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Abstract
Graph Transformers (GTs) have achieved impressive results
on various graph-related tasks. However, the huge compu-
tational cost of GTs hinders their deployment and applica-
tion, especially in resource-constrained environments. There-
fore, in this paper, we explore the feasibility of sparsifying
GTs, a significant yet under-explored topic. We first discuss
the redundancy of GTs based on the characteristics of ex-
isting GT models, and then propose a comprehensive Graph
Transformer SParsification (GTSP) framework that helps to
reduce the computational complexity of GTs from four di-
mensions: the input graph data, attention heads, model layers,
and model weights. Specifically, GTSP designs differentiable
masks for each individual compressible component, enabling
effective end-to-end pruning. We examine our GTSP through
extensive experiments on prominent GTs, including Graph-
Trans, Graphormer, and GraphGPS. The experimental results
substantiate that GTSP effectively cuts computational costs,
accompanied by only marginal decreases in accuracy or, in
some cases, even improvements. For instance, GTSP yields
a reduction of 30% in Floating Point Operations while con-
tributing to a 1.8% increase in Area Under the Curve accu-
racy on OGBG-HIV dataset. Furthermore, we provide several
insights on the characteristics of attention heads and the be-
havior of attention mechanisms, all of which have immense
potential to inspire future research endeavors in this domain.
Code is available at https://anonymous.4open.science/r/gtsp.

1 Introduction
Recently, Graph Transformer (GT) (Dwivedi and Bresson
2021) and its variants (Wu et al. 2021; Ying et al. 2021;
Rampášek et al. 2022) have achieved performance compa-
rable or superior to state-of-the-art Graph Neural Networks
(GNNs) on a series of graph-related tasks, particularly on
graph-level tasks such as graph classification. Nevertheless,
GTs are more resource-intensive than GNNs due to their
stack of multi-head self-attention modules (MHA), which
suffer from quadratic complexity that renders their deploy-
ment impractical under resource-limited scenarios. There-
fore, reducing the computational costs of GTs while main-
taining their performance has become highly significant.

Graph model compression has experienced a surge of in-
terest, with pruning emerging as a prominent technique (Liu
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Figure 1: Performance (y-axis) analysis of GraphTrans base-
line and our GTSP with varying model sizes (x-axis) and
inference FLOPs (the size of markers) on OGBG-HIV. HP,
TP, WP, and LP correspond to head pruning, token pruning,
weight pruning, and layer pruning, respectively. Notably,
GTSP achieves comparable or sometimes even slightly bet-
ter performance than the baseline model with far fewer pa-
rameters and FLOPs.

et al. 2022). Currently, several works (Chen et al. 2021b;
You et al. 2022; Hui et al. 2023; Liu et al. 2023) have been
proposed to prune the GNN models from the perspectives of
the model weights, the graph adjacency matrix, and the fea-
ture channels. These pruning works can accelerate GNNs’
training and inference for node classification tasks on large-
scale graphs. However, it remains unclear whether these
methods are still effective for GTs due to the following dif-
ferences: 1) GNN pruning methods mainly target node clas-
sification tasks and prune edges from graphs. In contrast, GT
mainly focuses on graph classification tasks, meaning that
the efficiency is influenced by the number of input nodes
to a greater extent. 2) The architectural designs of GNNs
and GTs differ considerably. Therefore, new pruning meth-
ods specifically designed for GTs are required. However, no
study has yet been conducted to explore sparsification tech-
niques explicitly tailored for GTs.

Therefore, in this paper, we aim to investigate the fea-
sibility of sparsification techniques for GTs. To this end,
we propose the Graph Transformer SParsification frame-
work (GTSP), which is the first framework designed to re-
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duce the computational resources of GTs. Our exploration
begins by examining the redundancy present in GTs. In
this context, redundancy refers to extraneous information
that can be eliminated without significantly impacting the
performance—a phenomenon commonly observed in trans-
former models (Dalvi et al. 2020; Bian et al. 2021). We
conduct a comprehensive analysis of GT redundancy across
various dimensions, such as input nodes, attention heads,
model layers, and model weights. Such an analysis pro-
vides valuable insights into the nature of GTs and guides
our approach to effectively compress them. Subsequently,
we propose a range of sparsification methods within the
GTSP framework to discard the aforementioned redundancy.
Specifically, GTSP incorporates a learnable token selector to
dynamically prune input nodes, customizes an importance
score to guide the attention head pruning process, employs
skip connectivity patterns across different GT layers, and dy-
namically extracts sparse sub-networks. Benefiting from the
above design features, GTSP effectively reduces the model
redundancy, leading to reduced computational resource re-
quirements without compromising on performance. Please
note that this paper focuses on exploring the feasibility of
pruning four compressible components in GTs, and analyz-
ing the advantages and insights of pruning each individual
component. A joint pruning of all compressible components
in GTs in consideration of the complicated interactions be-
tween them is an area worth exploring in the future.

To evaluate the effectiveness of our GTSP, we con-
duct extensive experiments on various commonly-used
datasets, including the large-scale Open Graph Bench-
mark (Hu et al. 2020), with three prominent GTs: Graph-
Trans (Wu et al. 2021), Graphormer (Ying et al. 2021), and
GraphGPS (Rampášek et al. 2022). The experimental results
demonstrate that our GTSP reliably improves the efficiency
of GT models while maintaining their performance. For ex-
ample, in Figure 1, our GTSP-WP (•) slightly outperforms
the baseline full models (GraphTrans) with only 50% of the
parameters and 69.8% of FLOPs.

Insights: Our thorough analysis of GTSP has yielded sev-
eral noteworthy insights: 1) Removing a large percentage
of the attention heads does not significantly affect perfor-
mance. The attention heads serve distinct roles in capturing
various types of information, such as long-range and neigh-
bor information within the graph. 2) In general, up to 50%
of the model’s neurons are redundant and can be pruned,
which prevents over-fitting during training and can poten-
tially improve accuracy. 3) Redundancy is evident among
adjacent layers within the network, with deeper layers dis-
playing even greater redundancy in relation to their neigh-
boring layers. Selectively trimming certain layers not only
accelerates training but also alleviates the over-smoothing
issue on the graph. 4) Finally, we observe that GTs tend
to prioritize important nodes while disregarding redundant
nodes that can be safely removed from the graph.

Contributions: Our main contributions can be summa-
rized as follows: 1) We present a premier investigation into
the redundancy of GT models, which enhances the under-
standing of these models and provides valuable guidance on
the design of sparsification methods. 2) For the first time,

we propose a comprehensive framework for sparsifying GT
models, known as GTSP. This framework aims to improve
the efficiency of GT models by sparsifying their components
across four dimensions: input nodes, attention heads, model
layers, and model weights. 3) Experimental results on large-
scale datasets with three popular GTs consistently validate
the effectiveness and versatility of GTSP in offering enor-
mous computation savings without compromising on accu-
racy. Additionally, we provide several valuable insights into
the characteristics of existing GT models, which have the
potential to inspire further research in this field.

2 Background
Notations A graph G can be represented by an adjacency
matrix A ∈ {0, 1}n×n and a node feature matrix X ∈
Rn×d, where n is the number of nodes, d is the dimension
of node features, and A[i, j] = 1 if there exists an edge be-
tween node vi and node vj (otherwise, A[i, j] = 0).

Transformer The vanilla Transformer (Vaswani et al.
2017) contains two key components: a multi-head self-
attention (MHA) module and a position-wise feed-forward
network (FFN). Given the input matrix of node embeddings
H ∈ Rn×d, where d represents the hidden dimension, a
MHA module at layer l is computed as follows:

MHA(H(l)) = Att(l)
(
W

(l)
Q ,W

(l)
K ,W

(l)
V ,H(l)

)
, (1)

where W
(l)
Q ,W

(l)
K ,W

(l)
V ∈ Rd×d′

denote the query, key,
and value projection matrices, respectively. Att(l) denotes
the self-attention function and d′ denotes the output dimen-
sion. Note that Eq. (1) denotes the single-head self-attention
module, which can straightforwardly generalize to MHA. To
construct a deeper model, each MHA layer and FFN layer
is accompanied by a residual connection and subsequently
normalized by means of layer normalization (LN).

Graph Transformer Many transformer variants, inspired
by transformer models, have been successfully applied to
graph modeling. These variants often outperform or match
GNNs across various tasks. Unlike images and texts, graphs
possess inherent structural characteristics; hence, the graph
structure is crucial in graph-related tasks. Consequently, the
most straightforward way to incorporate graph structure in-
formation is to combine GNNs with the transformer archi-
tecture (Rong et al. 2020; Wu et al. 2021; Rampášek et al.
2022). This integration can be represented as follows:

H
(l+1)
G = GNN(l)

(
H(l),A

)
,H(l+1) = MHA(l)

(
H

(l+1)
G

)
,

where GNN(l) denotes a GNN layer. Additionally, several
existing works have attempted to compress the graph struc-
ture into positional embedding (PE) vectors that are then
incorporated into the input features (Dwivedi and Bresson
2021; Kreuzer et al. 2021; Hussain, Zaki, and Subramanian
2022). Alternatively, the graph structure can be injected into
the attention computation through bias terms (Ying et al.
2021). For further information on these topics, refer to recent
reviews of GTs (Min et al. 2022). However, most of these
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Figure 2: Overview of our proposed graph transformer sparsification framework (GTSP). Note that each compressible compo-
nent is pruned separately in this paper.

methods encounter challenges due to the time and memory
constraints imposed by their complex frameworks, partic-
ularly the high computational complexity of MHA (Zhang
et al. 2022; Chen et al. 2023). It is, therefore, crucial to iden-
tify approaches for reducing the computational resources re-
quired by GTs while preserving their performance.

Model Pruning Pruning is a promising method for reduc-
ing the memory footprint and computational cost by remov-
ing unimportant elements based on pre-defined scores (Hoe-
fler et al. 2021). Various pruning methods, such as the
magnitude-based, first-order and second-order based, and
lottery ticket hypothesis-based methods (Liu et al. 2021;
Mocanu et al. 2018; Frankle and Carbin 2019), have been
used to remove redundant weights. Additionally, some stud-
ies have explored the pruning of input tokens (Kim et al.
2022; Liang et al. 2022), attention heads (Voita et al. 2019;
Michel, Levy, and Neubig 2019), and even entire layers
within the model architecture (Fan, Grave, and Joulin 2020;
Yu et al. 2022). In the field of graphs, attempts have been
made to co-prune model weights, graph adjacency matrices,
and feature channels in order to speed up the training and
inference of GNNs on large-scale graphs (You et al. 2022;
Chen et al. 2021b; Hui et al. 2023; Liu et al. 2023). How-
ever, to the best of our knowledge, no investigation has yet
been conducted into the pruning of GTs.

3 Methodology
This section explores redundancy within GT architectures
and presents a comprehensive framework, called GTSP,
which aims to enhance the efficiency of GTs through prun-
ing. Specifically, GTSP is a mask-based pruning method,
which contains three crucial steps in the overall pruning pro-
cedure: ➊initializing masks for compressible components;
➋determining the values of these masks; and ➌pruning

based on the masks. Figure 2 illustrates the application of
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Figure 3: Token Redundancy. Attention probability be-
tween query (y-axis) and key (x-axis) vectors obtained from
GraphGPS. The probabilities in each row all sum to 1.

GTSP in compressing GTs across four dimensions: input
data (§3.1), attention heads (§3.2), model layers (§3.3), and
model weights (§3.4). Please note that this paper primarily
focuses on the individual pruning of each component; the
joint pruning of all components, considering their intricate
interactions, is left as a topic for future research.

3.1 Pruning Tokens
Self-attention is capable of modeling long-term dependen-
cies. However, the computational complexity of computing
the attention matrix increases quadratically with the length
of the input tokens (O(n2)). Consequently, when working
with large graphs and limited resources, the attention oper-
ation becomes a bottleneck. To achieve efficiency improve-
ments, we aim to eliminate less important or relevant tokens
before they pass through the transformer layers. By reduc-
ing the number of tokens n for subsequent blocks, we can
reduce the complexity of both the MHA and FFN layers.

Analyzing Token Redundancy Figure 3 illustrates the at-
tention probability, which measures how much all other to-
kens attend to a specific token. It is worth noting that only a
limited number of tokens (e.g., node 15) receive high atten-



tion scores, while others are considered less important and
may be pruned. Furthermore, we offer supplementary vali-
dation in §4.4 to support our findings.

Discarding Token Redundancy In general, we use a
trainable mask to discard tokens with low importance scores
for token sparsification in an end-to-end optimization. To ac-
complish this, ➊we first initialize a binary decision mask
M

(l)
T ∈ {0, 1}n that indicates whether a token should be

dropped or kept. We then design a learnable prediction mod-
ule that generates important scores for input nodes, ➋which
helps determine the values in the mask M

(l)
T . Specifically,

we project the tokens using a GCN (Kipf and Welling 2017)
to capture both their feature and structure information:

S
(l)
T = GCN(A,H(l)) ∈ Rn×c, (2)

where c is the dimension of the scores. To preserve the sig-
nificant tokens and remove the useless ones, we first rank to-
kens in order of their scores and then prune them using a top-
k selection strategy. If the score S

(l,i)
T of token i is smaller

than the k largest values among all tokens, M(l,i)
T = 0,

which indicates that the token i is pruned at layer l.
However, performing the above operation is not straight-

forward in practice because using the top-k operation to gen-
erate a mask is not differentiable, which hinders end-to-end
training. To address this issue, we introduce the Gumbel-
Softmax and straight-through tricks, which facilitate gradi-
ent back-propagation through the top-k selection. Another
obstacle arises when using GCN to generate scores. GNNs
tend to share similar information among directly connected
nodes. As a result, models may assign similar scores to
nearby nodes with similar keys; this causes models to get
stuck in significant local structures and select redundant
nodes, while ignoring important nodes from other substruc-
tures and losing structure information. To address this is-
sue, we propose applying perturbations to the significance
scores. Therefore, the decision mask is calculated as follows:

M
(l)
T = Gumbel-Softmax(I⌈ps×n⌉S

(l)
T ) ∈ {0, 1}n, (3)

where I⌈ps×n⌉ ∈ Rn×n is a matrix generated by randomly
dropping ⌈ps × n⌉ non-zero elements of a unit matrix with
n dimensions, ⌈·⌉ is the rounding up operation, and ps is the
score dropping rate. Finally, ➌we prune tokens by applying
the mask M

(l)
T to the node embedding matrix H(l), and the

mask is updated at each epoch.

3.2 Pruning Attention Heads
The attention mechanism employed by current GTs incor-
porates multiple attention heads, commonly utilizing either
four or eight self-attention heads. However, there is a dearth
of analysis and discussion on the necessity of using such a
substantial number of heads, as well as the specific informa-
tion focused on by each head during the process of represen-
tation learning and its relevance to downstream tasks.

Analyzing Head Redundancy To determine if the atten-
tion mechanism involves redundant computations, we cal-
culate the similarity of head distributions. We define the at-
tention redundancy matrix as the pairwise distance matrix of
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Figure 4: (a) Head Redundancy. Distance between dif-
ferent attention heads in GraphTrans (4-layer-4-head self-
attention) is assessed using both the Jensen–Shannon and
dCor metrics. Smaller distance values reflect more redun-
dancy. (b) Layer Redundancy. Pairwise similarity between
the layers in GraphGPS is measured using the CKA metric.
Darker colors represent higher levels of similarity.

the 4 × 4 attention matrices from the GT model, using both
node-level (Jensen–Shannon distance (Clark et al. 2019))
and graph-level (Distance Correlation, or dCor (Székely,
Rizzo, and Bakirov 2007)) measures. Taking the GraphTrans
model as an example, Figure 4a illustrates the redundancy
(distance) among 16 × 16 pairs of attention matrices in a
4-layer-4-head configuration. It is evident that redundancy
exists in the attention layers, particularly in the earlier ones.
Additionally, the redundancy patterns remain consistent be-
tween two different distance measures used in our analysis.
Based on these findings, we can conclude that certain atten-
tion heads can be safely removed.

Discarding Head Redundancy In the initial step, ➊we
proceed with the initialization of a decision mask, denoted
as M(l)

H ∈ 0, 1Nh , where Nh represents the number of atten-
tion heads. Subsequently, ➋we introduce a criterion for use
in estimating the significance of each head. More precisely,
the significance of a given head is determined based on the
model’s sensitivity to the masked head (Michel, Levy, and
Neubig 2019; Chen et al. 2021a). To calculate this signifi-
cance value for each head, we use the following expression
after applying the chain rule:

S
(l,h)
H =

∣∣∣∣∣(Z(l,h))T ·
∂L

(
H(l)

)
∂Z(l,h)

∣∣∣∣∣ , (4)

where Z(l,h) denotes the embeddings of the l-th layer and
h-th head computed by Eq. (1). Additionally, L(·) refers to
the cross-entropy loss used in GTs. Once we have obtained
importance scores for attention heads, we remove those with
the smallest S(l,h)

H . ➌To prune these heads, we modify the
formula for MHA in Eq. (1):

MHA(H(l)) =

Nh∑
h=1

M
(l,h)
H Att(l)

(
W

(l,h)
Q ,W

(l)
K ,W

(l,h)
V ,H(l)

)
.

In addition, to prevent the premature removal of valu-
able attention heads, we propose a mechanism inspired
by the concept of regrowth in weight pruning (Liu



et al. 2023). This mechanism utilizes magnitude gradi-
ents,

∥∥∂L (
H(l)

)
/∂Z(l,h)

∥∥
ℓ1

, as a criterion for determining
which (if any) pruned heads should be regenerated. The at-
tention heads with the highest gradients will be reactivated.

3.3 Pruning Layers
GTs often combine GNN layers with transformer layers.
For example, in GraphTrans, the initial layers are GNN lay-
ers followed by multiple transformer layers. In GraphGPS,
there is one GNN layer followed by one transformer layer.
Although different studies have proposed various combina-
tions, none has investigated whether it is necessary to stack
multiple layers or if redundancy exists between them.

Analyzing Layer Redundancy To evaluate layer redun-
dancy, we compare representations from different layers us-
ing linear Center Kernel Alignment (CKA) (Kornblith et al.
2019), which is a widely used method for identifying rela-
tionships between layers across architectures. In our analy-
sis, we compute pairwise similarity between representations
obtained from all eight intermediate layers (four GNN layers
and four transformer layers) of GraphGPS and present the
corresponding heatmaps in Figure 4b. From the results, we
can make several observations: 1) Adjacent layers show no-
table similarity, indicating some redundancy among them. 2)
Deeper layers exhibit greater similarity with each other, sug-
gesting increased redundancy at deeper levels. This implies
that these deeper layers may contribute minimally to the dis-
criminative power of the model. These observations justify
the motivation to drop certain layers. Furthermore, GT mod-
els have uniform internal structures with identical input/out-
put sizes for MHA, FFN, and GNN models. This uniformity
allows us to remove any of these components while directly
concatenating the remaining ones without causing any fea-
ture dimension compatibility issues.

Discarding Layer Redundancy Building upon the previ-
ous study (Huang et al. 2016), we simultaneously prune re-
dundant GNN and transformer layers in GTs using a random
drop-layer approach. For instance, let us consider pruning a
MHA layer. The original formulation of the residual connec-
tion in GTs is as follows:

H(l+1) = LN
(
MHA

(
H(l)

))
+H(l). (5)

To determine whether to keep or drop a layer, ➊we in-
troduce a mask M

(l)
L ∈ {0, 1}L, where L is the number of

layers, into the above equation. Consequently, Eq. (5) is re-
formulated as follows:

H(l+1) = LN
(
M

(l)
L MHA

(
H(l)

))
+H(l), (6)

➋where the value of masks is sampled from a Bernoulli dis-
tribution. Specifically, if M(l)

L = 0, ➌it means that the layer
is pruned and the node’s (l + 1)-th layer representation re-
mains consistent with its l-th layer representation. On the
other hand, if M

(l)
L = 1, then the node’s (l + 1)-th layer

representation is updated.

3.4 Pruning Weights
Over-parameterization is a common issue in neural net-
works that causes further information redundancy. To tackle
this issue in GTs, we draw inspiration from sparse train-
ing techniques that dynamically extract and train sparse sub-
networks instead of the entire model (Hoefler et al. 2021).

Discarding Weight Redundancy Generally speaking, we
mask small-magnitude model weights in our approach.
Specifically, during the model initialization stage, ➊we cre-
ate non-differentiable binary masks MW that match the size
of the model weights in different layers, W . Initially, all el-
ements in the mask are set to 1. At regular intervals, ➋our
pruning strategy updates the mask matrix by setting param-
eters below a threshold to 0. ➌The weight matrix is then
multiplied by this updated mask to determine which weights
participate in the subsequent forward execution of the graph.
This procedure can be described as follows:

idx = TopK(−|W|, ⌈pw∥W∥0⌉);
M′

W = Zero(MW , idx);W′ = M′
W ⊙W,

(7)

where TopK is the function that returns the indices of
the top ⌈pw∥W∥0⌉ values in |W|, Zero is the function
that sets the values in MW with indices idx to 0, W′ is
the pruned weight matrix, pw is the sparsity of the model
weights, ∥W∥0 is the number of model weights, and ⊙ is the
element-wise product. We utilize gradual magnitude prun-
ing, as demonstrated in previous studies (Zhu and Gupta
2017; Liu et al. 2021) to gradually prune the weights over
m iterations until the desired sparsity is reached. If we per-
form sparsification of all elements every ∆t steps, we can
determine the pruning rate at each iteration t as follows:

p(w,t) = pf + (pi − pf )

(
1− t− t0

m∆t

)3

, (8)

where pi/pf is the initial/target sparsity degree, and t0 is the
epoch at which gradual pruning begins. The pruning scheme
described above involves initially pruning a large number of
redundant connections, followed by gradually reducing the
number of connections pruned as fewer remain.

In addition, premature pruning may occur during the
pruning process, particularly in early iterations, resulting
in the loss of important information. To address this is-
sue, we propose incorporating the gradient-based regrowth
schemes (Evci et al. 2020) into the gradual pruning schedule.
The regrowth operation, which is performed at regular inter-
vals (∆t) throughout training, serves to reactivate weights
with high-magnitude gradients. It is worth noting that previ-
ous studies have demonstrated the efficiency of this regrowth
scheme for training (Liu et al. 2021, 2023).

3.5 Complexity Analysis
The computational costs of the GNN, MHA, and FFN mod-
ules in GTs are O

(
∥A∥0d+ nd2

)
, O(n2d), and O(nd2),

respectively. Our GTSP aims to reduce the computational
complexity of these modules. The additional computation
introduced by GTSP primarily arises from the element-wise
product between weights and masks, which is acceptable.
For a detailed discussion on the complexity and FLOPs,
please refer to the Appendix.



Table 1: Performance measured by the number of Parameters / FLOPs Saving / Accuracy (↑) or ROC-AUC (↑). The results
with higher accuracy than the baseline have been highlighted in bold. “GraphTrans-S” refers to the reduced-scale GraphTrans
model, featuring a decreased number of layers. “GNN-Dense” denotes the models solely composed of GNN layers.

Models Spar.
NCI1 OGBG-HIV OGBG-Molpcba

# Para. FS Acc. (%) # Para. FS ROC-AUC # Para. FS ROC-AUC(V) ROC-AUC(T)

GraphTrans 0 % 0.82M 0% 83.11±1.78 0.92M 0% 0.7633±0.0111 2.41M 0% 0.2893±0.0050 0.2756±0.0039

• GTSP-HP 25% 0.75M 6.1% 82.62±1.41 0.88M 8.52% 0.7782±0.0064 2.34M 4.4% 0.2871±0.0061 0.2756±0.0075

• GTSP-TP 25% 0.82M 22.8% 82.59±1.47 0.92M 21.5% 0.7612±0.0116 2.41M 20.7% 0.2604±0.0068 0.2451±0.0060

• GTSP-WP 25% 0.61M 18.7% 82.24±1.60 0.69M 16.5% 0.7681±0.0225 1.80M 20.3% 0.2893±0.0012 0.2794±0.0025

• GTSP-LP 25% 0.64M 23.5% 82.53±1.71 0.71M 24.3% 0.7479±0.0360 1.90M 22.1% 0.2863±0.0019 0.2749±0.0015

• GTSP-HP 50% 0.69M 12.2% 82.23±1.67 0.84M 17.1% 0.7671±0.0158 2.27M 8.9% 0.2712±0.0081 0.2615±0.0064

• GTSP-TP 50% 0.82M 47.4% 82.77±1.79 0.92M 45.3% 0.7485±0.0103 2.41M 39.2% 0.2573±0.0073 0.2436±0.0074

• GTSP-WP 50% 0.41M 37.4% 81.91±2.06 0.46M 30.2% 0.7773±0.0073 1.20M 40.6% 0.2868±0.0010 0.2774±0.0033

• GTSP-LP 50% 0.44M 47.1% 82.46±1.93 0.50M 48.8% 0.7614±0.0176 1.41M 46.6% 0.2748±0.0013 0.2664±0.0034

GraphTrans-S 0% 0.56M 47.1% 81.97±1.98 0.51M 48.8% 0.7617±0.0176 2.00M 46.6% 0.2830±0.0034 0.2752±0.0043

GNN-Dense 0% 0.58M 88.3% 80.00±1.40 0.18M 95.4% 0.7575±0.0104 1.60M 43.1% 0.2305±0.0027 0.2266±0.0028

4 Experiments
In this section, we validate the effectiveness of our proposed
GTSP on three benchmark graph datasets, including OGB
datasets. We demonstrate that GTSP is efficient and accurate
(§4.2) and can generalize well to various baseline GT mod-
els (§4.3). Furthermore, we present insightful findings from
our GTSP research (§4.4), such as a deeper understanding of
attention heads and the advantage of using GTSP to mitigate
over-fitting and over-smoothing issues.

4.1 Experimental Settings
Datasets We choose three graph classification bench-
marks: one small dataset (NCI1) and two large-scale datasets
from Open Graph Benchmark (OGBG-HIV and OGBG-
Molpcba) (Hu et al. 2020). These datasets consist of approx-
imately 4, 000, 41, 127, and 437, 929 graphs, respectively.
We strictly follow the original settings of these datasets, in-
cluding their splitting methods.

Implementation Details We evaluate the effectiveness of
our GTSP on three commonly-used GT models: Graph-
Trans (Wu et al. 2021), GraphGPS (Rampášek et al. 2022),
and Graphormer (Ying et al. 2021) by parameters, FLOPs,
and a graph classification metric (accuracy or ROC-AUC).
We aim to maintain the original settings of these models as
much as possible. Our main results are based on 10 runs, ex-
cept for OGBG-Molpcba, which is based on five runs. All
models are trained using NVIDIA A100 GPUs (40G). The
detailed parameter settings can be found in the Appendix.

4.2 Accuracy w.r.t Efficiency
We evaluate the effectiveness of GTSP based on parame-
ters, FLOPs, and accuracy. The comparison between GTSP
and baseline models (including reduced-scale GraphTrans
and GNN-Dense) is presented in Table 1. Based on these
results, we can make several inspiring observations: 1) Our

Table 2: Performance of other Graph Transformer models on
the NCI1 dataset measured by the number of Parameters /
FLOPs Saving / Accuracy (↑). The results with higher accu-
racy than the baseline have been highlighted in bold.

GraphGPS Graphormer
Models Spar.

# Para. FS Acc. (%) # Para. FS Acc. (%)

Base 0 % 0.18M 0% 83.71±1.77 0.17M 0% 83.36±1.18

• HP 25% 0.16M 12.0% 84.46±1.58 0.16M 12.0% 82.07±1.98

• TP 25% 0.18M 22.9% 83.24±1.20 0.17M 22.9% 82.47±1.96

• WP 25% 0.13M 20.9% 83.72±1.81 0.13M 20.9% 83.57±1.11

• LP 25% 0.15M 22.4% 83.52±1.00 0.15M 22.4% 83.52±1.91

• HP 50% 0.14M 23.6% 83.02±2.19 0.14M 23.6% 82.46±2.42

• TP 50% 0.18M 40.0% 82.92±1.60 0.17M 40.0% 82.77±1.86

• WP 50% 0.09M 45.7% 83.82±1.58 0.09M 45.7% 83.48±1.20

• LP 50% 0.11M 47.1% 82.80±1.22 0.11M 47.1% 83.26±1.34

GTSP achieves better accuracy and computation trade-offs
than baseline models. 2) As for pruning heads, GTSP can
reduce the number of heads by 50% while still achieving a
0.5% improvement in accuracy, which indicates that GTSP
can successfully reduce the head redundancy. 3) Token prun-
ing does tend to significantly reduce FLOPs (e.g., 47.4%
FLOPS reduction on NCI1), but it also leads to a rela-
tively larger accuracy degradation probably because of the
relatively small number of nodes in these datasets (around
20–30 nodes in a graph). 4) Pruning weights has relatively
minimal impact on accuracy and may even yield improve-
ments, particularly on large-scale datasets (e.g., 1.8% ROC-
AUC increase on OGBG-HIV with 50% sparsity). 5) Af-
ter halving the number of network layers on three datasets,
the performance only drops by 0.2%–3.3%, with the number
of parameters decreasing by 32.9%–45.6% and FLOPs de-
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Figure 5: Characterizing the roles of different attention
heads. Attention heatmaps (subfigures c and d) are shown
for the molecule from OGBG-HIV.

0 100Epochs

0.6

0.8

A
cc

ur
ac

y

Base

train
test

0 100Epochs

0.6

0.8

Sparsity (50%)

train
test

0 100Epochs

0.6

0.8

Sparsity (70%)

train
test

0 100Epochs

0.6

0.8

Sparsity (90%)

train
test

Figure 6: Training dynamics w.r.t. epochs of dense model
(Base) and our GTSP-WP with varying sparsity levels.

creasing by 46.6%–48.8%. 6) Finally, the extent of accuracy
drop depends on the original network size: at the same scale
of FLOPs reduction, smaller networks (e.g., GraphTrans on
NCI1) exhibit a bigger accuracy drop than large networks
(e.g., GraphTrans on OGBG-HIV).

4.3 Generalization to Other GT Models
To validate the generalizability of our GTSP, we apply it to
another two representative GT baseline models: GraphGPS
and Graphormer. The results in Table 2 demonstrate that
GTSP effectively compresses these models. Despite a rel-
atively low sparsity ratio, GTSP can match or even exceed
the performance of the baseline models. These findings con-
firm that our GTSP is architecture-independent and can be
easily integrated into other GT models.

4.4 Broader Evaluation of GTSP
Unique roles of attention heads We investigate whether
heads in the model have interpretable roles. In Figure 5, we
visualize two attention score matrices from a model trained
on OGBG-HIV. It is observed that each head concentrates on
distinct nodes: Head-L captures long-range information by
attending to distant nodes, while Head-N focuses on neigh-
boring nodes. These findings indicate that the heads have
identifiable functions and are highly interpretable.

Pruning weights help alleviate over-fitting In training,
over-fitting frequently occurs in GT models due to limited
graph data and the large number of parameters. In this sec-
tion, we will investigate whether our weight pruning strategy
effectively alleviates this common problem. Figure 6 illus-
trates the training progress with respect to epochs for the
dense model (baseline) and various sparse models with dif-
ferent degrees of sparsity. It is evident that as the sparsity
increases, the training curve comes to more closely approx-
imate the test curve. This confirms that our weight pruning
strategies do indeed help to alleviate over-fitting in GTs.
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Figure 7: Accuracy w.r.t. the number of layers on two
datasets. Base refers to the GraphTrans model.
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Figure 8: Token selection visualization on OGBG-HIV.

Pruning layers help alleviate over-smoothing Our pre-
vious experiments have confirmed both that the GT model
layer contains redundancy and that our pruning strategy ef-
fectively reduces it. However, in our previous network, we
assumed a network depth of only four layers. Recent re-
search suggests that when the network reaches a certain
depth (e.g., 48 layers), it not only leads to redundancy but
also causes over-smoothing (Zhao et al. 2023). Therefore,
we are conducting further research to investigate whether
our pruning strategy can mitigate the over-smoothing prob-
lem in excessively deep models. Figure 7 illustrates that
while the accuracy of the baseline model drops suddenly
at 48 layers, our GTSP maintains performance and signif-
icantly outperforms baselines. These experiments demon-
strate that our GTSP helps to alleviate over-smoothing and
has the potential for breaking the depth limitation of GTs.

Graph Transformer prioritizes informative nodes To
further investigate the behavior of GTSP, we present a vi-
sualization of the token selection process during testing in
Figure 8. The results demonstrate that our GTSP primarily
focuses on chemical atoms or motifs, rather than other com-
mon motifs such as benzene rings. This indicates that our
GTSP can effectively distinguish informative nodes from
less-informative ones. Moreover, this phenomenon suggests
that GTSP enhances the interpretability of GTs by identify-
ing the key nodes in the graph that contribute significantly
to graph property identification.

5 Conclusion
In this paper, we propose GTSP, a framework that com-
presses GT models by reducing the redundancy in input
data, attention heads, model layers, and model weights. Ex-
tensive experiments on large-scale datasets demonstrate the
effectiveness and generalizability of GTSP. Furthermore, the
experimental results offer several valuable insights into ex-
isting GTs, which can potentially inspire further research.
However, there remain several challenges. For instance, ad-
justing the pruning ratio for different graphs and jointly



pruning all components while considering their complicated
interactions merit further exploration.
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