaining
basis vectors show a rather random structure (see Fig. 4(d) and Fig. 4(e)). We
observed that these randomly structured weight vectors wi have only small en-
tries which are only pronounced by the normalized display and do not contribute
to the reconstruction, i.e. are unused. We can identify “used” and “unused“
basis images by using a simple threshold criterion: If max(w) < 0.001, the basis

7

(a) Example images with bars. (b) N = 15

(c) N = 18 (d) N = 20

(e) N = 50

Fig. 4: Some examples of the BARS dataset (a). Learned basis images for different hidden
layer sizes: network with N = 15 (b), N = 18 (c), N = 20 (d) and N = 50 (e) neurons in the
hidden layer. In this toy example, 18 neurons are enough to represent each bar in the image
dataset. The NNSAE finds all basis images when equipped with enough neurons, where
excessive neurons form unused basis images with max(w) < 0.001. Note that these basis
images are displayed in a normalized manner to show their structure.

8

image is judged as unused. Applying this thresholding to the hidden layer, we
obtain the order of basis images as shown in Fig. 4(d) and Fig. 4(e).

Interestingly, the unused neurons have very similar structured basis images.
This is a result of the constrained learning dynamics: The addition of basis
images to form the reconstruction x̂=

∑N
i=1 wihi with wi>0 and hi>0 intro-

duces a competition between the neurons for contributions to the reconstruction.
Initially, some basis images match inputs better than others and win the com-
petition for contribution to the reconstruction and specialize to these inputs.
IP activates not yet specialized neurons from time to time in order to fulfill
the lifetime sparseness constraint. However, if there is no useful contribution to
add, the error (x− x̂) < 0 becomes negative and the weight decreases. As a con-
sequence, if too many neurons are present in the network, the weights of some
neurons decay: The unused basis images converge to the same structure with all
entries close to zero because of the same error and similar activities. These com-
petitive dynamics of the learning process self-regularize the network resources
and can be utilized to estimate the intrinsic, parts-based dimensionality of the
data which we further discuss in Sec. 6.

We conclude that the NNSAE model is able to find all basis images in the
data if we equip the hidden layer with enough neurons. In contrast, the uncon-
strained autoencoder (α=β= 0) and PCA produce dense encodings regardless
of the basis size. The reconstruction improves with increasing network size, but
the basis images will not reflect the parts-based data structure. The NNSAE
identifies the parts that create the data irrespective of the hidden layer’s size.

5. Implications of the non-negativity constraint

We analyze the effect of non-negativity in the non-negative sparse autoen-
coder and compare the non-negative bases across the NNSAE and batch algo-
rithms NMF and NMFSC on a real-world dataset of handwritten digits.

5.1. Encoding and decoding of handwritten digits

The MNIST dataset is commonly used to benchmark image reconstruction
and classification methods. For the following experiments the “MNIST-basic”
set2 is used, which comprises 10.000 trainings and 50.000 test images of hand-
written digits from 0 to 9 in a centered and normalized 28×28 pixel format.
Some example digits from the test set are shown in the top row of Fig. 5.

We use autoencoders with 784 input neurons and 100 hidden neurons to
encode and decode the input images. Learning rates, initialization ranges and
number of training epochs are applied as before. To account for the random
network initialization, we present results averaged over 10 trials. The following
variates are calculated to quantify the model properties:

2http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007

9

α=0 α=0.1 α=0.2 α=0.3 α=1.0

PMSE 0.0107 0.0149 0.0149 0.0150 0.0151
STD · 10−4 0.5966 0.4079 0.7153 0.7143 0.6893
s(H) 0.3954 0.3465 0.3474 0.3460 0.3512
s(W) 0.5334 0.9379 0.9363 0.9397 0.9322

Tab. 1: PMSE with standard deviation on the test set and sparseness of the encodings H
and network weights W depending on asymmetric decay rate α. Note that only for α= 1 a
fully non-negative weight matrix will be enforced.

(a) Pixel-wise mean square error

PMSE =
1

KD

K∑
i=1

D∑
j=1

(xij − x̂ij)2 (7)

of the reconstructions, where D is the dimension of the data and K the number
of samples. (b) Average sparseness of the code matrix H and basis images W,
where we estimate the sparseness of a vector v ∈ Rn by

s(v) = (
√
n− (Σn

i=1|vi|)/
√

Σn
i=1v

2
i))(
√
n− 1)−1. (8)

This function was introduced by Hoyer [12] and rates the energy of a vector
v with values between zero and one, where sparse vectors v are mapped to
s(v)� 0.

5.2. Impact of the asymmetric decay

We first investigate the impact of the asymmetric decay function (Eq. 4) by
increasing α stepwise. Tab. 1 shows the PMSE and the average sparseness of
hidden states as well as connection weights depending on α while β ≡ 0. The
results in Tab. 1 for the case without decay (α=0) show that a certain amount
of negative weights seems to be useful in terms of the reconstruction error.
The non-negativity constraint introduces additional costs to the optimization
process which consequently increases the reconstruction error slightly. However,
if we commit to non-negativity, it does not matter whether there is just a small
set of negative entries (α = 0.1) or only positive entries (α = 1) in the weight
matrix. This indicates that a rather moderate non-negativity constraint causes
the weight dynamics and the final solution to change completely, i.e. non-
negativity narrows the search space for learning critically. We therefore set α
either to zero or to unity in the following experiments.

5.3. Online NNSAE versus offline NMF and NMFSC

We compare the offline algorithms NMF and NMFSC with the online NNSAE
regarding the reconstruction ability, the sparseness of the encodings and the gen-
erated basis images. We show that the sparse autoencoder is superior to the
offline methods in generalizing to novel inputs and with respect to the sparse-
ness of the encodings despite the purely local and online learning rules. Finally,

10

PMSE Sparseness
Test Train sp(H) sp(W)

NMF 0.047±1·10−4 0.011±3·10−4 0.26 0.89
NMFSC 0.109±6·10−6 0.014±2·10−4 0.29 0.90
NNSAE 0.015±6·10−5 0.012±7·10−5 0.35 0.93

Tab. 2: Pixel-wise mean square reconstruction errors for training and test set as well as
sparseness of code and weight matrices for NMF, NMFSC and NNSAE.

we compare the learned bases across the methods and show that non-negativity
enforces a specific coding scheme.

To make the comparison between online and offline learning fair, we iterate
the factorization algorithms 100 times such that the batch algorithms see the
training data 100 times like the NNSAE. We further set the sparseness param-
eters provided by NMFSC for the weight and code matrix to s(W) = 0.9 and
s(H) = 0.35 according to the values obtained for the NNSAE. To evaluate the
generalization of NMF and NMFSC on the test set, we keep the trained basis
images W fixed and update only the code matrix H iteratively as in the train-
ing. The NNSAE processes new data by propagating activity from the input
to the hidden layer, i.e. calculating h = f(Wx), without further iterations to
satisfy non-negativity and sparseness constraints.

5.3.1. Comparison of reconstruction errors and sparseness

Tab. 2 gives a review of the performance of NMF/NMFSC and compares
it to the NNSAE. The NNSAE outperforms NMF/NMFSC with respect to the
PMSE on the test set, sparseness of the code matrix H and sparseness of
the weight matrix W. It is surprising that even NMFSC does not reach the
sparse encodings that we achieve with the NNSAE, although the constraint is
set to be equal (s(H) = 0.35). We show for some examples of the test set the
corresponding code histograms and reconstructions by NMFSC and NNSAE in
Fig. 5. The sparseness of the basis images wi does not differ significantly for the
different methods, which seems to be the effect of the non-negative constraint
itself. We show in the next section that the basis images are indeed very similar.
Consequently, the performance on the training set is comparable between all
tested methods. However, NNSAE clearly outperforms the matrix factorization
methods on the test set (compare Tab. 2). The NNSAE utilizes the same weight
matrix for encoding and decoding and provides a model to encode new data,
whereas NMF and NMFSC need to process new data iteratively to preserve the
non-negative constraint and can not draw on an underlying model. Also the
non-linearity is part of the NNSAE model, whereas in NMF non-linearity of the
encodings is generated by the iterative matrix updates, i.e. is an algorithmic
non-linearity.

5.3.2. Comparison of basis images

The quantitative comparison of code sparseness and basis images indicates
that the encodings of the non-negative methods are very similar. In Fig. 5 we

11

Fig. 5: Some example images of the MNIST dataset from the test set (top row). Reconstruc-
tions (2nd row), histograms of the encodings (3rd row) and some basis images (4th row) of the
NMFSC. Reconstructions (5th row), histograms of the encodings (6th row) and some basis
images (7th row) of the NNSAE.

show in the 4th and the last row some basis images of NMFSC and NNSAE. The
basis images of both methods cover only blob-like areas, i.e. are local feature
detectors, which corresponds to a sparse representation.

By applying non-negativity and sparse coding constraints, we force the model
to find basis images covering a large area without degrading reconstructions
by polluting details and sharp edges. However, the comparison on this level
is limited to a behavioristic level. We face the key question whether NNSAE
generates similar basis images wi as the batch algorithms NMF and NMFSC. To
compare the weight matrices of each method quantitatively, we use the Matlab3

implementation of the Hungarian algorithm [20]. The Hungarian algorithm
solves a weighted bipartite graph matching problem by calculating the minimal
cost for matching the basis images of method A with method B. The comparison
is based on the angle between two basis vectors. A cost matrix CN×N stores
the cosine of the angle between the basis images of two weight matrices WA =
(wA

1 , ...,w
A
N) and WB = (wB

1 , ...,w
B
N). Therefore, the cost matrix is given by

Cij = 1−
wA

i ·wB
j

||wA
i || ||wB

j ||
∀ i, j = 1, . . . , N,

where a smaller angle between the vectors means that less costs are stored in
the matrix. The cost matrix C is used by the graph matching algorithm to find
the best possible match between both sets of basis images.

3http://www.mathworks.de/

12

NMFSC NMF NNSAE AE

NMFSC 25.5790 - - -
NMF 29.4371 26.8124 - -
NNSAE 29.6129 30.9014 25.3334 -

AE 63.7129 61.3591 64.7979 64.9006

Tab. 3: Minimal costs for matching the basis images of two methods averaged over 5 initial-
izations. The non-negative methods find very similar basis images compared to the standard
autoencoder (AE) with α=β=0.

Tab. 3 shows the mean costs of matching trained basis images of NMF,
NMFSC and NNSAE averaged over five initializations. As a quantitative base-
line, the last row of Tab. 3 shows the costs for matching the basis vectors to
a standard autoencoder (AE) without decay, i.e. α = β = 0. Apparent from
Tab. 3, the non-negative models produce comparable basis images, whereas the
AE produces basis images that cannot be easily matched even to other trials
of the same method. That means that the standard AE converges to different
solutions depending on the initialization. Non-negativity constrains the solu-
tion space drastically, which allows only a very specific set of solutions. This
is reflected by the very similar encoding schemes of the non-negative methods
irrespective of the optimization details and initial conditions.

6. Estimating the number of latent causes

Based on the idea to cluster neurons into used and unused categories, we
show that the NNSAE can be utilized to estimate the intrinsic dimensionality
of a dataset. Similar to the introductory example in Sec. 4 but for real-world
datasets, we show that the number of used basis images saturates when the
size of the hidden layer is increased. This self-regularization mechanism also
prevents overfitting of the model to the training data.

6.1. Identifying important parts of digits

In Fig. 6 we show the PMSE on the trainings and test set of the MNIST
dataset depending on the number of neurons N in the hidden layer. For compar-
ison, also the error of the standard autoencoder (AE, α=β=0) is shown. The
reconstruction error decreases monotonously with increasing number of neurons
for the NNSAE. The AE shows a superior reconstruction performance for most
network sizes. Non-negativity additionally constrains the basic optimization
problem which impairs the reconstruction performance slightly. However, the
additional constraints also reduce overfitting in comparison to the AE: The off-
set between trainings and test errors is marginal for the NNSAE, whereas the
AE displays – though only mild – overfitting for medium-sized networks (see
magnified area in Fig. 6). Moreover, the performance of the AE decreases again
for larger networks with N>400 (see Fig. 6), whereas the PMSE saturates for
NNSAE networks with more than approximately 200 neurons. This indicates

13

0 200 400 600
0

0.02

0.04

0.06

0.08

Number of neurons

P
M

S
E

NNSAE Train Error
NNSAE Test Error
AE Train Error
AE Test Error

380 400 420
4

6

8

x 10
−3

Fig. 6: Pixel-wise reconstruction error PMSE on the MNIST dataset in logarithmic scale as
function of the number of neurons in the hidden layer. Starting from N = 10 hidden neurons,
the hidden layer size is increased up to N = 700 neurons. For comparison, we show the
reconstruction error also for the standard autoencoder (AE) with α=β=0.

that the unconstrained optimization of the AE can not utilize the additional
degrees of freedom anymore: Overparameterization makes it difficult for gradi-
ent learning to find a good local minimum and hence the network performance
degrades. The NNSAE instead can still learn a suitable representation due to
the strongly constrained parameter space. Non-negativity and sparseness of the
NNSAE self-regularize the effective number of model parameters which prevents
overfitting and helps learning in case of an overparameterized model.

We proceed in more principle ways and estimate the intrinsic, parts-based
data dimensionality by clustering the neurons of the NNSAE into used and
unused categories following the observation in Sec. 4: Basis images of unused
neurons have a very small maximum entry. We therefore cluster a neuron into
the used or unused category based on the L1-norm of its basis image. In Fig. 7(a)
the number of used neurons is plotted versus the initial network size using
different thresholds (t ∈ {1.5, 1.6, . . . , 2.5}) for the clustering. The same set of
thresholds is used for both method variants (NNSAE and AE). The solid and
dashed lines in Fig. 7(a) are the resulting number of used neurons for the AE and
the NNSAE, respectively. For the MNIST dataset, the number of used neurons
in the NNSAE networks saturates approximately at 150, whereas in case of the
AE the number of used neurons does not saturate, i.e. all neurons are used.
This result confirms the self-regularizing effect we already observed in Sec. 4:
The NNSAE develops a basis comprising a suitable amount of used neurons and
a remaining set of unused neurons. Note further that the number of neurons
recruited by the NNSAE can be interpreted as estimate of the intrinsic data
dimensionality. For comparison, we conduct a principle component analysis
on the MNIST dataset and estimate the intrinsic data dimensionality by the
number of components needed to cover most of the data’s variance. According to
the eigenvalue spectrum, the biggest 150 (200) eigenvalues cover approximately
95% (97%) of the variance present in the data. This is conform with the estimate

14

by the NNSAE, which allocates approximately 150 components to explain the
data.

0 100 200 300 400 500
0

100

200

300

400

500

Number of neurons

N
u
m

b
e
r

o
f
u
s
e
d
 n

e
u
ro

n
s

AE

NNSAE

(a) MNIST

0 100 200 300 400 500
0

100

200

300

400

500

Number of neurons

N
u
m

b
e
r

o
f
u
s
e
d
 n

e
u
ro

n
s

AE

NNSAE

(b) CBCL faces

0 50 100 150
0

200

400

600

800

1000

1200

1400

L
1
−norm of all basis images

N
u
m

b
e
r

o
f
n
e
u
ro

n
s

(c) L1-norm of basis images for the AE.

0 20 40 60 80
0

1000

2000

3000

4000

5000

6000

L1−norm of all basis images

N
um

be
r

of
 n

eu
ro

ns

2 4 6 8
0

500

1000

(d) L1-norm of basis images for the NNSAE.

Fig. 7: Evaluation of used and unused neurons for different network sizes. The amount of
used basis images versus the initial network size is shown in Fig. 7(a) for the MNIST dataset
and in Fig. 7(b) for the CBCL face dataset. Note that the number of used neurons saturates
with increasing hidden layer size in case of the NNSAE (dashed lines), while the AE further
recruits all neurons (solid lines). The basis images are classified as used or unused based
on their L1-norm. Histograms of the L1-norm of the basis images for the MNIST dataset:
Fig. 7(c) for the AE and Fig. 7(d) for the NNSAE.

We choose different thresholds t for the clustering in Fig. 7(a) to show the
robustness of the resulting clusters against this parameter. To further illustrate
and justify the thresholding into used and unused neurons, we show the distri-
bution of the L1-norm of basis images wi over all neurons and networks of either
the AE or NNSAE in Fig. 7(c) and Fig. 7(d). There are two major differences
in the two histograms: First, the larger average L1-norm of the AE compared
to the NNSAE. The NNSAE has to distribute entries in the basis images spar-
ely in order to not overload and blur the reconstructions. The AE in contrast

15

produces densely occupied basis images with large positive and negative entries
which consequently have a large L1-norm. Second, in Fig. 7(d) a great amount
of basis images have a L1-norm close to zero building up a cluster of unused
neurons. Automatic thresholding methods like the Otsu method [21] can easily
separate this cluster of unused neurons from the used ones which makes pruning
robust. Otsu’s threshold selection method was originally intended to operate on
histograms of gray-scale images. In the context of the NNSAE, the threshold is
defined based on the histogram of L1-norm values of the network’s basis images
wi with i=1, . . . , N . This technique is applied in the next section to prune the
network and estimate the intrinsic data dimensionality automatically.

6.2. Identifying important parts of faces

We finally demonstrate the functioning of the NNSAE on the CBCL face
dataset including the estimation of the data dimensionality.

6.2.1. Dataset and network training

The CBCL face dataset is extensively used by the MIT Center For Biological
and Computation Learning to test the performance of face-detection systems4.
The dataset provides 19×19 gray-scale images including 2.429 faces for training
and 472 faces for testing. We apply a histogram normalization to the images in
a preprocessing step before training and scale the pixel intensities into the range
[0.00, 0.25]. Because of the small training set we increase the learning rates and
set η̃=0.05 and η

IP
=0.0005 in (Eq. 3) and (Eq. 5). Some example images from

the test set are shown in the top row of Fig. 8. We use autoencoders with 361
input neurons and a variable size in the hidden layer to encode and decode the
images. All other parameters are used as before.

6.2.2. Additive construction of faces

We first show the principle functioning of the NNSAE on the CBCL face
dataset. We train a NNSAE withN=200 neurons for 100 epochs and then prune
unused neurons utilizing Otsu’s automatic thresholding method as mentioned in
6.1. The remaining network is trained two more epochs to fine-tune the network
after pruning. Fig. 8 shows the reconstructions of some example images from
the test set together with the encodings (rows two and three). The bottom
panel in Fig. 8 displays some basis images learned by the NNSAE. The basis
images represent typical parts of faces such as eyes, nose, cheeks and so on.
The original images are accurately reconstructed by combining the basis images
according to the sparse encodings.

We again measure the number of used neurons as function of the hidden
layer size where we apply the Otsu method to automatically determine the
threshold for parameter-free clustering of the basis images into used and unused
ones. Fig. 7(b) shows that the NNSAE allocates approximately 170 neurons to
represent the face images. This estimate of the intrinsic data dimensionality

4http://www.ai.mit.edu/projects/cbcl

16

Fig. 8: Example images of the CBCL face dataset (top row). Reconstructions of the originals
using a NNSAE with N = 200 neurons (second row). Encodings corresponding to the recon-
structions (third row). Some basis images of the trained network (bottom panel). The basis
images reflect parts of faces which are linearly combined to reconstruct the input images.

is in line with the principle component analysis, which covers 98% of the data
variance if 170 components are used. Again, the number of used neurons satu-
rates for larger hidden layer sizes which confirms the self-regularizing effect of
the NNSAE learning also on a rather complex real-world face dataset. On the
contrary, the AE uses all neurons to represent the data (solid line in Fig. 7(b)):
The thresholding method provides a confidence value which is zero for all AE
networks and indicates that a discrimination of neurons into used and unused
based on their weight norm is not meaningful. In case of the NNSAE, the
threshold confidence is very high for networks with N > 100 which emphasizes
the robustness of the discrimination.

We conclude that the NNSAE can identify important parts of handwritten
digits as well as faces. The learned basis sets have a rather stable size and
form irrespective of initial conditions and hidden layer sizes. This makes the
NNSAE a very robust and reliable learning technique. The synergy of non-
negativity and sparseness results in a self-regularization of the network with

17

respect to the allocated neural resources. Identification of recruited neurons
is simple, robust and allows to estimate the latent, parts-based dimensionality
of the data. Finally, self-regularization keeps the effective network parameters
small which consequently prevents overfitting of the model.

7. Conclusion

We present an autoencoder for efficient online learning of sparse and non-
negative encodings. Therefor, we combine a mechanism that enhances the
sparseness of encodings with an asymmetric decay function that enforces non-
negative network weights. The online trained autoencoder outperforms the of-
fline techniques NMF and NMFSC when reconstructing images from the test
set, underlining its generalization capabilities. Additionally, the autoencoder
produces sparser encodings compared to the offline methods. We point out the
general effect of non-negativity, i.e. restricting the solution space, which re-
sults in similar basis images that represent the latent causes of the data and
are robustly found irrespective of the initialization. Moreover, the particular
combination of IP and non-negative, error-driven learning in the NNSAE re-
sults in an optimal exploitation of activation versus reconstruction constraints.
As a consequence, the autoencoder is robust to parameter variations and allo-
cates always a similar number of neurons which develop a similar set of basis
images. This self-regularization effect also prevents overfitting of the model to
the training data.

In comparison to the common batch algorithms for non-negative coding, the
main advantage of the NNSAE is the efficient encoding of novel inputs: the
state of the network has simply to be updated with the new input, whereas the
matrix factorization approaches in contrast require a full optimization step on
the new data.

It is of particular interest to use the NNSAE in a stacked autoencoder net-
work for pattern recognition in the future: Does the non-negative representation
improve classification performance, and how is fine-tuning of the hierarchy, e.g.
by backpropagation learning, affected by the asymmetric decay function? In
this context, layer-wise pretraining with a subsequent pruning stage will reduce
the dependence on hyper-parameters.

References

[1] M. W. Spratling, Learning image components for object recognition, Journal of Machine
Learning Research 7 (2006) 793–815.

[2] K. Tanaka, Columns for complex visual object features in the inferotemporal cortex:
Clustering of cells with similar but slightly different stimulus selectivities, Cerebral Cortex
13 (1) (2003) 90–99. doi:10.1093/cercor/13.1.90.

[3] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization,
Nature 401 (6755) (1999) 788–791. doi:10.1038/44565.

[4] B. Olshausen, D. Field, Sparse coding of sensory inputs, Current Opinion in Neurobiology
14 (2004) 481–487. doi:10.1016/j.conb.2004.07.007.

18

[5] M. Ranzato, Y.-L. Boureau, Y. LeCun, Sparse Feature Learning for Deep Belief Networks,
in: Proc. NIPS, 2008, pp. 1185–1192.

[6] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets,
Neural Computation 18 (2006) 1527–1554.

[7] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep
networks, in: NIPS, 2007, pp. 153–160.

[8] H. Larochelle, P. Lamblin, Exploring strategies for training deep neural networks, Journal
of Machine Learning Research 1 (2009) 1–40.

[9] A. Lemme, R. F. Reinhart, J. J. Steil, Efficient online learning of a non-negative sparse
autoencoder, in: Proc. ESANN, 2010, pp. 1–6.

[10] J. Triesch, A gradient rule for the plasticity of a neuron’s intrinsic excitability, Neural
Computation (2005) 65–70.

[11] P. O. Hoyer, Non-negative sparse coding, in: Proceedings of the 12th IEEE Workshop
on Neural Networks for Signal Processing, pp. 557–565.

[12] P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, Journal of
Machine Learning Research 5 (2004) 1457–1469.

[13] B. Shastri, M. Levine, Face recognition using localized features based on non-negative
sparse coding, Machine Vision and Applications 18 (2) (2007) 107–122.

[14] D. Dornbusch, R. Haschke, S. Menzel, H. Wersing, Correlating shape and functional
properties using decomposition approaches, FLAIRS-23 (2010) 398–403.

[15] H. Wersing, E. Körner, Learning optimized features for hierarchical models of invariant
object recognition, Neural computation 15 (7) (2003) 1559–1588.

[16] I. Bax, G. Heidemann, H. Ritter, Hierarchical feed-forward network for object detection
tasks, Optical Engineering 45 (6).

[17] M. D. Plumbley, E. Oja, A ”nonnegative PCA” algorithm for independent
component analysis, IEEE Transactions on Neural Networks 15 (2004) 66–76.
doi:10.1109/TNN.2003.820672.

[18] J. J. Steil, Backpropagation-decorrelation: recurrent learning with O(N) complexity, in:
Proc. IJCNN, Vol. 1, 2004, pp. 843–848.

[19] P. Földiák, Forming sparse representations by local anti-Hebbian learning, Biological
Cybernetics 64 (1990) 165–170.

[20] A. Frank, On Kuhn’s Hungarian Method - A tribute from Hungary, Naval Research
Logistics 52 (2005) 2–5. doi:10.1002/nav.20056.

[21] N. Otsu, A threshold selection method from gray-level histograms, Automatica 11 (1975)
285.

19

