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Abstract: Multimodal classification methods using different modalities of imaging and non-imaging data 

have great advantages over traditional single-modality-based ones for the diagnosis and prognosis of 

Alzheimer’s disease (AD), as well as mild cognitive impairment (MCI) which is the prodromal stage of 

AD. With the increasing amount of high-dimensional heterogeneous data to be processed, multi-modality 

feature selection has become a crucial research direction in medical image analysis. However, traditional 

methods usually depict the data structure using fixed and predefined similarity matrix as a priori, which is 

difficult to precisely measure the intrinsic relationship structure across different modalities in high-

dimensional spaces. In addition, based on the predefined similarity matrix, the chosen neighbors are 

suboptimal thus limiting the performance of the subsequent classification task. To overcome these 

drawbacks, in this paper, we propose a novel multi-modal feature selection method called Adaptive-

Similarity-based Multi-modality Feature Selection (ASMFS) which performs adaptive similarity learning 

and feature selection simultaneously. Specifically, a similarity matrix is learned by jointly considering 

different modalities and at the same time, to obtain the associated subspace representation, an efficient 

feature selection is conducted by imposing group sparsity-inducing ℓ",$-norm constraint. The regularization 

parameter within the similarity optimization problem is set as a variable to be learned for reducing the 

number of parameters. Furthermore, an effective optimization algorithm is designed to solve the proposed 

algorithm. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database using baseline MRI and FDG-PET imaging data collected from 51 AD, 43 MCI 

converters (MCI-C), 51 MCI non-converters (MCI-NC) and 52 normal controls (NC). According to the 

experimental results, our proposed method captures the intrinsic similarity across multiple modalities with 
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the change of feature dimension which in turn helps to select the most instructive features and ultimately 

promotes the performance of classification. The empirical study also well demonstrates that the proposed 

joint learning method outperforms the existing state-of-the-art approaches for multi-modality classification 

of AD/MCI. 
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1. Introduction 
Alzheimer's disease (AD) is a chronic neurodegenerative disease which is the main cause of dementia, 

leading to problems with language, disorientation, mood swings, bodily functions and, ultimately, death [1]. 

According to a recent report by Alzheimer’s Association, about 5.3 million Americans have AD and 5.1 

million are old people who are aged over 65 [2]. In 2050, the AD population will increase to beyond 100 

million [3]. Although some therapies may temporarily improve symptoms of AD, there is no treatment that 

stops or reverses its progression so far. Hence, the early diagnosis of AD and especially its prodromal 

condition known as mild cognitive impairment (MCI) is highly essential for timely therapy. For the last 

decades, neuroimaging technique has proven to be a powerful tool to investigate the characteristics of 

neurodegenerative progression between AD and normal controls (NC), for instance, structural MR imaging 

(MRI) for brain atrophy measurement [4-7], functional imaging (e.g., FDG-PET) for hypometabolism 

quantification [8, 9], and cerebrospinal fluid (CSF) for quantification of specific proteins [6, 10-12]. 

 

In recent years, machine learning and pattern classification methods have been widely applied for the early 

diagnosis of AD based on single modality of biomarkers. For example, Lei et al. [13] propose to build a 

framework based on longitudinal multiple time points data to predict clinical scores of AD. Liu et al. [14] 

developed an inherent structure-based multi-view learning method which utilizes the structure information 

of MRI data well. In addition to structural MRI, some researchers also used fluorodeoxyglucose positron 

emission tomography (FDG-PET) for AD or MCI classification [15-17]. However, since such single-task 

learning treats each task as a stand-alone one without considering the intrinsic association among different 

tasks, the performance of these approaches is only suboptimal in predicting the progression of brain diseases. 

 

As is known, different modalities of biomarkers can provide the inherently complementary information. 

For example, structural MRI reveals patterns of gray matter atrophy, while FDG-PET measures the reduced 

glucose metabolism in the brain. It is reported that MRI and FDG-PET provide different sensitivity for 

memory prediction between disease and health [18]. As a result, many studies have used multimodal data 
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to further improve classification performance. For instance, Tong et al. [19] present a multi-

modality classification framework using nonlinear graph fusion to efficiently exploit the complementarity 

in the multi-modal data of PET and CSF. Hinrichs et al. [20] combined two modalities, i.e., MRI and PET, 

for classification of AD. Zhang et al. [21] combined three modalities, i.e., MRI, FDG-PET and CSF, to 

classify AD/MCI from NC. Gray et al. [22] used MRI, FDG-PET, CSF and categorical genetic information 

for AD/MCI classification. These existing studies have suggested that different imaging modalities provide 

different views of brain structure or function that could be overlooked by using single modality. Thus, 

utilizing modalities together to improve the accuracy in disease diagnosis becomes sensible idea for 

researches. 

 

Despite the promising performance of the above multi-modality classification methods, they all face the 

challenge of handling high dimensionally features for the analysis. The curse of dimensionality, that occurs 

when there are insufficient training subjects versus large feature dimensions, limits the further performance 

improvement of existing methods. In addition, the high dimensional feature vectors usually contain some 

irrelevant and redundant features and thus lead to the overfitting problem, which hurts the generalization 

ability of the algorithm. Moreover, in neuroimaging data analysis, features may correspond to brain regions. 

In such a case, feature selection can detect the regions with brain atrophy, pathological amyloid depositions 

or metabolic alterations, thus becomes potentially useful for timely therapy of brain diseases. Therefore, 

feature selection is a compelling topic for multi-modality data in medical image analysis.  

 

However, there are two main challenges of multi-modality feature selection [23]. First, because feature 

representations extracted from different modalities may have distinct distributions in a variety of feature 

spaces, it is challenging to integrate these discriminative features into a unified form of feature 

representation. Second, since various features from different modalities play distinctive roles in 

classification task, how to evaluate each feature group and select the relevant features for the task remains 

a problem. Concentrating on the above challenges, several multi-modality feature selection methods have 

been developed in recent years. For example, a multi-task feature selection (MTFS) was proposed in [24] 

to select common subset of relevant features from each modality. Liu et al. [25] proposed a multi-task 

feature selection method (i.e., inter- modality multi-task feature selection (IMTFS)) to preserve the 

complementary inter-modality information. Different from MTFS, IMTFS imposes an inter-modality term, 

which can maintain the geometry structure of different modalities from the same subject. Also, a manifold 

regularized multi-task feature learning method (M2TFS) [26] was proposed to preserve the data distribution 

information in each modality separately. In these approaches, MTFS focuses on feature selection, without 
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considering the underlying data structure. IMTFS and M2TFS not only focus on feature selection, but also 

take into account of the relationship of training subjects.  

 

To preserve the underlying data structure, similarity measure plays an important role. It is worth noting that, 

in the above mentioned multi-modality feature selection methods, the neighbors and the similarity between 

the original high-dimensional data are usually obtained separately from each individual modality, such as 

the case in M2TFS. Besides, the similarity is fixed before feature selection in above methods. However, 

considering the existence of noisy and redundant features, the relationship of subjects in high-dimensional 

space may not necessarily reveal the underlying data structure in the low-dimensional space after feature 

selection. On the other hand, the performance of a mass of machine learning methods, such as K-Nearest 

Neighbors (KNN) [27], Support Vector Machine (SVM) [28], RBF Neural Network [29] as well as K-

means [30] and other clustering algorithms, to a large extent, are determined by the similarity between each 

pair of the subjects. Thus, the performance of above methods which are dependent on subject similarity 

would degrade if the similarity matrix is constructed inaccurately. 

 

Therefore, this paper argues that the similarity should not be fixed but adaptive to change with the low-

dimensional representation after feature selection. In other words, the similarity is supposed to be variable 

and optimized while selecting multi-modality features. Besides, it is commonly accepted that a large amount 

of real-world high-dimensional data actually lie on low-dimensional manifolds embedded within a high-

dimensional space [31]. Provided there is sufficient data (such that the manifold is well-sampled), we expect 

each data point and its neighbors to lie on or close to a locally linear patch of the manifold. We can 

characterize the local geometry of these patches by linear coefficients that are used to reconstruct each data 

point from its neighbors [32]. Additionally, since neighborhood similarity is more reliable compared with 

the similarity retrieved from farther samples, preserving local neighborhood structure is of great help to 

construct an accurate similarity matrix. Therefore, instead of updating the similarities between every data 

pairs, we only consider the local neighborhood similarities of every subject. 

 

In light of this, we propose a novel learning method which is able to simultaneously capture the intrinsic 

similarity shared across different modality data, and select the most informative features. This method is 

called Adaptive-Similarity-based Multi-modality Feature Selection (ASMFS). Specifically, the proposed 

method includes two major steps: 1) adaptive similarity learning as well as multi-modality feature selection, 

and 2) multimodal classification. Our contributions are in Step One. In step one, we first simultaneously 

update the similarity matrix and optimize the sparse regression coefficient which performs feature selection. 

Furthermore, the manifold hypothesis discussed above is introduced in adaptive similarity learning and 𝐾 
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local neighborhood similarities of every subject will be updated at one time, where 𝐾 is the number of 

similarities which will calculated for each subject. Moreover, to better depict the collective information 

among multiple modalities, we assume that the similarity matrix is shared by different modality data 

collected from the same subject. The proposed objective function is optimized in an alternating manner. 

Then, in step two, we use multi-kernel support vector machine (SVM) to fuse the selected features from 

multi-modality data for the final classification. Our method is evaluated for AD classification, where we 

use the baseline MRI and FDG-PET data from the ADNI database including 51 AD, 43 MCI-C, 51 MCI-

NC and 52 NC. Experimental comparison with the existing methods on the ADNI database illustrates that 

the proposed method not only yields improved performance on identifying disease status, but also discovers 

the disease sensitive biomarkers. 

 

The rest of this paper is organized as follows. Section 2 introduces our proposed multi-modality feature 

selection architecture and methodology. Experiments and experimental results are presented in Section 3. 

Finally, we discuss and conclude this paper in Section 4 and Section 5. 

 

2. Method 
2.1 Multi-modality feature selection with adaptive similarity learning 

In this section, we first introduce how to learn similarity measure from both single and multi-modality data 

through adaptive similarity learning. Then, we further show how to embed this similarity learning into our 

multi-modality feature selection framework. The selected features are eventually taken in a multi-kernel 

support vector machine for disease classification [33]. Figure 1 gives the overview of the proposed 

classification method. 

 
Fig. 1 Framework of multi-modality feature selection with adaptive similarity learning 
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2.1.1 Adaptive similarity learning 

Let’s consider the single modality scenario first. Suppose that in a 𝑑 dimensional feature space, the data 

matrix of n subjects is denoted as 𝑿 = 𝒙$, 𝒙", … , 𝒙+ ∈ ℝ.×+. The subjects can be divided into 𝑐 classes 

and the corresponding label vector is given as 𝒚 = [𝑦$, 𝑦", . . . , 𝑦+]. The similarity matrix 𝑺 that indicates 

the similarity of data pairs can be constructed by two assumptions: 1) it is hoped that the similarity between  

𝒙7  and 𝒙8  can be reflected by their Euclidean distance. If the distance ||𝒙7 − 𝒙;||""  between 𝒙7  and 𝒙8  is 

small, the similarity 𝑠7; should be large, 2) if 𝒙7 and 𝒙; belong to different classes, the similarity 𝑠7; should 

be zero. In this section, we will first discuss two ideal cases according to above two assumptions, and then 

propose our case with consideration of the two cases. 

 

To begin with, we formulate the following objective to determine the similarities 𝑠7;  based on 

aforementioned assumptions: 

min
𝒔>

𝒙7 − 𝒙; "
"+

;?$ 𝑠7;,

 s.t. 𝒔7@𝟏 = 1, 0 ≤ 𝑠7; ≤ 1
𝑠7; = 0, if  𝑦7 ≠ 𝑦;,

,     （1） 

 

where 𝒔7 ∈ ℝ+ is a vector of which the 𝑗-th entry is 𝑠7; and 𝟏 denotes a column vector with all the elements 

as one. However, by solving problem (1), it can be found that only one which is the closest neighbor to 𝒙7 

has the similarity 𝑠7; = 1, while the others are 0. In other words, it is a trivial solution.  

 

Then, suppose the distance information is unavailable between subjects and the following problem is solved 

to estimate the similarities: 

    

min
𝒔>

𝑠7;"+
;?$ ,

 s.t 𝒔7@𝟏 = 1, 0 ≤ 𝑠7; ≤ 1,
𝑠7; = 0, if  𝑦7 ≠ 𝑦;.

     (2) 

 

The solution of 𝑠7; = 	
$
+
  reveals that all the subjects will become the nearest neighbors of 𝒙7  with $

+
 

probability. The problem (2) can be actually regarded as the prior of the nearest neighbor probability when 

the pairwise subject distance is unknown. Considering problem (1) and (2) jointly, we solve the following 

objective to obtain the similarities 𝑠7;: 
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min
𝒔>

𝒙7 − 𝒙; "
"𝑠7; + 𝛼𝑠7;" ,+

;?$

 s.t 𝒔7@𝟏 = 1, 0 ≤ 𝑠7; ≤ 1,
𝑠7; = 0, if 	𝑦7 ≠ 𝑦;.

           (3) 

 

The second term 𝑠7;"  can be regarded as a regularization term to avoid the trivial solution in problem (1) and 

𝛼  is the regularization parameter. The problem (3) can be applied to calculate the similarities for each 

subject 𝒙7. Consequently, in this paper we estimate the similarities for all subjects by solving the following 

problem: 

min
∀7,𝒔>

𝒙7 − 𝒙; "
"𝑠7; + 𝛼𝑠7;" ,+

;?$
+
7?$

 s.t 𝒔7@𝟏 = 1, 0 ≤ 𝑠7; ≤ 1,
𝑠7; = 0, if  𝑦7 ≠ 𝑦;.

                    (4) 

 

We can transform problem (4) to linearly constrained quadratic programming which can be solved by KKT 

conditions. And the matrix 𝑺 = [𝒔$, 𝒔", . . . , 𝒔+]L ∈ ℝ+×+ can be treated as a similarity matrix of 𝑛 subjects.  

 
Now, we extend the above adaptive similarity learning to multi-modality case. The multi-modality data are 

denoted as 𝑿$, 𝑿", . . . , 𝑿N, where 𝑀 is the number of modalities. The data matrix of the 𝑚-th modality is 

defined as 𝑿Q = [𝒙$
(Q), 𝒙"

(Q), . . . , 𝒙+
(Q)]. For all the multi-modality data, we solve the following problem to 

obtain the similarity matrix 𝑺: 

min
𝑺

𝒙7
(Q) − 𝒙;

(Q)
"

"N
Q?$ 𝑠7; + 𝛼𝑠7;" ,+

;?$
+
7?$

 s.t 𝒔7@𝟏 = 1, 0 ≤ 𝑠7; ≤ 1,
𝑠7; = 0, if 	𝑦7 ≠ 𝑦;.

   (5) 

 

Please note that different from traditional multi-modality methods which calculate the similarity for each 

modality separately, the similarity matrix 𝑺 obtained in (5) is shared by different modality data. By doing 

so, we can not only assume that the different modality data collected from the same subject should be 

generated via the same intrinsic distribution, but also capture the information collectively from multiple 

modalities. Thus the similarities of these data in diverse modalities would be identical. 

 

Then, we embed the adaptive similarity learning into multi-modality feature selection in order to learn the 

optimal neighborhood similarity for feature selection, thereby improving the performance of multi-modality 

classification by utilizing the more discriminative information. 
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2.1.2 Multi-modality feature selection with adaptive similarity learning 

To integrate the similarity learning problem (5) with multi-modality feature selection, the objective function 

of our proposed method is defined as: 

min
𝑾,𝑺

𝑦 − 𝒘Q
@ 𝑿Q "

"N
Q?$ + 𝜇 ∥ 𝑾 ∥",$

+𝜆 𝒘Q
@ 𝒙7

(Q) − 𝒘Q
@ 𝒙;

(Q)
"

"N
Q?$ 𝑠7; + 𝛾𝑠7;" ,+

;?$
+
7?$

 s.t 𝒔7@𝟏 = 1, 0 ≤ 𝑠7; ≤ 1,
𝑠7; = 0, if 	𝑦7 ≠ 𝑦;.

   (6) 

 

where 𝑾 = 𝒘$,𝒘", … ,𝒘N ∈ ℝZ×[  is the coefficient matrix，𝒘Q ∈ ℝZ  is the coefficient of the 𝑚 -th 

modality. The ℓ",$ norm of 𝑾 is defined as ∥ 𝑾 ∥",$= 𝛴7
. 𝑤7;"N

; ，which can result in sparse rows of 𝑾 

to achieve feature selection. ASMFS considers different modalities of subjects into similarity construction. 

𝜆, 𝜇 and 𝛾 are regularization parameters to balance the terms in (6). 

 

From (6), we can not only capture the inherent similarity shared across different modality data, but also 

select the most informative features. 

 

2.2 Optimization algorithm 

The objective function (6) is optimized in an alternate manner. Specifically, we fix 𝑾 and optimize 𝑺 and 

then fix 𝑺 and optimize 𝑾. 

 

 1) Fix 𝑾 and optimize 𝑺.  

Removing the irrelative part to 𝑺 from (6), we can get the following objective: 

min
𝒔

𝒘Q
@ 𝒙7

Q − 𝒘Q
@ 𝒙^Q "

"N
Q?$ 𝑠7^ + 𝛾𝑠7^" ,^∈ ^|_>?_`

+
7?$

 s.t. 𝑠7^+
^ = 1,

0 ≤ 𝑠7; ≤ 1.
   (7) 

 

In Section 2.1.1, we assumed that if 𝒙7 and 𝒙; belong to different classes, the similarity 𝑠7; should be zero. 

So when 𝑘 ∈ 𝑘|𝑦7 ≠ 𝑦^ , then 𝑠7^ = 0, which means 𝒘Q
@ 𝒙7

Q − 𝒘Q
@ 𝒙^Q "

"𝑠7^ = 0. Hence, we only need 

to consider the similarity between subjects from the same class, i.e., 𝑠7^ when 𝑘 ∈ 𝑘|𝑦7 = 𝑦^ . 

 

Since the similarity learning of one subject is independent with respect to the learning of the others, we can 

safely decompose the similarity of individual subject according to the objective from (7): 
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min
𝒔>

𝒘Q
@ 𝒙7

Q − 𝒘Q
@ 𝒙^Q "

"N
Q?$ 𝑠7^ + 𝛾𝑠7^" ,^∈ ^|_>?_`

 s.t. 𝑠7^+
^ = 1,

0 ≤ 𝑠7; ≤ 1.
   (8) 

 

By defining 𝑑7^ = |N
Q?$ |𝒘Q

@ 𝒙7
Q − 𝒘Q

@ 𝒙^Q||"", (8) can be simplified to the following form: 

min
𝒔>

𝑑7^𝑠7^ + 𝛾7𝑠7^"^∈ ^|_>?_`

= min
𝒔>

𝛾7 𝑠7^ +
$
"e>
𝑑7^

"
− .>`

f

ge>^∈ 𝑘 𝑦7 = 𝑦^

= min
𝒔>

𝛾7 𝑠7^ +
$
"e>
𝑑7^

"

^∈ 𝑘 𝑦7 = 𝑦^

= min
𝒔>
𝛾7 𝑠7^ +

$
"e>
𝑑7^

"
^∈ ^|_>?_`

= min
𝒔>
𝛾7 𝒔7 +

$
"e>
𝒅7

"

"
.

	

    (9) 

 

Accordingly, the following objective is formulated: 

min
𝒔>

𝒔7 +
$
"e>
𝒅7

"

"
,

s. t. 𝑠7^+
^?$ = 1,

0 ≤ 𝑠7; ≤ 1.

     (10) 

 

We can solve (10) by KKT conditions.  

 

The above objective is a convex function which can be solved utilizing Lagrange method: 

𝐿 𝒔7, 𝜂, 𝜷 = $
"
𝒔7 +

$
"e>
𝒅7

"

"
− 𝜂 𝒔7@𝟏 − 1 − 𝜷@𝒔7,   (11) 

 

where 𝛽 ≥ 0, 𝜂 ≥ 0 are Lagrange multipliers and 𝟏 denotes a column vector with all the elements as one. 

Taking the derivative of (11) with respect to 𝒔7 and setting it equal to 0, we have: 

pq 𝒔>,r,𝜷
p𝒔>

= p
p𝒔>

$
"
𝒔7 +

$
"e>
𝒅7

"

"
− 𝜂 𝒔7@𝟏 − 1 − 𝜷@𝒔7 = 0.  (12) 

 

The optimal solution can be figured out by KKT [34] condition: 

𝑠7^ = − .>`
"e>

+ 𝜂
s
= max − .>`

"e>
+ 𝜂, 0 .   (13) 
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Practically, as discussed in Section 1, keeping the local manifold structure of data is proved well effective 

[35, 36] in feature selection. One can improve the classification performance with attention only to the local 

structure of data. Therefore, we expect to learn a sparse 𝒔7. That is, only the nearest 𝐾 neighbors of 𝒙7 have 

the opportunity to connect with 𝒙7. Moreover, sparse similarity matrix learning is of great help to reduce 

the computational burden for the later processing. 

 

Let us suppose that 𝑑7$, 𝑑7", . . . , 𝑑7+ are sorted from the lowest to the highest. Provided that the optimal 𝒔7 

has only 𝐾  none-zero elements, using (13), we know 𝑠7t > 0  and 𝑠7,ts$ ≤ 0 . Hence, the following 

inequalities hold: 

𝑠7^ = − .>`
"e>

+ 𝜂 > 0, 𝑘 ≤ 𝐾

𝑠7^ = − .>`
"e>

+ 𝜂 ≤ 0, 𝑘 > 𝐾.
     (14) 

 

Substituting the constraint 𝑠7^t
^?$ = 1 into the (14), we have: 

− .>`
"e>

+ 𝜂t
^?$ = 1

⇒ 𝜂 = $
t
+ $

"te>
𝑑7^t

^?$ .
     (15) 

 

Plugging 𝜂 into (14) leads to the constraint of 𝛾7: 
t
"
𝑑7t −

$
"

𝑑7^t
^?$ < 𝛾7 ≤

t
"
𝑑7,ts$ −

$
"

𝑑7^t
^?$ .   (16) 

 

Finally, we have the optimal 𝛾7: 

𝛾7 =
t
"
𝑑7,ts$ −

$
"

𝑑7^t
^?$ .     (17) 

 

2) Fix 𝐒 and optimize 𝐖.  

Removing the irrelative part to 𝑾 from (6), we get the following objective: 

min
𝑾
ℒ 𝑾 = 𝑦7 − 𝒘Q

@ 𝒙7
Q

"
"+

7
N
Q?$ + 𝜇 ∥ 𝑾 ∥",$     

+𝜆 𝒘Q
@ 𝒙7

Q − 𝒘Q
@ 𝒙^Q "

"N
Q?$ 𝑠7^ .^∈ ^|_>?_`

+
7?$   (18) 

 

Inspired by [37], we solve (18) using the weighted and iterative method. When the row elements in 𝑾 are 

nonezero, that is 𝑤7,: ≠ 0, 𝑖 = 1,2, . . . , 𝑑 , we take the derivative of ∥ 𝑾 ∥",$: 
p∥𝑾∥f,}
p𝑾

= 2𝑫𝑾,     (19) 
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where 𝑫 ∈ ℝ.×. is a diagonal matrix, the 𝑖-th diagonal element is: 

𝑑77 =
$
"
||𝑤7,:||"�$.     (20) 

 

When 𝑫 is fixed, taking the derivative of 𝑾 in (18) is equivalent to doing so in the following objective: 

min
𝑾
ℒ 𝑾 = 𝑦7 − 𝒘Q

@ 𝒙7
Q

"
"+

7
N
Q?$ + 𝜆Tr 𝑾@𝑫𝑾      

+𝜇 𝒘Q
@ 𝒙7

Q − 𝒘Q
@ 𝒙^Q "

"N
Q?$ 𝑠7^ .^∈ ^|_>?_`

+
7   (21) 

 

Please note that, the analytical form of 𝑊 can be obtained via solving (21), and therefore (21) substitutes 

(18) in our learning framework. The procedure is summarized in Algorithm 1. 

Algorithm 1：Multi-modality feature selection with adaptive similarity learning 
Input：Multi-modality sample matrix 𝑿$, 𝑿", … , 𝑿N  and label matrix 𝒚 = [𝑦$, 𝑦", … , 𝑦+]. 
Initial：𝜆 > 0, 𝜇 > 0, 𝐾 > 0, 𝑫 = 𝑰. 
Repeat 
1. Update 	𝑾 using Eq. (21); 
2. Update 𝑫 using Eq. (20); 
3. Update 𝑺 using Eq. (13); 
Until converges 
Output：𝑾 

 

2.3 Multi-kernel support vector machine 

Multi-kernel support vector machine (MKSVM) [38] is adopted for classification after feature selection 

processing. First, we generate a kernel matrix 𝑘Q 𝒙7
Q, 𝒙;

Q = 𝜙Q((𝒙7
Q)@(𝒙;

Q))for each modality data after 

feature selection. Then, the 𝑀  kernel matrices are linearly combined 𝑘(𝒙7, 𝒙;) = 𝛽QN
Q?$ 𝑘Q(𝒙7

Q, 𝒙;
Q) 

before fed to MKSVM for training, where 𝛽QN
Q?$ = 1, 𝛽Q ≥ 0. It is notable that in our experiments, the 

optimal 𝛽Q is determined via a coarse-grid search through cross-validation on the training set. Finally, when 

an unseen subject comes, the trained MKSVM model is able to predict the category of the new subject by 

the following decision function: 

𝑓 𝒙 = sign 𝑦7+
7?$ 𝛼7 𝛽QN

Q?$ 𝑘Q 𝒙7
Q, 𝒙Q + 𝑏 .   (22) 

 

3. Experiments 
3.1 Dataset and settings 

Dataset: The data involved in this paper are obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (www.loni.usc.edu). The ADNI was launched by a wide range of academic institutions 

and private corporations and the subjects were collected from approximately 200 cognitively normal older 
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individuals to be followed for 3 years, 400 MCI patients to be followed for 3 years, and 200 early AD 

patients to be followed for 2 years across the United States and Canada.  

 

We use imaging data from 202 ADNI participants with corresponding baseline MRI and PET data. In 

particular, it includes 51 AD patients, 99 MCI patients and 52 NC. The MCI patients were divided into 43 

MCI converters (MCI-C) who have progressed to AD with 18 months and 56 MCI non-converters (MCI-

NC) whose diagnoses have still remained stable within 18 months. Table 1 lists the clinical and 

demographic information for the study population.  

 

Table 1 Subject information 

 AD MCI-C MCI-NC NC 
Subjects number 51 43 56 52 

Age 75.2±7.4 75.8±6.8 74.7±7.7 75.3±5.2 
Education 14.7±3.6 16.1±2.6 16.1±3.0 15.8±3.2 

MMSE 23.8±2.0 26.6±1.7 27.5±1.5 29.0±1.2 
CDR 0.7±0.3 0.5±0.0 0.5±0.0 0.0±0.0 

 

In this study, image pre-processing is performed for all MRI and PET images following the same procedures 

as in [39-41]. Specifically, N3 algorithm [42] is employed to correct the intensity inhomogeneity after 

anterior commissure-posterior commissure correlation performed. For MRI data, gray matter (GM) is 

segmented by FAST [43] and then the GM tissue volume of each region obtained according to a 93 manual 

labels template is chosen as a feature. After the alignment to the respective MRI image, the average intensity 

of each ROI in the PET image is calculated as a feature. Therefore, there are totally 93 features for MR 

image and 93 features for PET image. 

 

Comparison methods: In order to assess the classification performance, the proposed method is compared 

with six existing multimodal classification methods including 1) multi-kernel SVM [38] (denoted as 

MKSVM), 2) multi-kernel method with LASSO [56] feature selection performed independently on single 

modalities (denoted as lassoMKSVM), 3) multi-kernel method using multi-modal feature selection method 

(denoted as MTFS) proposed in [44], and 4) multi-kernel method with manifold regularized multitask 

feature learning (denoted as M2TFS) proposed in [45]. We also 5) concatenate 93 features from MRI images 

and 93 features from PET images into a 186-dimension vector, and then utilize LASSO as feature selection 

method followed by the standard SVM with linear kernel for classification (denoted as lassoSVM). Besides, 

6) we use the standard SVM with linear kernel as a contrast method.  
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Validation: Z-score normalization 𝑓′7 = (𝑓7 − 𝑓7)/𝜎7 is performed on every feature 𝑓7 from MRI images 

and PET images separately, where 𝑓7 and 𝜎7 respectively represent the mean and the standard deviation of 

the 𝑖-th feature from the training set. It is noted that we performed Z-score normalization on test set with 

𝑓7 and 𝜎7 calculated from the training set.  

 

Performance measurements including accuracy (ACC), sensitivity (SEN), specificity (SPE), area under 

receiver operating characteristic (ROC) curve (AUC) and F1 Score are utilized in the experiments to 

quantify the classification performance of different methods. The 10-fold cross-validation strategy is 

adopted due to the limited subjects. Specifically, the whole set of subject samples are equally partitioned 

into 10 subsets, from which 9 subsets were randomly selected for training and the remaining subset for 

testing. The above procedure was repeated 10 times to avoid any bias caused by the partition. 

 

Hyper-parameters: In our method, there are three hyper-parameters, i.e., the sparsity regularizer 𝜆 , the 

adaptive similarity learning regularization term 𝜇, and the number of neighbors 𝐾. The above parameters 

are determined by another 10-fold cross-validation. 𝜆, µ and 𝐾 are searched in the range {0.1,5,20,60,100}, 

{0,5,10,15,20} and {1,3,5,7,9}, respectively. Moreover, in multi-kernel SVM with a linear kernel, 𝐶 is set 

as 1 and the kernel combination coefficients 𝛽N�� , 𝛽��@  are chosen from 0.1 to 1.0 with step 0.1 and 

constrained with 𝛽N��+𝛽��@=1and 𝛽N��, 𝛽��@³0.  

 

3.2 Classification Results 

3.2.1 AD vs. NC classification 

Table 2 lists the classification results of AD vs. NC produced by seven methods. The standard deviations 

are given and the best results are denoted in bold in Table 2. As observed, our proposed method (ASMFS) 

consistently achieves the best performance from all the methods in comparison. Specifically, ASMFS 

achieves the accuracy of 96.76%, the sensitivity of 96.1%, the specificity of 97.47%, the AUC of 0.9703 

and the F1 Score of 96.63. Among the three multi-modality feature selection methods, i.e., MTFS, M2TFS 

and ASMFS, we can find that over 95% accuracy is achieved by M2TFS and ASMFS, indicating that 

maintaining inter-modality information is effective for feature selection. Furthermore, compared with 

MTFS and M2TFS which adopt fixed similarity, the better performance achieved by ASMFS indicates that 

adaptive similarity is of great help to depict more accurate data distribution after feature selection. The 

lowest accuracy of 88.24% achieved by SVM is because SVM does not perform feature selection but 

directly uses the raw feature vectors for classification. Moreover, the multi-modality features are simply 

concatenated without utilizing the complementary information from different modalities. lassoSVM 
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achieves better performance than SVM because it adopts LASSO as feature selection which removes 

redundant features and noise. Comparing the results between MKSVM and SVM, it can be found that 

utilizing complementary information from different modalities greatly promotes the accuracy (3%), which 

indicates the necessity of jointly considering multiple modalities for the diagnosis of AD. On the other side, 

MKSVM overlooks the redundant features. Thus, after feature selection by LASSO, lassoMKSVM gets 

better accuracy than MKSVM. This also verifies that redundancy exists in the original data. 

Table 2 Comparison of performance of different methods for AD vs. NC classification 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC 

SVM 88.24±0.0972 91.07±0.1155 85.57±0.1591 88.61±0.0925 0.9471±0.0007 
lassoSVM 90.90±0.0873 90.60±0.1240 91.23±0.1233 90.71±0.0900 0.9460±0.0007 
MKSVM 91.87±0.0875 92.30±0.1249 91.63±0.1160 91.68±0.0927 0.9526±0.0007 

lassoMKSVM 92.33±0.0739 93.47±0.1030 91.30±0.1261 92.41±0.0726 0.9534±0.0007 
MTFS 92.52±0.0816 93.77±0.1115 91.37±0.1213 92.50±0.0846 0.9541±0.0007 

M2TFS 95.00±0.0707 94.67±0.1009 95.40±0.0826 94.85±0.0740 0.9636±0.0006 
ASMFS 96.76±0.0545 96.10±0.0836 97.47±0.0660 96.63±0.0573 0.9703±0.0006 

 

Sensitivity measures the proportion of patients that are correctly diagnosed, while specificity measures the 

percentage of healthy people who are correctly classified. Obviously, the best score for sensitivity and 

specificity is 100%, but in practice, it is nearly impossible to achieve such performance. As for medical 

diagnosis, identifying patients as healthy people is worse than identifying healthy people as patients for the 

reason that the latter is only needed more examinations. Therefore, specificity is considered more important 

than sensitivity. As found in Table 2, both high sensitivity and specificity are achieved by our proposed 

method, indicating that our method rarely overlooks an AD patient or misclassifies a normal individual as 

the diseased. Furthermore, excepting lassoSVM, M2TFS and ASMFS, the sensitivity of other methods is 

higher than the specificity. 

 

We can see from Table 2 that ASMFS not only achieves the best performance, but also keeps the lowest 

standard deviation, indicating the proposed method is more stable. Figure 2 plots the corresponding ROC 

curves of above methods for AD vs. NC classification, from which we can see the proposed method obtains 

the best performance, with high TPR at low FPR, and larger AUC value than other methods. 
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Fig. 2 ROC curves of seven multi-modality based methods for classification of AD vs. NC 

 

3.2.2 MCI vs. NC classification 

Table 3 shows the performance of the seven classification methods in MCI vs. NC. As observed, the 

proposed method gets the best performance in accuracy, specificity, F1 Score and AUC, while M2TFS 

achieves the best sensitivity of 86.73%. Nevertheless, ASMFS is only 0.75% lower than M2TFS. 

 

Table 3 Comparison of performance of different methods for MCI vs. NC classification 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC 
SVM 70.62±0.1035 84.03±0.1176 45.20±0.2111 81.04±0.0599 0.7463±0.0013 

lassoSVM 73.40±0.1167 81.62±0.1358 58.00±0.2141 79.78±0.0960 0.7852±0.0013 
MKSVM 73.17±0.0983 80.69±0.1141 59.00±0.2189 79.62±0.0762 0.7276±0.0014 

lassoMKSVM 74.19±0.0894 86.57±0.1098 50.70±0.2703 81.44±0.0647 0.7539±0.0012 
MTFS 74.86±0.0911 82.19±0.1135 61.07±0.2066 80.91±0.0716 0.7296±0.0014 

M2TFS 78.97±0.0766 86.73±0.1070 64.53±0.2515 84.35±0.0561 0.7526±0.0014 
ASMFS 80.73±0.0950 85.98±0.1081 70.90±0.2135 85.30±0.0738  0.7875±0.0014 

 

It should be pointed out that the accuracy of M2TFS and ASMFS is much higher than other methods. This 

is probably because the selected structural features play a pivotal role in the improvement of classification 

performance.  

 

In addition, the results listed in Table 3 are generally lower than those in AD vs. NC classification. It is 

because the changes occurring in the brain of patients with MCI are less than those of patients with 

Alzheimer's disease. For instance, people with mild cognitive impairment have much less contraction in the 

hippocampus than people with AD. Hence, it is more difficult to identify patients with MCI than patients 

with AD. Figure 3 plots the corresponding ROC curves which reflect the classifier performance of the above 

algorithms. 
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Fig. 3 ROC curves of seven multi-modality based methods for classification of MCI vs. NC 

 

3.2.3 MCI-C vs. MCI-NC classification 

The classification results for MCI-C vs. MCI-NC are shown in Table 4. As can be seen from Table 4, our 

proposed method achieves a classification accuracy of 69.41 %, sensitivity of 65.3 % and F1 Score of 63.98 

while the best sensitivity and F1 Score of the methods in comparison is only 54.5 % and 55.84 respectively, 

which is obtained by M2TFS. Besides, ASMFS achieves a specificity of 72.83% and AUC of 0.6534. 

 

Table 4 Comparison of performance of different methods for MCI-c vs. MCI-NC classification 

Method Accuracy (%) Sensitivity (%) Specificity (%) F1 Score AUC 
SVM 56.45±0.1338 31.55±0.2126 75.90±0.2024 36.21±0.2195 0.6341±0.0017 

lassoSVM 58.76±0.1394 48.75±0.2422 66.43±0.2127 48.69±0.1972 0.5830±0.0017 
MKSVM 58.80±0.1206 54.45±0.2293 62.43±0.2202 51.74±0.1625 0.5753±0.0017 

lassoMKSVM 61.73±0.1369 51.10±0.2469 70.23±0.2109 51.67±0.2032 0.6086±0.0018 
MTFS 63.52±0.1220 59.65±0.2514 66.70±0.2108 56.63±0.1762 0.5894±0.0017 

M2TFS 67.53±0.1059 54.50±0.2629 77.47±0.1873 55.84±0.2182 0.6647±0.0017 
ASMFS 69.41±0.1194 65.30±0.2151 72.83±0.1811 63.98±0.1485 0.6534±0.0017 

 

Similar to the results in MCI vs. NC, the accuracy of M2TFS and ASMFS is much higher than that of other 

methods which well demonstrates the importance of structural information. In these experiments, ASMFS 

achieves the highest accuracy owing to the adaptive similarity learning which optimizes the similarity 

between subjects and then enhances the discrimination of selected features.  

 

It can also be found that the accuracy of the classification task is generally low. It is because that the 

differences between MCI-C and MCI-NC are small and the early symptoms of MCI are also similar for 

MCI converters and MCI non-converters. Besides, baseline MRI and PET data is utilized in our experiments 

and the converters have to be diagnosed in 18 months which also increases the difficulty for classification. 

However, as can be seen from Figure 4, the proposed method is still overall the best one. 
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Fig. 4 ROC curves of seven multi-modality based methods for classification of MCI-C vs. MCI-NC 

 

3.3 Feature selection results 
The most discriminative brain regions are defined as those that are ranked by the regression coefficient 𝑊. 

Figure 5, 6 and 7 and Table 5, 6 and 7 show the top 10 selected brain regions in the classification of AD vs. 

NC, MCI vs. NC and MCI-C vs. MCI-NC, respectively. For AD vs. NC classification, brain regions such 

as hippocampus, precuneus, uncus and temporal gyrus are found sensitive to AD by our proposed method. 

The brain regions, for instance, hippocampus and amygdala are also selected in MCI vs. NC classification 

tasks. The studies in [46, 47] have shown that the hippocampus is responsible for short-term memory, and 

in the early stage of Alzheimer's disease also known as MCI, hippocampus begins to be destroyed directly 

resulting in the decline of short-term memory and disorientation. Amygdala is a part of brain who is 

responsible for managing basic emotions such as fear and anger. The damage for amygdala caused by 

MCI/AD can result in paranoia and anxiety. The selected regions by the proposed method are consistent 

with many studies in literature. Moreover, the proposed method can also help researchers to focus on the 

brain regions selected in this experiment but neglected before, so as to help the diagnosis of MCI/AD. 

Table 5 Top 10 ROIs selected by the proposed method for AD vs. NC 

Number of ROIs Selected ROIs 
69 hippocampal formation left 
41 precuneus left 
80 middle temporal gyrus right 
84 inferior temporal gyrus right 
18 angular gyrus right 
87 angular gyrus left 
26 precuneus right 
46 uncus left 
83 amygdala right 
90 lateral occipitotemporal gyrus left 
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Fig.5 Top 10 ROIs selected by the proposed method for AD vs. NC 

 

Table 6 Top 10 ROIs selected by the proposed method for MCI vs. NC 

Number of ROIs Selected ROIs 
87 angular gyrus left 
69 hippocampal formation left 
64 entorhinal cortex left 
40 cuneus left 
83 amygdala right 
41 precuneus left 
63 temporal pole left 
92 occipital pole left 
30 hippocampal formation right 
17 parahippocampal gyrus left 
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Fig.6 Top 10 ROIs selected by the proposed method for MCI vs. NC 

 

Table 7 Top 10 ROIs selected by the proposed method for MCI-C vs. MCI-NC 

Number of ROIs Selected ROIs 
41 precuneus left 
61 perirhinal cortex left 
35 anterior limb of internal capsule left 
48 middle temporal gyrus left 
10 superior frontal gyrus right 
83 amygdala right 
49 lingual gyrus left 
86 middle occipital gyrus left 
30 hippocampal formation right 
24 fornix left 
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Fig.7 Top 10 ROIs selected by the proposed method for MCI-C vs. MCI-NC 

 

3.4 Effect of hyper-parameters & Algorithm convergence 
Regularization parameters: In ASMFS, there are three hyper-parameters, i.e., 𝜆, 𝜇 and 𝑘. Specifically, the 

adaptive similarity learning regularizer 𝜆  and the group sparsity regularizer 𝜇  control the relative 

contribution of those regularization terms. 𝑘 is the number of neighbours in adaptive similarity learning. 

As aforementioned, the above parameters are determined by another 10-fold cross-validation. 𝜆, 𝜇 and 𝑘 

are searched in the range {0.1,5,20,60,100} , {0,5,10,15,20}  and {1,3,5,7,9} , respectively. It is worth 

mentioning that when 𝜇 = 0, the group sparsity will cease to work. Then, all the features are retained for 

the subsequent classification which degenerates to the method of multi-modality classification proposed in 

[21]. 
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Fig.8 The classification accuracy with regularization parameters 𝜆 and 𝜇. 

 

Figure 8 shows the classification results with regard to different values of 𝜆 and 𝜇 when 𝑘 is fixed to 5. The 

X-axis indicates 𝜆, Y-axis indicates classification accuracy and the curves with different colours represent 

different values of 𝜇 ranging from {0,5,10,15,20}, respectively. As observed, with the increase of 𝜆 from 

0.1 to 20, the curves corresponding to different values of 𝜇 are on rise, whereas the downtrend of accuracy 

is observed when 𝜆 is larger than 20. Through analysis, we believe that 𝜆 conducts a less effective guide 

when it is relatively small because 𝜆 almost performs no contraint on the item of adaptive similarity learning. 

 

Besides, as can be seen, when 𝜆 is fixed, 𝜇 has a greater impact on classification accuracy than 𝜆, which is 

because 𝜇 affects the sparsity of 𝑊 and determines the number of discriminative features. Also, as we can 

see from Figure 8 (a), when 𝜇 = 0 which suggests that no feature is selected, the corresponding accuracy 

curve lies below other curves. The similar phenomenon can be seen from Figure 8 (b), (c) as well. Such 

result demonstrates the effectiveness of feature selection. 

 

 
Fig.9 The classification accuracy with regularization parameters 𝑘 and 𝜇 
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Figure 9 shows the classification results with different values of 𝑘 and 𝜇 when 𝜆 is fixed to 20. As observed, 

the classification performance with feature selection (𝜇 = 5,10,15,20) is better than that without feature 

selection (𝜇 = 0). Most of the curves reach its peak when 𝑘 = 5 but go down when 𝑘 is beyond 5. Such 

result suggests that maintaining the local manifold structure of data helps to select discriminative features. 

What’s more, Figure 9 shows the similar profile of curves with different values of 𝜇 when compared with 

Figure 8. 

 

As can be seen from the above experimental results, a set of proper parameters plays an essential role in the 

classification performance. 

 

Algorithm convergence: We also investigate the convergency of the proposed method. As we can observe 

from Figure 10, the proposed optimization algorithm has a good convergence, since the algorithm has 

basically converged after about 10 iterations. 

 
Fig.10 Algorithm convergence of ATMFS 

 
3.5 Comparison with the state-of-the-art methods  
Furthermore, we compare the results achieved by our method with several recent state-of-the-art results 

reported in the literature studying the multi-modality method. We list the details of each method and the 

corresponding results in Table 8.  

 

As can be seen from Table 8, Hinrichs et al. [55] used 48 AD subjects and 66 NC subjects, and obtained an 

accuracy of 87.6% by using two modalities (MRI+PET). Huang et al. [55] used 49 AD patients and 67 NC 

with MRI and PET modalities for AD classification, achieving an accuracy of 94.3%. In [22], Gray et al. 

used 37 AD patients, 75 MCI patients and 35 NC and reported classification accuracies of 89.0%, 74.6% 

and 58.0% for AD, MCI and MCI-converter classification, respectively, using four different modalities 

(MRI+PET+CSF+genetic). Jie et al. [26] achieved the accuracies of 95.03%, 79.27% and 68.94% for 
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classification of AD/NC, MCI/ NC and MCI-C/MCI-NC, respectively. Liu et al. [25] obtained the 

accuracies of 94.37%, 78.80% and 67.83 % for AD, MCI and MCI-converter classifications, respectively. 

Zu et al. [54] achieved the accuracies of 95.95, 80.26 and 69.78%, respectively. The dataset used in [26], 

[25] and [54] is the same as this study. Table 8 indicates that our proposed method outperforms other 

methods, which further validates the efficacy of our proposed method for AD diagnosis. 

 

Table 8 Comparison of classification accuracy of different multi-modality methods 

Method Subjects Modalities AD vs. NC MCI vs. NC MCI-C vs. MCI-NC 

Hinrichs et al. [55] 48 AD + 66 NC MRI + PET 87.6% - - 
Huang et al. [56] 49 AD + 67 NC MRI + PET 94.3% - - 
Gray et al. [22] 37 AD + 75 MCI + 35 NC MRI + PET + CSF + genetic 89.0% 74.6% 58.0% 
Jie et al. [26] 51 AD + 99 MCI + 52 NC MRI + PET 95.03% 79.27% 68.94% 
Liu et al. [25] 51 AD + 99 MCI + 52 NC MRI + PET 94.37% 78.80% 67.83% 
Zu et al. [54] 51 AD + 99 MCI + 52 NC MRI + PET 95.95% 80.26% 69.78% 
Proposed 51 AD + 99 MCI + 52 NC MRI + PET 96.76% 80.73% 69.41% 

 

4. Discussion 
Multi-modality learning, a recently developed technique in machine learning field which can jointly learn 

multiple modalities via a shared representation, has been successfully used across all applications of 

machine learning, from natural language processing [48] and speech recognition [49] to computer vision 

[50] and drug discovery [51]. Recently, multi-modality learning has been introduced into medical imaging 

field. However, the problem of small number of subjects and high feature dimensions limits further 

performance improvement of the multimodal classification methods. Our work aims to provide a novel 

multi-modality feature selection method which not only reduces irrelevant and redundant features but also 

considers the local similarity across different imaging modalities. Although the idea of jointly selecting 

features from multi-modality neuroimaging data has been seen in previous study [44, 45, 54], these methods 

do not consider the potential relationship across different modalities. Besides, underlying data structure in 

the low-dimensional space may not be revealed in these methods since the neighbors and similarity of the 

original high-dimensional data are obtained separately from each individual modality. 

 

In this paper, we apply an adaptive similarity learning method to address the above issues. The similarity 

measured from single and multi-modality data is learned with the change of low-dimensional representation 

after feature selection. As can be observed from the experimental results in section 3.2, our multi-modality 

feature learning method which adopts adaptive similarity learning method shows better performance than 

those with fixed similarity based methods, thus the superiority of adaptive similarity learning for feature 

selection is fully demonstrated. 
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Besides, we keep the local neighborhood structure during similarity learning by updating 𝐾  local 

neighborhood similarities of each subject. This idea was inspired by [54] which suggests that each data 

point and its neighbors lie on or near a locally linear patch of the manifold. Thus, one could depict the local 

geometry of linear patches by linear coefficients that reconstruct each data point from its neighbors. 

Experiments conducted in section 3.4 corroborate that keeping the local manifold structure of data is 

beneficial to feature selection. 

 

Several limitations should be further considered in future studies. First, in this paper, we only considered 

two-class classification problem (i.e., AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC), and do not test 

the ability of our proposed method for the multi-class classification of AD, MCI and NC. Although multi-

class classification is more challenging than binary classification, it is crucial to diagnose the different 

stages of dementia which is helpful for doctors to suit the remedy to the case. Second, the proposed method 

requires the same number of features from different modalities. However, other modalities in the ADNI 

database which may also contain important pathological information have different feature numbers. 

Consequently, modalities like CSF and genetic data cannot play their roles in classification. Finally, 

longitudinal image data may carry important information for prediction, while the proposed method in this 

paper does not consider the data at multiple time points. Thus, for future work, we plan to extend ASMFS 

to a multi-class classification method which can process more modalities with different number of features. 

Besides, it is also interesting to investigate other strategies to utilize the hidden information contained in 

longitudinal image data. 

	

5. Conclusion 
This paper proposes a novel multi-modality method where feature selection and similarity learning are 

learned jointly and we call this method Adaptive-Similarity-based Multi-modality Feature Selection 

(ASMFS). By introducing the adaptive similarity learning mechanism into the multi-modality learning 

framework, the proposed method can not only fully explore the relationships across both modalities and 

subjects through mining and fusing discriminative features from multi-modality data for AD/MCI 

classification, but also capture the intrinsic data structure of different modality data in the low-dimensional 

space. Experimental results on the ADNI database demonstrate that our proposed method outperforms the 

state-of-the-art methods for multimodal classification of AD/MCI. 
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