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Abstract

Laplacian spectral kernels and distances (e.g., biharmonic, heat diffusion, wave ker-

nel distances) are easily defined through a filtering of the Laplacian eigenpairs. They

play a central role in several applications, such as dimensionality reduction with spec-

tral embeddings, diffusion geometry, image smoothing, geometric characterisations

and embeddings of graphs. Extending the results recently derived in the discrete set-

ting [38, 39] to the continuous case, we propose a novel definition of the Laplacian

spectral kernels and distances, whose approximation requires the solution of a set of

inhomogeneous Laplace equations. Their discrete counterparts are equivalent to a set

of sparse, symmetric, and well-conditioned linear systems, which are efficiently solved

with iterative methods. Finally, we discuss the optimality of the Laplacian spectrum for

the approximation of the spectral kernels, the relation between the spectral and Green

kernels, and the stability of the spectral distances with respect to the evaluation of the

Laplacian spectrum and to multiple Laplacian eigenvalues.

Keywords: Laplacian spectrum, spectral distances, spectral kernels, heat kernel,
diffusion distances and geometry, shape and graph analysis

1. Introduction

Spectral kernels and distances are easily defined through a filtering of the Laplacian

eigenpairs and include random walks [41], biharmonic [28, 45], heat diffusion [10, 11,
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17, 25], wave [12] kernels and distances. Laplacian spectral distances have been ap-

plied to shape segmentation [19] and comparison [11, 17, 35, 50] with multi-scale and

isometry-invariant signatures [33, 32, 31]. Main applications of the heat kernel include

dimensionality reduction [7, 53, 16, 4], diffusion geometry [6, 47], graphs’ embed-

dings [30] and analysis [18], shape comparison [9, 13, 43], data representation [54]

and classification [34, 46, 49].

Overview and contribution

Extending the results recently derived in the discrete setting [38, 39] to the con-

tinuous case, we propose a novel definition of the Laplacian spectral kernels and dis-

tances, whose approximation requires the solution of a set of inhomogeneous Laplace

equations. Their discrete counterparts are equivalent to a set of sparse linear systems,

which are efficiently solved with iterative methods. To this end, the Laplacian spec-

tral distances d2(pi,p j) := ∑
+∞
n=0 |φn(pi)−φn(p j)|2/ρ2(λn) are defined by filtering the

Laplacian spectrum (λn,φn)
+∞
n=0 , where ρ : R+→ R is a proper filter function.

The proposed spectral kernels and distances are independent of the data dimen-

sionality (e.g., surfaces, volumes, n-dimensional data), of the discretisation of the input

domain, and of the Laplace-Beltrami operator. The Laplacian spectral distances gener-

alise the bi-harmonic [28] (ρ(s) := s2), wave [12] (ρt(s) := exp(ist)), and diffusion [14,

21, 36] (ρt(s) := exp(st)) distances, Mexican hat wavelets [23] (ρ(s) := s1/2 exp(s2)),

and random walks [41]. The behaviour of the filter ρ, and in particular the convergence

of 1/ρ to zero, determines the main properties of the resulting spectral distances, such

as smoothness, encoding of local and global shape properties (e.g., Gaussian curvature,

geodesic distance), localisation in time and frequency [21]. Through a proper filter de-

sign and a learning process [2, 8], we can obtain spectral kernels and distances that

are also invariant with respect to isometric transformations or discriminative of a given

shape class.

Recalling the definition of the spectral operator in [39, 37, 38], we review equiva-

lent representations of the spectral kernels and distances in terms of the spectral norm

of the δ-functions, the Laplacian spectrum, the spectral operator, and the spectral ker-

nel (Sect. 2). Through these relations, the Laplacian spectral kernels and distances
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can be computed by approximating the filter with a rational function and converting

their evaluation to the solution of a set of differential equations that involve only the

Laplace-Beltrami operator.

The proposed discrete approximation of the spectral kernels (Sect. 3) is equivalent

to solving r sparse, symmetric, and well-conditioned linear systems, where r is the

degree of the rational polynomial approximation of the filter. Applying an iterative

linear solver, the computation of the spectral kernel takes O(rτ(n)) time, where τ(n)

typically varies from τ(n) = n to τ(n) = n logn and depends on the number n of shape

samples and on the sparsity of the coefficient matrix. In a similar way, the computation

of the spectral distance between two points has the same order of complexity of the

evaluation of the corresponding spectral kernel at the same input points.

Through the spectrum-free approximation, the computed spectral kernel is not af-

fected by the Gibbs phenomenon, as a consequence of the high accuracy of the rational

approximation with respect to the low-pass filter associated with the truncated spectral

approximation. Furthermore, the spectrum-free approximation is free of user-defined

parameters (e.g., the number of Laplacian eigenpairs).

Finally (Sects. 4, 5), we experimentally verify the accuracy, efficiency, and numer-

ical robustness of the definition and spectrum-free computation of the spectral kernels

and distances.

Novelties with respect to previous work

With respect to previous work and our recent results on the definition and compu-

tation of discrete spectral distances [39, 38], the main novelties of this paper are

• the discussion of the optimality of the Laplacian spectrum for the approximation

of the spectral kernel (Sect. 2.1);

• the study of the relation between the spectral and Green kernels (Sect. 2.4),

associated with differential operators (Sect. 2.2);

• the analysis of the stability of the spectral distances with respect to the evalua-

tion of the Laplacian spectrum and to multiple Laplacian eigenvalues (Sect. 2.3).
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In fact, the evaluation of the Laplacian spectrum is generally affected by small

perturbations of the Laplace-Beltrami operator;

• a novel spectrum-free computation of the spectral distances (Sect. 2.5), which is

achieved by properly approximating the associated filter with a rational polyno-

mial and is expressed in terms of the canonical basis;

• the computation of the discrete spectral distances (Sect. 3.2), which reduces to

the solution of a set of sparse, symmetric, and well-conditioned linear systems.

This analogy between the continuous and discrete cases shows the generality of

the proposed approach and it has not been addressed by previous work. Further-

more, these results are complementary and more general than the spectrum-free

approaches presented in [39, 38];

• a new upper bound to the conditioning number of the linear systems associated

with the spectrum-free approximation, which confirms the numerical stability

and well-conditioned computation of the class of the spectrum-free approaches

(Sect. 3.1);

• new experiments (Sect. 4), which enrich the tests initially presented in [39, 38]

and address the robustness of the computation of the Laplacian spectral distances

and kernels with respect to the data resolution, partial sampling, geometric or

topological noise, and deformations.

2. Laplacian spectral distances

Firstly, we present the Laplace-Beltrami operator, its spectrum, and the optimality

of the Laplacian eigenbasis (Sect. 2.1). Recalling the definition of the spectral op-

erator and kernel introduced in [39, 37, 38], we review equivalent representations of

the spectral distances in terms of the spectral norm of the δ-functions, the Laplacian

spectrum, the spectral operator, and the spectral kernel (Sect. 2.2). As novel contri-

bution, we discuss the stability of the spectral distances with respect to the evaluation

of the Laplacian spectrum and to multiple Laplacian eigenvalues, which are generally

affected by small perturbations of the Laplace-Beltrami operator (Sect. 2.3). Finally,
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we introduce a novel relation between the spectral and Green kernels (Sect. 2.4) and

propose a novel spectrum-free computation of the spectral distances in the continuous

case, which is presented in a way analogous to the discrete case [38, 39] and shows the

generality of the proposed approach (Sect. 2.5).

2.1. Laplace-Beltrami operator

Let N be a smooth surface, possibly with boundary, equipped with a Rieman-

nian metrics and let us consider the inner product 〈 f ,g〉2 :=
∫
N f gdµ defined on the

space L2(N ) of square integrable functions on N and the corresponding norm ‖ · ‖2.

The Laplace-Beltrami operator ∆ is self-adjoint 〈∆ f ,g〉2 = 〈 f ,∆g〉2, and positive semi-

definite 〈∆ f , f 〉2 ≥ 0, ∀ f ,g, [44].

Laplacian eigenbasis and its optimality. Recalling that the Laplace-Beltrami operator

is self-adjoint and positive semi-definite, it has an orthonormal eigensystem (λn,φn)
+∞
n=0 ,

∆φn = λnφn, λ0 = 0, λn ≤ λn+1, in L2(N ). Expressing a function f in L2(N ) in terms

of the Laplacian eigenfunctions, we have that f = ∑
+∞
n=0 αnφn, αn := 〈 f ,φn〉2;

‖ f‖2
2 = ∑

+∞
n=0 α2

n, ‖∇ f‖2
2 = ∑

+∞
n=0 α2

nλn.

According to [1], the Laplacian eigenfunctions are an optimal basis for the representa-

tion of signals with bounded gradient magnitude. In fact, the spectral decomposition

fn = ∑
n
i=0〈 f ,φi〉2φi is optimal for the approximation of functions with L2 bounded gra-

dient magnitude; i.e., the residual error rn := f − fn is bounded as

‖rn‖2
2 ≤
‖∇ f‖2

2
λn+1

. (1)

The spectral decomposition is also optimal for the approximation of functions with

respect to the error estimation in (1). In fact, for any 0≤ α < 1 there is no integer n

and no sequence (ψi)
n
i=0 of linearly independent functions in L2 such that∥∥∥∥∥ f −

n

∑
i=1
〈 f ,ψi〉2ψi

∥∥∥∥∥
2

≤ α
‖∇ f‖2

λn+1
, ∀ f .

Indeed, the Laplacian eigenfunctions are an optimal basis for the definition of scalar

functions on a given domain, such as the Laplacian spectral kernels and distances on 3D
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shapes (Sect. 3). From the computational point of view, they have two main drawbacks:

a high computational cost and storage overhead, which prevent the evaluation of a large

number of Laplacian eigenpairs, and numerical instabilities with respect to the surface

discretisation [38, 39].

2.2. Theoretical background: spectral kernels and distances

We briefly review the equivalent definitions of the spectral kernels (Sect. 2.2.1) and

distances (Sect. 2.2.2), which will be useful to introduce their spectrum-free computa-

tion and main properties.

2.2.1. Spectral operator and kernel

According to [38, 39], let ρ : R+→ R be a positive filter map that is square in-

tegrable and admits the power series ρ(s) = ∑
+∞
n=0 αnsn. Considering the orthonormal

Laplacian eigensystem (λn,φn)
+∞
n=0 , the spectral representation of the functions ∆i f and

(∆†)i f is

∆
i f =

+∞

∑
n=0

λ
i
n〈 f ,φn〉2φn, (∆†)i f =

+∞

∑
n=1

1
λi

n
〈 f ,φn〉2φn. (2)

If λk = 0, then we neglect the corresponding entry in (∆†)i f . In L2(N ), we define the

spectral operator

Φρ f =
+∞

∑
n=0

αn∆
n f =

+∞

∑
n=0

ρ(λn)〈 f ,φn〉2φn, (3)

which is linear, continuous, self-adjoint, and Φρ f = 〈Kρ, f 〉2, with

Kρ(p,q) =
+∞

∑
n=0

ρ(λn)φn(p)φn(q) (4)

spectral kernel. The spectral kernel operator and kernel are well-posed if the filter is

bounded or square-integrable. The spectral kernel is also symmetric and self-adjoint,

as a consequence of its definition. From these relations, it follows that

• the spectral kernel Kρ(p, ·) = Φρδp is achieved as the action of the spectral op-

erator on the δ-function at p;

• the spectral kernel is the solution to the differential equation Φ1/ρKρ(p, ·) = δp.

In Sect. 2.4, this property is further investigated in terms of the relation between

the spectral and Green kernels.
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To express the spectral distances in terms of the spectral operator (Sect. 2.5), we show

that the pseudo-inverse of Φρ is induced by the filter function 1/ρ; i.e., Φ
†
ρ = Φ1/ρ. In

fact, from the spectral representation (3) of Φ1/ρ and Φρ, we get that

ΦρΦ1/ρΦρ = Φρ, Φ1/ρΦρΦ1/ρ = Φ1/ρ,

〈Φ1/ρΦρ f ,g〉2 = 〈 f ,Φ1/ρΦρg〉2.
(5)

In the following, we assume that both Φρ and Φ1/ρ are well-defined; for instance, this

hypothesis is satisfied if ρ is not null only on a compact interval of R+ and it is valid

in the discrete case (Sect. 3), where the Laplacian spectrum belongs to the interval

I := [0,λmax(L̃)], with λmax(L̃) maximum Laplacian eigenvalue.

2.2.2. Spectral distances

Through the spectral operator, we introduce the scalar product and the correspond-

ing distance as [38, 39] 〈 f ,g〉 := 〈Φ1/ρ f ,Φ1/ρg〉2 = ∑
+∞
n=0

〈 f ,φn〉2〈g,φn〉2
ρ2(λn)

, (a)

d2( f ,g) := ‖ f −g‖2 = ∑
+∞
n=0

|〈 f−g,φn〉2|2

ρ2(λn)
. (b)

(6)

Indicating with δp the map that takes value 1 at p and 0 otherwise, and selecting

f := δp, g := δq in Eq. (6b), the spectral distance (Fig. 1) on N is defined as

d2(p,q) := ‖δp−δq‖2

=Eq. (6b)

+∞

∑
n=0

|φn(p)−φn(q)|2

ρ2(λn)

=Eq. (6a) ‖Φ1/ρ(δp)−Φ1/ρ(δq)‖2
2

= ‖K1/ρ(p, ·)−K1/ρ(q, ·)‖2
2

= K1/ρ(p,p)−2K1/ρ(p,q)+K1/ρ(q,q);

i.e., these equivalent formulations involve the Laplacian spectrum, the spectral operator

and kernel. The third equality follows from the identity Φρ(δp) = Kρ(p, ·) and will be

applied to the computation of the spectral distances (Sect. 3.2); in fact, it is independent

of the evaluation of the Laplacian spectrum. The last identity is achieved by applying
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the relation

d2(p,q) = ‖K1/ρ(p, ·)−K1/ρ(q, ·)‖2
2

=
+∞

∑
n=0

ρ
−2(λn)φn(p)φn(p)−2

+∞

∑
n=0

ρ
−2(λn)φn(p)φn(q)

+
+∞

∑
n=0

ρ
−2(λn)φn(q)φn(q).

2.3. Stability of the eigenpairs of the spectral operator

Generalising the results in [38, 39], we show that the computation of a single eigen-

value of the spectral operator is numerically stable and instabilities are generally due

to repeated or close eigenvalues. Firstly, we notice that if λ is a Laplacian eigenvalue

of multiplicity m then µ := ρ(λ) is an eigenvalue of Φρ and its multiplicity is equal

to or greater than m. The corresponding eigenfunction is the Laplacian eigenfunction

associated with the eigenvalue λ; i.e., ∆φ = λφ and Φρφ = ρ(λ)φ.

We perturb the spectral operator by δE , δ→ 0, and compute the eigenpair (µ(δ),φ(δ))

of the corresponding operator Φρ +δE ; i.e.,

(
Φρ +δE

)
φ(δ) = µ(δ)φ(δ), φ(0) = φ, µ(0) = µ. (7)

Recalling that the derivative of µ(δ) measures the variation of the eigenvalue, deriving

(7) with respect to δ, and evaluating the resulting relation at 0, we have that

Eφ+Φρφ
′(0) = µ′(0)φ+µφ

′(0). (8)

From (8) and the self-adjointness of Φρ, it follows that 〈φ,Φρφ′(0)〉2 = µ〈φ,φ′(0)〉2.

Multiplying both sides of (8) by φ and applying the previous identity we get that

|µ′(0)|= |〈φ,Eφ〉2| ≤ ‖E‖2‖φ‖2
2 = ‖E‖2;

i.e., the computation of the eigenvalue of Φρ with multiplicity one is stable.

Assuming that µ := ρ(λ) is an eigenvalue of Φρ with multiplicity m and rewriting

the characteristic polynomial as p(s) = (s−µ)mq(s), where q(·) is a polynomial of

degree n−m and q(µ) 6= 0, we get that

(s−µ)m =
p(s)
q(s)

≈ O(δ)

q(s)
, δ→ 0, as p(s)→ 0, when s→ µ;

8



ρt(s) = s ρt(s) = s2 ρ(s) = s3 ρ(s) = s2 log(1+ s)

Figure 1: Different filters ρ induce spectral distances from a seed point with a different behaviour, in terms

of the locality, shape, and distribution of the level-sets and according to the decay of 1/ρ to zero. These

distances have been computed with the Padé-Chebyshev approximation (r = 5).

i.e., s≈ µ+O(δ
1
m ). Indeed, modifying the Laplacian matrix in such a way that the

filtered eigenvalues are perturbed by δ := 10−m corresponds to a change of order 0.1

in µ (i.e., s≈ µ+0.1) and this amplification becomes larger as the multiplicity of the

eigenvalue increases.

While multiple eigenvalues are typically associated with symmetric shapes, nu-

merically close or switched eigenvalues are present regardless of the surface regularity.

This unstable computation of multiple eigenpairs of the spectral operator generally af-

fects the accuracy of the truncated spectral approximation

dk(p,q) :=
k

∑
n=0

|φn(p)−φn(q)|2

ρ2(λn)
(9)

of the corresponding distances. In fact, each filtered eigenvalue ρ(λn), n = 1, . . . ,k,

which appears at the denominator of dk, can further accentuate the numerical error of λn

in the distance computation. Furthermore, the computation of the Laplacian spectrum

is time-consuming and it is difficult to properly select the number of eigenpairs that is

necessary to accurately approximate the spectral distance. Indeed, we propose an eval-

uation of the spectral distance that is independent of the computation of the Laplacian

spectrum and is equivalent to a set of differential equations involving only the Laplace-

Beltrami operator and its pseudo-inverse. This novel spectrum-free computation is a

generalisation of the discrete approach recently presented in [38, 39].
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2.4. Relation between spectral and Green kernels

To study the relation between the Green and the spectral kernels, let us consider

a linear differential operator L and the corresponding Green kernel K :N ×N → R

such that LK(p,q) = δ(p−q). Then, the solution to the differential equation Lu = f

is expressed in terms of the Green kernel as u(p) = 〈K(p, ·), f 〉2.

Noting that the eigensystem (µn,ψn)
+∞
n=0 of the integral operatorAK f := 〈K(·, ·), f 〉2

induced by the Green kernel satisfies the relation Lψn = µ−1
n ψn, µn 6= 0, we have that

the eigensystem of L is (µ−1
n ,ψn)

+∞
n=1 . Indeed, L andAK have the same eigenfunctions

and reciprocal eigenvalues. In particular, the spectral representation of the Green kernel

K(p,q) = ∑
+∞
n=0 µnψn(p)ψn(q) is uniquely defined by the spectrum of L. Combining

the previous results with the properties of the spectral operator and kernel (Sect. 2.2.2),

we get that

• for the harmonic operator L= ∆, the Green kernel is the commute-time kernel

K∆(p,q) =
+∞

∑
n=1

1
λn

φn(p)φn(q);

• for the bi-Laplacian operator L := ∆2, the Green kernel is the bi-harmonic ker-

nel

K∆2(p,q) :=
+∞

∑
n=1

1
λ2

n
φn(p)φn(q);

• for the diffusion operator L= exp(t∆), the Green kernel is the diffusion kernel

(Fig. 2)

Kt(p,q) =
+∞

∑
n=0

exp(−tλn)φn(p)φn(q);

• for the spectral operator L= Φ1/ρ, the Green kernel is the spectral kernel Kρ

defined in Eq. (4).

2.5. Spectrum-free approximation of kernels and distances

Recalling the relation Φ
†
ρ = Φ1/ρ in Eq. (5) and noting that

d( f ,g) = ‖u‖2, u = Φ1/ρ( f −g)⇐⇒Φρu = f −g,

10



(a)

(b)

Figure 2: (a,b) Level-sets of the diffusion kernel at two different scales and at different seed points, which

confirm the locality, smoothness, and shape-awareness of the heat kernel.

the spectral distance is equivalent to the norm of (i) the function u = Φ1/ρ( f −g)

and (ii) the solution of the differential equation Φρu = f −g. Through these rela-

tions, the spectral kernels will be computed by approximating the filter with a rational

function (Sect. 2.5.1) and by converting the evaluation of the corresponding distances

(Sect. 2.5.2) to the solution of a set of differential equations that involve the Laplace-

Beltrami operator. The choice of one of these two equivalent representations depends

on the selected filter and the simplicity of evaluating either Φρ or Φ1/ρ.

2.5.1. Kernel approximation, convergence, and accuracy

Let us introduce the space of the Laplacian spectral kernels as

K(N ) := {Kρ :N ×N → R, Kρ spectral kernel in Eq. (4)},

and equipped with the L2(N ×N ) scalar product. Since

‖Kρ−Kϕ‖2
2 =

+∞

∑
n=0
|ρ(λn)−ϕ(λn)|2 ≤ ‖ρ−ϕ‖2

2,

the approximation of a given spectral kernel Kρ with a new kernel Kϕ in K(N ) is

reduced to the approximation of ρ by ϕ on a proper subspace of functions (e.g., the

11



L̃2ei L̃3ei L̃10ei

(L̃†)2ei (L̃†)3ei (L̃†)10ei

Figure 3: Level-sets of the basis functions at pi associated with the rational polynomial approximation of the

spectral distances.

space of polynomials or rational polynomials). The class of functions used for the

approximation of the input filter ρ is selected in such a way that Kϕ provides a good

approximation of the input filter Kρ and is easily computable.

2.5.2. Rational approximation based on the canonical basis

We apply the Padé-Chebyshev rational approximation to the filter map 1/ρ. LetRl
r

be the space of all rational functions

crl(s) :=
pl(s)
qr(s)

=
β0 +β1s+ . . .+βlsl

α0 +α1s+ . . .+αrsr , s ∈ [a,b].

We briefly recall that the representation of the rational approximation is not unique,

unless we impose that it is irreducible; for example, by choosing qr(a) = 1. Given

a filter ρ : [a,b]→ R, there exists a unique best approximation of 1/ρ in Rl
r with re-

spect to the `∞ norm [20] (Ch. 9), which is represented in terms of the canonic basis

B := {si}l
i=0∪{s−i}r

i=1.
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Truncated spectral approx. P.C. approx.

(a) k = 100 (b) k = 1000 (c) k = 2K (d) ε∞ = 10−6

s = 10−1

s = 10−3

Figure 4: Smoothness and locality of the diffusion kernel at a seed point (red dot) and at different scales,

which have been computed with (a-c) the truncated spectral approximation (i.e., k Laplacian eigenpairs) and

(d) the Padè-Chebyshev approximation. Since the input shape has 2K vertices, the spectral approximation

(c) provides the ground-truth.

Recalling that the dimension of the spaceRl
r of rational polynomial of degree (r, l)

is l + r+1, let us express the best rational approximation crl of ρ in terms of these basis

functions. To this end, we can either apply algebraic rules or impose interpolating

constraints at (l + r+1) points in order to compute the new coefficients through the

identity
l

∑
i=0

aisi +
r

∑
i=1

bis−i = crl(s).

The canonical basis used to represent the rational approximation of the input filter

simplifies the computation of the spectral kernel; in fact, we need to evaluate only the

functions ∆i f and (∆†)i f . Instead of applying the spectral representation (2), we define

a recursive procedure as follows. To compute g1 = ∆† f , let us multiply both sides by ∆

13



(a) ρ(s) = (1−s)2

1+s (b) ρ, trunc. spect. approx.

Figure 5: Comparison of the spectral distance induced by the same filter and approximated with the (a)

spectrum-free and (b) truncated spectral approximation (k = 500). This last method produces some artefacts

that become evident as we move far from the seed point.

and notice that

∆g1 = ∆∆
† f = f −〈 f ,φ0〉2φ0, (10)

where φ0 = 1 is the constant eigenfunction equal to 1. By definition of pseudo-

inverse, g1 is the least-squares solution to the equation ∆g1 = f̃ , where f̃ is equal to f

minus its mean 〈 f ,φ0〉2φ0. For the general case, we apply the recursive relation

gi := (∆†)i f = ∆
†(∆†)i−1 f = ∆

†gi−1, i≥ 2,

which reduces to the previous case. In a similar way, gi = ∆i f is calculated as hi = ∆hi−1,

i = 1, . . . ,r, with h0 := f . Indeed, the proposed approach requires the solution of (l + r)

Laplace equation with a different right-hand side.

Convergence and accuracy. To verify that the sequence

(Φ
(r)
1/ρ

f )+∞r=0 , Φ
(r)
1/ρ

f :=
+∞

∑
n=0

crl(λn)〈 f ,φn〉2φn,

induced by the rational polynomial approximation crl of 1/ρ, converges to Φ1/ρ f , we

apply the upper bound∥∥∥Φ
(r)
1/ρ

f −Φ1/ρ f
∥∥∥2

2
≤ ‖crl−1/ρ‖2

∞

+∞

∑
n=0
|〈 f ,φn〉2|2

= σ
2
rl‖ f‖2

2, σrl ≈O(sr+l+1), s→ 0;

where σrl is the approximation error between 1/ρ and crl . For the diffusion opera-

tor [52], σrr = 10−5.
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t = 10−1 t = 10−2 t = 10−3

Figure 6: Reducing the scale t, the corresponding diffusion distances become locally unstable, as we move

far from the seed point (on the feet). See also Fig. 7.

3. Spectrum-free approximation of kernels and distances

We briefly summarise the discretisation of the spectral kernel and distances [38,

39], which is then used to establish a simple relation between the spectral kernel and

its pseudo-inverse (Sect. 3.1). Then, we introduce the spectrum-free approximation of

the spectral kernels and distances (Sect. 3.2) and discuss the computational cost of the

main steps of the proposed approach (Sect. 3.3).

3.1. Discretisation of spectral kernels and distances

Let us consider a (triangular, polygonal, volumetric) mesh M := (P,T ), which

discretises a domain N , where P := {pi}n
i=1 is the set of n vertices and T is the con-

nectivity graph. On M, a scalar function f :M→ R is identified with the vector

f := ( f (pi))
n
i=1 of f -values at P .

Let us introduce the Laplacian matrix L̃ := B−1L, where L and B are the stiffness

and mass matrix respectively (e.g., cotangent [40], Voronoi-cotg [15], linear FEM [42]

weights), and the corresponding spectral decomposition is LX = BXΛ, X>BX = I,

where X := [x1, . . . ,xn] is the eigenvectors’ matrix and Λ is the diagonal matrix of the

eigenvalues (λi)
n
i=1. Analogous discretisations apply to polygonal [3, 22] and tetrahe-

dral [27, 51] meshes, or point sets [29].

Under these assumptions, we introduce the spectral kernels and distances (Sect. 3.1.1),

together with their spectrum-free approximation (Sect. 3.1.2), which is based on a ra-

tional approximation of the input filter.
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n = 200 n = 500 n = 2K n = 60K

Figure 7: Analogous behaviour of the heat kernel with respect to a different resolution (n vertices) of the

input shape, in terms of shape and distribution of the level-sets.

3.1.1. Discrete spectral kernels and distances

The spectral operator Φ1/ρ is discretised by the spectral kernel matrix K1/ρ such

that

ρ
−1(λi) =Eq. (3) 〈Φ1/ρφi,φ j〉2 = x>i K>1/ρ

Bx j, ∀i = 1, . . . ,n.

Indeed, K1/ρ = Xρ†(Λ)X>B is the pseudo-inverse of the spectral kernel Kρ = ρ(L̃),

which is a filtered version of the Laplacian matrix. Here, ρ†(Λ) = diag(1/ρ(λi))
n
i=1

and its entry is null if ρ(λi) = 0. Then, the discrete spectral distances [38, 39] are

d2(pi,p j) = ‖K1/ρ(ei− e j)‖2
B =

n

∑
l=1

|〈xl ,ei− e j〉B|2

ρ2(λl)
,

where ei is the vector of the canonical basis of Rn, 〈f,g〉B := f>Bg and ‖f‖2
B := f>Bf

are the scalar product and the norm induced by the mass matrix, respectively. In this

case, we have derived the spectral distances by applying the continuous expression of

the spectral operator instead of the spectral kernel, as done in [38, 39].

Analogously to the definitions in Sect. 2.2, the spectral distance is equal to the

norm d(f,g) := ‖u‖B of the solution to the linear system Kρu = f−g or to the norm of

the vector u = K1/ρ(f−g). In a similar way, the spectral distance between two points

reduces to

d(pi,p j) = ‖K1/ϕ(ei− e j)‖B.

Indeed, this approximation of the spectral distances involves the spectral kernel only

and allows us to bypass numerical inaccuracies due to repeated or close Laplacian

eigenvalues [20] (§ 7).
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3.1.2. Spectral kernel approximation and conditioning

Since the eigenvalues of the spectral kernel matrix Kρ are (ρ(λi))
n
i=1, the approxi-

mation of Kρ with a new kernel Kϕ reduces to the approximation of the corresponding

filters with respect to the `∞ norm; in fact,

‖Kρ−Kϕ‖2 = ‖Kρ−ϕ‖2 = max
i=1,...,n

{|ρ(λi)−ϕ(λi)|} ≤ ‖ρ−ϕ‖∞.

The approximation ϕ of ρ is computed on the interval [0,λmax(L̃)], where the maximum

Laplacian eigenvalue is evaluated by the Arnoldi method [20], or is set equal to the

upper bound λmax(L̃)≤min{maxi{∑ j L̃(i, j)},max j{∑i L̃(i, j)}} [26, 48].

Conditioning of the spectral kernel. We now analyse the conditioning of the spectral

kernel. Assuming that ρ is an increasing function (i.e., 1/ρ is a low pass filter), the

conditioning number of the filtered Laplacian matrix is bounded as

κ2(Kρ) = κ2(ρ(L̃)) =
maxi=1,...,n{ρ(λi)}
mini=1,...,n{ρ(λi)}

=
‖ρ‖∞
ρ(0)

,

and it is ill-conditioned when ρ(0) is close to zero or ρ is unbounded. If ρ is bounded

and ρ(0) is not too close to 0, then the filtered Laplacian matrix is well-conditioned. If

ρ(0) is null, then we consider the smallest and not null filtered Laplacian eigenvalue at

the denominator of the previous relation.

3.2. Spectrum-free approximation of distances: canonical basis

Analogously to the discussion in Sect. 2.5.2, the basis B used to represent the ratio-

nal approximation of the input filter simplifies the computation of the spectral kernel;

in fact, we need to compute only the following vectors L̃if and ˜(L
i
)†f. Applying the

spectral representation of the Laplacian matrix

L̃ = XΛX>B, Λ = diag(λi)
n
i=1, λ1 = 0, λi ≤ λi+1, i = 2, . . . ,n−1,

we can represent its powers and the corresponding pseudo-inverse matrices as

L̃i = XΛ
iX>B. (L̃i)† = X(Λi)†X>B, Λ

† = diag(0,λ−1
i )n

i=2.
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t = 10−1 t = 10−2

(a) (b)

(c) (d)

Figure 8: (c,d) Small undulations and negative values of the truncated spectral approximation at small scales.

These local undulations are not present in the Padé-Chebyshev approximation (a,b), whose values are always

positive.

To compute g1 = L̃†f, let us multiply both sides by L̃ and notice that

L̃g1 = L̃L̃†f

= XΛΛ
†X>Bf, X>BX = I,

= X(I− e1e>1 )X>Bf, e1 := [1,0, . . . ,0]>,

= f− (1>Bf)1, 1 := [1,1, . . . ,1]>;

i.e., g1 is the least-squares solution to the sparse and symmetric linear system

Lg1 = Bg0, g0 := f− (1>Bf)1,

where g0 is achieved by subtracting to f its mean value 〈f,1〉B (c.f., Eq. (10)). For the

general case, we apply the recursive relation

gi := (L̃†)if = L̃†(L̃†)i−1f = L̃†gi−1, i≥ 2,
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t = 0.1 t = 0.01

Figure 9: Stability of the spectrum-free computation of the diffusion kernel with respect to partially-sampled

surfaces.

which reduces to the previous case (Fig. 3). In a similar way, gi = L̃if is calcu-

lated by recursively solving the sparse, symmetric, and positive-definite linear systems

Bgi+1 = Lgi, i = 1, . . . ,r−1, with g0 := f.

3.3. Computational cost

The truncated spectral approximation, whose computational cost depends on the

sparsity degree of the Laplacian matrix, takes fromO(kn logn) toO(kn2) time, where k

is the number of selected eigenpairs. Selecting a rational approximation of the input

filter of degree (r, l), the evaluation of the corresponding spectral kernel is reduced to

solve l linear systems whose coefficient matrix is B and r linear systems whose coeffi-

cient matrix is L. Through iterative solvers, the computational cost is O((r+ l)τ(n)),

where τ(n) is the cost for the solution of a sparse linear system, which varies from

O(n) to O(n2), according to the sparsity of the coefficient matrix, and it is O(n logn)

in the average case.

In a similar way, the computation of the spectral distance between two points has

the same order of complexity of the evaluation of the corresponding spectral kernel

at the same input points. For the computation of the one-to-all spectral distance, we

lump or pre-factorise B (if not already diagonal) and pre-factorise L. Then, the overall

computational cost varies fromO(rn) (B diagonal) toO(n logn+ rn) (B not diagonal),

where O(n logn) is the time for the factorisation of L.

In spite of this different computational cost, the truncated spectral approximation

(Fig. 4) is affected by small geometric undulations (especially at small scales), the

use of heuristics for the selection of the number of Laplacian eigenpairs with respect
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(a) (b)

(c) (d)

Figure 10: Behaviour and robustness of the spectrum-free approximation of the diffusion kernel on (b-d) the

noisy shapes (bottom part, red surfaces), which have been plotted on (a) the initial shape.

to the target approximation accuracy, and the scale of features of the input shape.

The spectrum-free computation (Fig. 5) generally provides better results in terms of

smoothness, regularity, and accuracy of the computed spectral basis. For further com-

parison examples, we refer the reader to Sect. 4.

4. Discussion

We now discuss the selection of the filter map and main examples on the computa-

tion of the Laplacian spectral distances.

The spectral kernels and distances depend only on the behaviour of the filter in the

spectral domain and on the Laplacian spectrum: increasing or decreasing the decay

of the filter to zero encodes global or local shape details, respectively. Recalling that

an arbitrary filter 1/ρ can be approximated in Rl
r with an accuracy of order O(sl+r+1)

with respect to the `∞-norm (Sect. 3.2), we can use the spaceRl
r to define any filter and

the corresponding spectral distances. In this way, we reduce the degree of freedom in
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t = 10−2 t = 10−1 t = 1

t = 10−2 t = 10−1

Figure 11: Robustness of the diffusion kernel at different scales and on self-intersecting surfaces.

the definition of the filter to the selection of (l + r+1) coefficients and without losing

the richness of the resulting spectral distances. For the selection of the coefficients of

the rational filter and the filter frequencies, we can apply the rules proposed in [24] for

Laplacian spectral smoothing. In particular, the filter frequencies are derived from the

dimension of a bounding box placed around the chosen feature F and whose axis are

aligned with the eigenvectors of the covariance matrix of F .

The truncated spectral approximation (c.f., Eq. (9)) of the diffusion, and more gen-

erally of the spectral distances, is affected by (i) small undulations (especially at small

scales, Fig. 6), (ii) heuristics for the selection of the number of Laplacian eigenpairs

with respect to the target approximation accuracy and the scale of the shape features,
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Figure 12: Behaviour of the diffusion kernel on (almost) isometric 3D shapes.

and (iii) the overall computational cost and storage overhead for the computation of

a subpart of the Laplacian spectrum. The comparison of these results with the ones

induced by the spectrum-free computation (Fig. 7) shows the improvement of the pro-

posed approach in terms of smoothness, regularity, and accuracy of the computed dis-

tances.

At small scales (Fig. 8(e,f)), the truncated spectral approximation of the diffusion

kernel generally have small negative values as a matter of the slow decay of the ex-

ponential filter to zero for small eigenvalues. For the Padé-Chebyshev approximation

(Fig. 8(a-d)), the kernel values are positive at all the scales, as we approximate the fil-

ter with a higher accuracy with respect to the truncated spectral approximation, which

applies a low-pass filter.

Finally, the analogous distribution and shape of the level-sets of the heat kernel and

diffusion distance confirm the robustness of the Padé-Chebyshev of the approximation

with respect to surface resolution (Fig. 7), partial sampling (Fig. 9), geometric (Fig. 10)

and topological (Fig. 11) noise, almost isometric deformations (Fig. 12).
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5. Conclusions and future work

We have presented a unified approach to the definition, discretisation, and compu-

tation of the spectral kernels and distances, which are defined by filtering the Laplacian

spectrum and generalise the commute-time, bi-harmonic, diffusion, and wave kernel

and distances. Even though analytic filters are easily defined and encode global/local

shape properties, the corresponding spectral kernels and distances are not capable of

characterising a specific shape class (e.g., humans with respect to four-legs animals,

chairs with respect to tables). Indeed, the main topic for future research is a deeper

analysis of the constraints on the filter in order to define “optimal” spectral kernels

and distances for shape comparison. To achieve this goal, we plan to apply and spe-

cialise learning methods, as initially investigated in [2, 8]. Another interesting aspect

is the study of spectral kernels for the adaptive hash retrieval [5] and the identification

of those PDEs, whose Green kernels are useful for shape analysis, as already demon-

strated by the bi-harmonic and diffusion kernels.
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