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Abstract

The utility of collocating robots largely depends on the easy and intuitive
interaction mechanism with the human. If a robot accepts task instruction
in natural language, first, it has to understand the user’s intention by de-
coding the instruction. However, while executing the task, the robot may
face unforeseeable circumstances due to the variations in the observed scene
and therefore requires further user intervention. In this article, we present a
system called Talk-to-Resolve (TTR) that enables a robot to initiate a co-
herent dialogue exchange with the instructor by observing the scene visually
to resolve the impasse. Through dialogue, it either finds a cue to move for-
ward in the original plan, an acceptable alternative to the original plan, or
affirmation to abort the task altogether. To realize the possible stalemate,
we utilize the dense captions of the observed scene and the given instruction
jointly to compute the robot’s next action. We evaluate our system based on
a data set of initial instruction and situational scene pairs. Our system can
identify the stalemate and resolve them with appropriate dialogue exchange
with 82% accuracy. Additionally, a user study reveals that the questions
from our systems are more natural (4.02 on average on a scale of 1 to 5) as
compared to a state-of-the-art (3.08 on average).

Keywords: human-robot interaction, ambiguity in HRI, spatial dialogue,
multi-level ambiguity, language-vision grounding
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1. Introduction

The idea behind the collocated robot is to employ them in various ac-
tivities where they can lend a helping hand and make our living/workspace
simpler and more coherent [I 2]. Though the number of robots in our daily
surroundings is increasing over the last decade, their usability remains re-
stricted due to a lack of an intuitive interaction interface, especially for non-
expert users. As natural language interaction increases the acceptability and
usability of a robot, a large number of research efforts have focused on en-
abling natural human-robot interaction [3].

Figure (1| depicts a real-life scenario in a home environment where a fellow
human being can ask a robot to perform certain tasks. In this case, she asks
to bring the red container from the dining table. Assuming that the robot
knows the environment, it first moves to the location of the dining table. The
user instructs the robot based on the presumption that the red container is on
the dining table. However, there is no guarantee that the mentioned object
is at the desired location or is the only object at the location. So, first,
the robot has to identify the exact and/or alternate entities in the scene
to decide further course of action accordingly. In this case (Figure , the
robot can find only a blue plastic container at the location whereas the user
has asked for a red one. As a result, the robot asks the user if the closest
alternative is acceptable, i.e., should it bring the “blue plastic” container. In
this work, we focus on enabling a robot with verbose ambiguity resolution
capability. Given a task instruction in natural language and a scene from
a robot’s ego-view, the robot either generates an execution plan if doable
in the current scenario or engages in a dialogue if there is any ambiguity
in understanding what action is to be performed. As there can be different
types of ambiguities/difficulties depending on the context, the first challenge
is how to detect the nature of the problem the robot is facing. The subsequent
question is how to convey the veracity of the problem to fellow human beings
and seek guidance or direction.

In this work, we present Talk-to-Resolve (TTR), a multimodal natural
interaction interface for robots for task ambiguity resolving. We utilize a
state-of-the-art dense-caption generation system [4] as the primary level of
scene understanding. However, existing caption generation systems do not
consider any instruction as a precursor to the scene analysis. As a result,
captions are generated about every possible object that is available in the
scene. Often multiple captions are generated about the same object, where
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Figure 1: Representational image — given the initial instruction, how TTR generates a
suitable question after analyzing the scene when it faces task ambiguity.

each caption may provide a different description of the object. We perform
caption merging and filtering operations to narrow down our search for de-
tecting the desired object or location mentioned in the instruction. This step
includes all the possible alternatives of the specified entities if there are mul-
tiple occurrences of the same object. After caption filtering and merging, we
determine the level of ambiguity in the scene concerning the initial instruc-
tion. We have judiciously defined dialogue templates for each ambiguous
state and generate a dialogue based on the predicted ambiguous state.

To the best of our knowledge, this is the first work that generates con-
textual and informative questions during task execution to resolve both am-
biguity and visual uncertainty by performing scene analysis. The main con-
tributions of this work are three-fold.

e Given a natural language description about an object and a scene un-
derstanding, we develop a novel method to identify the relevant ob-
ject(s) while suppressing the redundant information efficiently.

e We meticulously design a set of ambiguity states and develop a di-
alogue system that resolves all possible types of ambiguity in scene
understanding.

e Our dialogue system asks questions in a natural way that ensures that
the user can understand the type of confusion the system is facing.



2. Related work

Executing natural language instruction given to a robot is a well-studied
problem, particularly for object fetching and navigational instruction. How-
ever, the existing works in the literature mostly focus on instruction under-
standing for plan generation [5], 6] and assume that a generated plan can be
executed without failure or further human intervention. Natural language in-
structions are prone to ambiguity and incompleteness that are often tackled
using dialogue [7] and knowledge-based reasoning [§]. However, these systems
only focus on the linguistic information provided by the human and do not
take the uncertainty of the robot’s perception into account when attempting
to execute a plan. For example, in our earlier works, we have handled the
natural language task instruction parsing to generate a high-level execution
plan for the robot [5, [O]. These systems are supported by a dialogue engine
that can raise a suitable query for the human user if the robot could not un-
derstand the task [10]. However, the robot would fail if the referenced object
in the task cannot be identified uniquely (due to ambiguity) while executing
the task.

In practice, a robot may encounter unexpected situations during the ex-
ecution of a plan, despite understanding the meaning of the instruction.
To tackle this, a visual understanding of the environment, concerning the
linguistic input, shows a promising direction. Recent works in vision and
language navigation [I1] and object manipulation [I2] can handle complex
instructions using multi-modal information, but they still suffer from am-
biguity and cascading errors due to misprediction. Although several works
have specifically focused on the visual grounding of natural object descrip-
tions [13] [14] [15, [16], they do not tackle ambiguity and incompleteness using
dialogue. Moreover, the predominant approach of end-to-end training for
visual grounding is difficult to use in a dialogue system, because the gen-
eration of a question pertaining to the instruction, requires a finer-grained
understanding of the scene. Although visual question-answering systems can
perform fine-grained scene analysis [17, [I§], they are limited to answering
questions, as opposed to generating a specific question to execute an instruc-
tion in a given scenario. Also, existing visual question generation models
cannot be directly integrated into a robotic system, because they only gen-
erate natural questions about a given scene [19, 20], irrespective of any given
instruction. Moreover, such visual dialogue systems use the feedback from
multiple questions to arrive at the conclusive question, which is undesirable



Method Ambiguity | Granular Query on
detection in | ambiguity ambiguity
grounding | states

FETCH-POMDP [21] | implicit binary non-informative,
ambiguity fixed query
Interactive Picking [22] | explicit binary non-informative,
ambiguity fixed query
INGRESS [23] explicit binary informative,
ambiguity but fixed query
INVIGORATE [24] | explicit binary informative,
ambiguity but fixed query
TTR (our system) | explicit multi-level | informative,
ambiguity | contextual query

Table 1: Comparison of TTR with respect to the state-of-the-art systems for ambiguity
handling.

in a human-robot dialogue for task execution, where the scope of asking
multiple questions is limited.

On the other hand, existing dialogue systems for robotic instruction un-
derstanding, mostly focus on eliciting missing information [7, 10] and in-
teractive task semantics learning [25], but do not tackle visual ambiguity
and inconsistency. The most relevant works only focus on grounding and
use dialogue in a very limited scope. Table (1] lists the closest works with
respect to the problem that is tackled in this article. Whitney et al. [21] pro-
posed a POMDP based object fetching task where pointing gestures are used
to tackle ambiguities arising from open-ended instructions. They implicitly
handle only binary type ambiguity, i.e., is there one object (non-ambiguous)
or more object (ambiguous), and raise the same query if it is ambiguous.
Hatori et al. proposed a system for interactive picking that uses dialogue
to resolve ambiguity in a picking task. However, the dialogue system tack-
les only binary ambiguity and it generates generic and open-ended questions
such as “which one?”, which often leads to further ambiguities. Shridhar
et al. proposed a similar system called INGRESS [23] where a referential
expression generation technique is used to generate questions where binary
answers are possible. However, their system only considers two dialogue
states, i.e., the instruction is either ambiguous or completely understood (bi-
nary ambiguity). Recently, Zhang et al. proposed an improved system called



INVIGORATE [24] that combines multiple neural network systems using a
POMDP model to tackle the uncertainty of each system jointly. However,
their system is limited to binary ambiguity only; hence it restricts the usabil-
ity of the system in a generic setup. In particular, the system would either
lead to many rounds of question-answering with the human being or fail to
resolve the ambiguity beyond the restrictive setup. In contrast, our system
can resolve multiple variants of ambiguity. Also, it asks specific questions by
conveying the robot’s understanding of the scene that are easier to answer
correctly (informative, contextual query).

To the best of our knowledge, none of the existing works specifically
focus on generating questions to complete a task by performing scene anal-
ysis, where the questions are asked to resolve both ambiguity and visual
uncertainty at a granular level. Moreover, our system is more accurate in
predicting the ambiguity states and generating more natural questions.

3. System Overview

In this section, we provide a high-level overview of “Talk-to-Resolve (TTR)”.
It consists of four major components, as shown in Figure [2|

1. A task instruction understanding component that parses a given in-
struction to predict the task type and arguments.

2. A task (re)planning component that generates the task execution plan
by translating the parsed instruction to an abstract action sequence
that the robot actuates to satisfy the task goal. It also re-plans af-
ter resolving visual ambiguity (if any) with the feedback through the
dialogue.

3. A component for visual uncertainty analysis that locates the exact re-
ferred object(s) mentioned in the task instruction. In case there is
visual uncertainty, it triggers the dialogue system to resolve the am-
biguity by engaging with the human. If the referred object(s) can be
visually pinpointed, the task execution continues; otherwise the task is
aborted (after dialogue exchange with the human).

4. A dialogue system that maps the visual uncertainty to an ambiguity
state and generates a question that suitably elucidates the ambiguity
that the robot is facing.

In this article, we focus on the visual uncertainty analysis and dialogue to
resolve the uncertainty, where we incrementally ground the entities of the
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Figure 2: Overview of TTR showing how the major building blocks form the pipeline of
the end-to-end system.



Table 2: Description of task types that are used to train and test our system. Italicized
words are argument types associated with the task. The system is scalable and easily
extendable for our types of tasks.

Task type | Description

Bringing Bring an object to a beneficiary from a source.
Change_state | Manipulate a device to a desired state.
Check state | Assert the given state of an object.

Motion Move to a given goal.

Placing Place an object on a goal.
Searching | Look for an object in an area.

Taking Pick up an object from a source.

abstract plan. We attempt to visually ground only those entities that are
required by the current action. During visual grounding, TTR analyses the
current ego-view of the robot to decide if such a grounding is possible. In the
cases of grounding failure and ambiguity, it invokes the dialogue component,
which uses visual uncertainty analysis to formulate questions for the human
co-worker. As TTR generates specific questions that can be answered by
either a binary yes/no or choosing an answer from a set of suggestions, the
answer is direct and unambiguous. In the case of an indirect answer, it is
treated as a rephrased description of the same argument and processed in
the same pipeline.

4. Talk-to-Resolve (TTR) in Details

In this section, we describe our approach in detail and explain the inte-
gration of individual modules.

4.1. Task instruction understanding

We assume that a given instruction contains a task, having an unam-
biguous goal. The task is decomposed into a sequence of robot executable
actions by task planning. To generate such a plan from the instruction, we
utilize Conditional Random Field (CRF) models introduced in our previous
work [B, 9]. The CRF models are trained to recognize a set of generic tasks
with the corresponding arguments from text input, as shown in Table 2] The
task types and arguments are defined according to the theory of semantic
frames [20]. For example, the following instruction is annotated with the



task and argument types by the task-CRF and argument-CRF models [5],
respectively.

[Take]iaking [a Ted cuplopject [from the kitchen/source.

Given the predicted task type and the complete set of arguments for the
task, we attempt to ground the arguments to the entities in the environment.
In the example above, we consider grounding the argument values for object
and source to a unique red-colored cup that is visible and a unique location
called the kitchen, respectively.

Considering a robot in an office environment, these task types are chosen.
However, the system design is scalable and easily extendable for other task
types. This just requires the CRF models to be trained with datasets (anno-
tated textual instructions) for those data types. Since the primary objective
of this article is to resolve various ambiguity levels to ground the referred
object, it is not dependent on the task type. Hence, the core contribution of
this article remains applicable to the extended system as well.

4.2. Plan generation

Given the task type and arguments mentioned in the instruction, we
generate a high-level task plan to execute the task. For each task type, we
define a set of pre-condition and post-condition templates [5]. The templates
are populated by the task and argument prediction and thus we encode the
instruction into a PDDL planning problem [27]. Finally, we use a forward-
search planner to generate the task plan, i.e., the sequence of actions the
robot needs to perform. An example of a task plan is given below.

1. MOVE_TO source

2. LOCALIZE object source
3. PICK_UP object

4. MOVE_TO destination

We utilize the abstract task plan to enable the incremental grounding pro-
cess. Before executing an action in the plan, such as MOVE_TO, we attempt
to ground its argument(s), e.g., source in the action. The source location
‘kitchen’, being a static geo-fencing area, the navigation goal can be deter-
mined from the robot’s knowledge. Therefore, the execution of subsequent
actions, where the object (a red cup) must be grounded visually, can be de-
ferred until the robot reaches the source location. We assume that an initial
occupancy map of the environment is known and the geo-fencing areas are



annotated with names. For the entities that are not present in the knowledge
base (such as movable objects), we resort to visual grounding.

4.8. Visual uncertainty analysis

The visual uncertainty analysis module aims to localize an argument to
the bounding box of a unique entity in the scene. It also decides if this lo-
calization is uncertain and infers the nature of the uncertainty. To perform
this localization, we first predict the entities present in the scene along with
their bounding boxes and generate a description for each of them. To gener-
ate the descriptions in natural language, we utilize a dense image captioning
network, DenseCap [4]. Given an image, it generates multiple region propos-
als, encodes the region features using a CNN, and uses a recurrent network
(LSTM) to generate descriptions of the proposed regions. As the region pro-
posal network in DenseCap is not constrained to any particular object type,
the generated descriptions are not restricted to the objects mentioned in the
instruction. Therefore, to find the most likely candidate object(s) in the
scene, we rank the generated captions according to their semantic similarity
with the argument phrase.

However, a direct semantic mapping is often not possible, as the percep-
tion of the same object can differ for the robot and a human due to poor
lighting, viewing angle, clutter, and partial occlusion. Also, there can be
multiple objects of the same type and due to mismatch in the vocabulary of
natural language and that of the LSTM language model of DenseCap, the
same object can be referred to by different words. For example, in Figure I}
there are three bottles, one containing wine and the others containing water.
An instruction to simply fetch a bottle in this scenario is ambiguous. Also,
an instruction like “bring me a coffee mug” does not have any lexical match
with the description “a red plastic cup”, although it is likely to be the in-
tended object. In the same scene, the cup’s material is also wrongly predicted
to be plastic. Although, utilizing pre-trained word embeddings to compute
the cosine distance between a pair of words [28] yields a semantic similarity
metric that addresses some of these issues, defining such a similarity function
to compare a caption and an argument is still non-trivial.

e Both the argument and the caption contain a variable number of tokens,
so the pairwise similarity between the tokens [28] cannot be calculated
directly.
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e Although vector-composition based models [29] [30] encode a variable-
length phrase, they do not yield an optimal relevancy ranking. This
is because such models aim to capture a generic summary of the word
embeddings, failing to exploit important local features. For example,
if the instruction is “turn off the red lamp”, a caption ‘a lamp on the
table’ is relevant than ‘a red table’.

e The generated captions are complete sentences. Whereas the argument
is often an incomplete phrase, which leads to a large length mismatch.

This limits the applicability of n-gram alignment techniques such as
METEOR [31] used in [23].

Therefore, we introduce a new semantic similarity metric, where we en-
code the words into pre-trained GloVe embeddings [28] and compute a convex
combination of the embeddings to generate a vector of fixed dimension. In
contrast to existing vector composition models that assign weights to individ-
ual word vectors [32], 29], we classify the words into a set of semantic classes
and only assign weights to the semantic classes. This results in a much sim-
pler learning problem, as we only optimize weights for k£ semantic classes,
as opposed to learning a composite, d dimensional embedding (k << d),
through supervision [32]. In the following, we define the similarity metric
and describe how it is applied to determine an ambiguity state for question
generation.

4.8.1. Semantic similarity calculation

The DenseCap model outputs a set of bounding boxes Bj., and captions
Cy., for a given scene. We define the semantic similarity function f(A,¢;),
to compare the argument phrase A with a given caption ¢;, and thus find an
optimal relevancy ranking. Firstly, given a sequence of tokens, we predict
a semantic class s € SC for each token. In our context, SC' consists of
the classes - object, attribute, spatial_landmark and a others class to account
for any other class of word. We model this semantic class prediction as a
sequence labeling problem and train a CRF model to perform the labeling.
Given a token sequence ti.,, we perform inference on the CRF to find the
most probable sequence of semantic class labels s1.,,

S1.n = argmax P(s;|t1.,, Si—1).
s, €SC
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We extract several grammatical features in the feature functions of the CRF.
The features include the lemma, POS tag, and dependency tag of the token
and its direct neighbors of the dependency parse tree, including the previous
prediction s;_; as the transition feature. To estimate a composite weighted
embedding of a sequence of tokens t.,, we interpolate the token embeddings
with the corresponding class weight. Therefore, given n token embeddings
of an argument phrase or a caption as d dimensional vectors, we find the
convex combination as,

Vd - Z )\ZE@%)d,
=1

where \; and E(t;) are the interpolation weight and the embedding of the
token t;, respectively. Given the encoded argument as V¢, and an encoded
caption as Vc‘f, we find their pairwise similarity as,

Vi v
f(Av Ci) = ot
NN%

4.3.2. Redundancy suppression

Given the set of bounding boxes and the corresponding captions, ranked
according to the caption’s similarity with the argument, we analyze the
bounding boxes for possible redundancy. The caption generation model pre-
dicts the most probable sequence of words, given an image region as a pro-
posal. However, such region proposals often overlap with each other, which
results in redundant caption generation. Although a greedy non-maximum
suppression (NMS) can be applied to prune region proposals with high over-
lap [4], i.e., Intersection over Union (IoU), setting the IoU threshold is gener-
ally difficult [33]. The difficulty increases when the robot must detect objects
of varying size, distributed in varying distances; where larger and closer ob-
jects may lead to multiple captions. Thus naive NMS often fails to suppress
captions that are about the same object, having a slightly different sequence
of words. We consider two distinct types of redundancy in the generated
captions and tackle them with different strategies.

e Object redundancy - when multiple bounding boxes are proposed for
the same object that results in captions, where either no attribute is
associated with the object, or the attributes are the same across the
captions.
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e Caption redundancy - when multiple captions are generated for the
same object, whose attribute sets are disjoint.

Resolving object redundancy is important for avoiding the false detection of
ambiguity. Whereas, in the case of actual ambiguity, multiple instances of
the same object must be considered separately. In the case of caption redun-
dancy, although redundant captions are suppressed, the distinct attributes
are merged to capture a distinct description of the object. We apply a greedy
heuristic to keep the most relevant captions by jointly applying a semantic
similarity and an IoU cutoff. Given the ranked captions, ¢;.,, we consider c;
to be the most probable candidate, i.e.,

¢ = argmax f (A, ¢)

Firstly, we prune irrelevant captions by applying a semantic similarity
cutoff a. Thus, we estimate the set of relevant captions,

Cr=A{c: f(A¢)>al<i<n}

Then we find the set of candidate captions by pruning the remaining
captions ¢; € Cg that satisfy the following,

]OU(Ciacl) > B)f(ciacl> >

where a and ( are the semantic similarity and IoU cutoffs, respectively.
While pruning a relevant caption, i.e., ¢; € Cg, we suppress caption redun-
dancy by utilizing the previously predicated semantic class labels. Let ¢,
denote the token corresponding to an object class label in ¢;. Then if ¢,
is present in a caption to be pruned, we merge the tokens in ¢; having the
attribute label, with the set of attribute tokens in ¢;. While merging such
a caption ¢; with ¢;, we also change the bounding box of ¢; as b = by Ub;.
We find the optimal values of @ and 3 through a grid search in the range
(0,1) minimizing error in ambiguity state identification, using a validation
dataset.

4.4. Dialogue system

We analyze the final set of candidate captions to decide if a question
should be asked. We define a set of ambiguous states so that the specific
problem faced by the robot is mapped to one of the states, and an appropriate
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Table 3: Description of ambiguity states identified by comparing visual information with
the argument.

State Description

No question (NQ) All the information is available.

Ambiguous Multiple matching objects, but no attribute

attribute (AA) mentioned in instruction.

Implicitly matching | Unique object with attribute, but no attribute

attribute (IMA) mentioned in instruction.

Attribute Unique object, but its attribute is different from

mismatch (AM) the instruction.

Attribute not found | Unique object without attribute, but attribute

(ANF) is mentioned in instruction.

Ambiguous object | Multiple matching objects that have either none

and attribute (AOA) | or the same attributes.

Not found (NF) The object can’t be found, possibly an error in
object detection.

question for that state can be formed. Unlike the existing work that decides
only binary ambiguity, i.e., there is ambiguity only if there is more than one
object, we define multi-level ambiguity states. Firstly, ambiguity can arise
even if there is only one object — the physical or spatial properties mentioned
in the instruction do not match with the object on the ground. Secondly,
ambiguity can arise if there are multiple instances of the objects along with
the object properties that may or may not match with the description (if
any) in the instruction. Sometimes, even if there are multiple instances of the
referred object, which is usually termed as ambiguity in most of the existing
works, it may not be ambiguous if only one instance matches with the object
description in the instruction. Our system handles all such scenarios, which
leads to a multi-level ambiguity resolution. As a result, the query generated
by the system is more informative and contextual, which helps the human
to realize the exact nature of the impasse that the system is facing. Based
on our analysis of various situations and instruction, we define seven such
states, as described in Table[3|that are sufficient to capture all possible object
ambiguities. The analysis is depicted in Figure [3| considering the possible
scenarios that may arise on the ground. In the following, we describe our
approach to detect the ambiguity state and generate the question given the
detected state.

14
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4.4.1. Ambiguity state identification

To identify a dialogue state we again utilize the CRF model we introduced
for semantic class prediction. We extract the semantic entities from the ar-
gument and compare them with extracted entities in the candidate captions,
utilizing the semantic classes that are predicted in the visual uncertainty
analysis stage (Section . Specifically, we check if the same object token
is mentioned in the candidate captions. If there is a unique candidate with
a matching object, we check the attribute tokens of both the argument and
the candidate. In the case of an argument mismatch, the AM state is iden-
tified, and ANF is identified when the argument is missing in the candidate.
Also, we take the strategy to confirm the object’s attribute if not explicitly
mentioned in the argument, i.e the IMA state. Otherwise, in the case of a
unique and exact match, we refrain from asking questions (NQ).

In the case of multiple candidates, we check if any attribute is mentioned
in the argument. If so, we check if multiple candidates with matching objects
have either the same or no attribute and thereby identify the AOA state.
Otherwise, we ask for clarity on the attribute for disambiguation, therefore
identifying the AA state. Finally, if no candidates are found, or there is no
matching object in the set of candidates, we decide on the NF state.
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Table 4: Mapping of question templates with ambiguity states, where the underlined and
the boldface slots are filled from the candidate captions and the argument, respectively.

State | Template

AA | T see a attribute-1 object and a attribute-2 object. Which one
did you mean?

ANF | I'see a object, but not sure if it’s attribute. Should I continue?
IMA | I see a attribute object. Should I continue?

AM | I see a object, but its attribute. Should I continue?
AOA | I see #num attribute objects. Which one did you mean?

NF | I can’t find any attribute object. What should I do?

4.5. Question generation

TTR generates a question if the detected state is the one where an ar-
gument can’t be uniquely grounded, or such a grounding is uncertain. The
question is crafted to convey the robot’s partial understanding of the scene
and also pinpoint the ambiguity /uncertainty. To generate such questions, we
use a set of templates, where each template contains multiple slots, that are
filled using the semantic entities and filler words, from both the instruction
and the candidate captions. We designed the question templates in a prag-
matically appropriate manner and present the user with choices whenever
applicable. Moreover, we left out any task-specific terms in the templates so
that they are generalized across multiple task types. The templates used in
TTR are shown in Table [dl The question templates specifically mention the
mismatch for single object instances so that a binary answer can be provided
to continue the grounding. In the cases of multiple object instances, the dis-
criminative attributes are mentioned in the question such that the user can
choose one, except for the AOA state. In AOA, there are multiple visually
similar objects (e.g., multiple green bottles on a table) and therefore the user
must specify some discriminating attribute in the response or allow the robot
to choose the physically closest object.

The question generator uses the predicted semantic classes of the ar-
gument and the candidate captions to replace the occurrence of the corre-
sponding slots. Although we define one template per ambiguity state for
our experiment, it is possible to use multiple templates for the same state,
making the questions seem non-repetitive. This can be done by re-phrasing
the template, utilizing the same set of slots.
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5. Evaluation

We evaluate our system using a curated dataset of indoor scenes, task
instruction, and appropriate ambiguity state triplets. We have introduced
a CRF model for semantic class prediction as a crucial component of our
system. Therefore, we also evaluate the model using a separate dataset of
annotated semantic class labels.

5.1. Datasets

To train the CRF for semantic class prediction, we have collected a total
of 242 object descriptions from the Visual Genome dataset [34] that is used to
train DenseCap [4]. We have sampled descriptions of image regions around
everyday objects from 40 different indoor images. We have tokenized and
annotated each token of a description as a sequence of semantic class labels,
using a text annotation tool [35]. This results in the annotation of 4.48
(SD=1.19) classes per description, on average. We have trained the CRF
with 80% of the data, and have evaluated using the remaining 20%.

To evaluate our ambiguity state identification method, we have collected
a total of 88 indoor scenes from an indoor scene recognition dataset [36]. For
each image, we have written multiple instructions conveying different task
types and referring to different objects in the image. Also for every object
type in an image, we have written instructions by referring to the same ob-
ject type with a varying granularity of attributes and intentionally mistaken
attributes. This results in a balanced dataset of different ambiguity and mis-
match scenarios. We annotated the most appropriate ambiguity state for a
given image-instruction pair. Two of the authors have written the instruc-
tions and annotated the states. Another author reviewed and corrected the
annotations for the entire dataset. The final dataset contains 358 image-
instruction pairs. There are 7 different task types and 7 different states in
the dataset, as shown in Table [2] and Table [3] respectively. We select a ran-
dom split of 10% of the data as a validation set for tuning the semantic class
weights \;, the semantic similarity, and IoU cutoffs and use the remaining
322 image-instruction pairs as the test set.

5.2. Performance of semantic class prediction

We compare our CRF model with a grammar-based baseline, where we
convert a dependency parse tree of the text to semantic class labels. Following
the parse tag definitions in [37], we label a token as the Object class if it is
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Table 5: Semantic class labeling result (Fl-score) of our CRF model, compared to a
grammar based baseline.

Semantic class Grammar "2seline | CRF ows
Object 0.76 0.91
Attribute 0.67 0.96
Spatial_landmark 0.83 0.91
Other 0.74 0.97
Avg. 0.72 0.95

the root of the parse tree. Subsequently, we label the tokens having adverbial
modifier (‘amod’ [37]) dependency as Attribute and having the indirect object
dependency (‘iobj’ [37]) as Spatial_landmark, while any other tag is labeled as
Other class. The semantic class prediction results are shown in Table[5] The
results suggest that the CRF surpasses the grammar baseline and has decent
accuracy for use in the semantic similarity function and caption comparison.

5.3. Performance of ambiguity state identification

We compare our approach with three baseline systems, where we ana-
lyze different semantic similarity metrics for caption relevancy ranking and
measure the effect of redundancy suppression. The following describes the
system variants used in the experiment.

e METEOR - We use the METEOR metric [31] as the semantic similarity
function to prune irrelevant captions, but do not suppress redundancy.

e Deep Averaging Network (DAN) - We use a pre-trained deep averaging
network [30] to encode the caption and the argument, followed by a
cosine similarity computation. No redundancy suppression is applied
to the ranked captions.

e S-BERT - We use a transformer-based network [38] to directly com-
pute the caption and argument embeddings for cosine similarity com-
putation, without redundancy suppression. Specifically, we use the
paraphrase-albert-small-v2 model that was trained for a paraphrasing
task, which has a similar objective to ours.
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Table 6: Ambiguity state identification results (F1 score) of TTR and baselines. Boldface
numbers are highest.

State | METEOR baseline DAN baseline S-BERT baseline SWI ows [ TTR, ours
AA 0.79 0.49 0.70 0.73 0.76
IMA 0.64 0.74 0.79 0.82 0.85
AM 0.60 0.62 0.68 0.73 0.73
ANF 0.42 0.56 0.73 0.75 0.75
AOA 0.58 0.58 0.64 0.60 0.65
NF 0.84 0.88 0.93 0.94 0.94
NQ 0.57 0.58 0.65 0.56 0.68
Avg. 0.71 0.72 0.77 0.80 0.82

e Semantic Weight Interpolation (SWI) - Our proposed weighted vector
composition model is used for semantic similarity, without redundancy
suppression.

e TTR- Our full model, where both the object and caption redundancy
suppression are applied, along with our proposed vector composition
model for semantic similarity.

We optimize the cutoff thresholds for all the baseline systems using the same
validation set and use the same task and argument labeling models. Also,
we augment the proposed CRF model for semantic class labeling in all the
baselines to enable the state prediction. By comparing with the test data
annotation, we report the results in Table [6]

5.3.1. Quantitative results

The baseline system that uses METEOR, closely resembling the work of
Shridhar and Hsu [23], can only achieve an overall F1 score of 0.71. We
observe that it is somewhat accurate in predicting the AA state, where the
n-gram alignment in METEOR gives a better ranking to captions with a
matching object type, whose attribute set is empty. However, it fails to
tackle slight dissimilarities in the attributes, resulting in poor performance
on the IMA, AM, and ANF states. For the prediction of these states, it is
necessary to consider captions as relevant, even if the captions with a match-
ing object have no attribute or have a different set of attributes. We see the
opposite effect when using DAN, where the word vectors corresponding to the
object are not explicitly given a high weight during composition, leading to
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low-ranking of captions describing the objects without any attribute, thereby
failing to predict AA accurately. However, the continuous-space word repre-
sentation of DAN slightly improves the accuracy for other states, improving
the overall accuracy to 0.72. S-BERT largely outperforms DAN achieving
an overall F'1 score of 0.77 and also improving on all individual states. This
shows that S-BERT produces a good, generic representation of the captions,
being trained with a state-of-the-art transformer network and optimized for
paraphrasing using multiple large datasets.

Our proposed method of weighted vector interpolation (SWI) outper-
forms METEOR and DAN by large margins. We achieved a 0.8 score, even
without redundancy suppression, particularly improving for IMA, AM, and
ANF states. SWI also outperforms S-BERT in overall score, improving per-
formance for most of the states. Finally, our full model achieved the best
score of 0.82, also achieving the best scores in individual states, except for
AA. Suppressing redundancy prominently helps in ambiguity identification,
specifically when deciding between IMA vs. AA and AOA vs. NQ states.
Please note that the detection of the NQ state is more difficult than other
ambiguous states as the system needs to correctly localize and count the
object instances, while also parsing the attributes from both the instruction
and the captions perfectly (as shown in Figure . In contrast, considering
the IMA state as an example, simply detecting a single object instance that
is mentioned in the instruction is assumed to be correct, regardless of any
error in parsing the attributes of the caption describing the object.

5.3.2. Qualitative results

Figure [] shows some examples of image-instruction pairs given to TTR
and the corresponding ground truth ambiguity states, as defined in Table [3]
As seen in Figures [b] to [4f], the questions generated by TTR are object-
specific and clearly describe the problem in grounding. For the NQ state
(Figure , the acknowledging response asserts to the user that no further
dialogue is required. Utilizing the semantic class prediction CRF, TTR is
able to consider lexically different captions as instances of the same object
class, e.g., different captions of a lamp in Figure [b] It can also parse multi-
token attributes such as ‘red and white’ in Figure [4e]

Figure 5| show some failure cases commonly encountered by TTR. Prob-
lems in perception, such as mispredicting visually similar objects, result in
false-positive detection of ambiguity. For example, in the scenario shown
in Figure [ba], there should be no ambiguity regarding the single microwave
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| can execute this. | see a red pillow and a white pillow. | see a white lamp. Should | continue?
Which one did you mean?

The lamp is white

The pillow:is White

Ared pillow’ Arred pillow

Bring a red pillow

Bring me a pillow

Turn off the lamp

(a) NQ (b) AA (c) IMA

| see two red lamps. | see a bed, but it's red and white.

° | see a sink, but not sure if it's silver.
Which one did you mean? Should | continue?

Should | continue?

Ared lamp The lamp is red

Aredand white bed

"

Go near the red lamp Go near the pink striped bed Move to the silver sink

(d) AOA (e) AM (f) ANF

Figure 4: Examples of image-instruction pairs given to TTR. The images are annotated
with the final candidate captions selected by TTR. The instructions are shown on the
bottom and the responses generated by TTR are shown on the top of each image.

| see two white microwaves. | can't find any silver sink. Ok.
Which one did you mean? What should | do?

A white microwave

Turn off the white microwave Take the white pillow from the bed

Move to the silver sink

(a) NQ, predicted AOA. (b) AM, predicted NF. (c) AOA, predicted NQ.

Figure 5: Examples of incorrect ambiguity state prediction by TTR.
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present in the scene. However, as the washing machine is mispredicted as
a microwave, the state AOA is predicted instead of NQ and thus a wrong
question is generated by TTR. Similarly, sometimes an object is not detected
by the caption generation model due to poor lighting, partial occlusion, and
uncommon texture. In Figure [5b] there is a grey sink made of stone and for
the given instruction the state AM would be appropriate. But as the sink is
not detected at all, the state NF is wrongly predicted. Sometimes localiza-
tion errors lead to incorrect state prediction. In Figure[5d the two vertically
stacked pillows are detected within the same bounding box. Although this
is a case of ambiguity, it is predicted as NQ. Additionally, a few incorrect
predictions occur due to parsing failure, e.g., for the instruction “bring me
a roll of toilet paper”, the token ‘toilet’ is incorrectly predicted as the object
class instead of the whole text span, ‘toilet paper’.

5.4. User study

We have conducted a small-scale user study, specifically to evaluate the
actual questions generated by TTR. We compare our natural language ques-
tion generation with Ingress, proposed by Shridar and Hsu [23]. To the best
of our knowledge, their work is most similar to ours, as they also focus on
asking questions for visual disambiguation of objects in a human-robot di-
alogue scenario and also use the same caption generation model. However,
as INGRESS is expected to be used only in a tabletop object manipulation
scenario, we perform two changes to the original system to enable the user
study. Firstly, as TTR produces perspective-free referring expressions to de-
scribe an object, we do not use the relational LSTM for question generation
that requires the robot and the human to face each other for dialogue. By
using perspective-free object descriptions for both systems, we also ensure
the user remains unbiased while providing the ratings. This exclusion only
affects the question text and not the ambiguity detection, as separate bound-
ing boxes of the same object class are considered as multiple instances in our
experiments. Secondly, instead of the robot pointing to different objects in
case of ambiguity, we only ask a single question mentioning all the instances,
similar to TTR. We do so by following the question template in [23] and join-
ing multiple referring expressions by the word ‘or’, e.g., “Do you mean the
blue pillow or the yellow pillow?”. Following the system description in [23]
we use the same DenseCap model for grounding object descriptions, i.e., the
S-LSTM in [23], followed by computing the CEL and METEOR score for the
k-means clustering [23].
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Figure 6: From user experience study, average score (5==Best) at 95% confidence intervals
for correctness and naturalness across different ambiguity states and all states combined.
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In this study, a participant is shown multiple image-instruction pairs to
evaluate. The participant assesses a given scene and then rates the generated
questions in response to the instruction. The participants are asked to rate
two questions per image, one generated by TTR and another by INGRESS.
The participant rates both the questions on a semantic differential scale with
numeric points 1-5. We have asked the participants to give their ratings about
how correct and natural they perceived the questions to be for the scenario.
On the first scale, a 5 rating denotes a completely correct question and 1
denotes a completely incorrect question. Whereas for the second scale, a 5
rating denotes a human-like natural question, and 1 denotes a completely
unnatural question. Please note that in the case of samples drawn for the
NQ@ state, the participants are shown an acknowledgment from the robot
such as, “Ok” or “I can do this” instead of a question, provided that the
state is predicted correctly. A total of 17 participants (9 male, 8 female)
from our organization have volunteered for the study. The participants are
from the age group 23-38, and all of them are fluent English speakers having
at least a bachelor’s degree. Four of them have been familiar with the broad
research area of robotics, but none of them have any expertise in human-
robot interaction and dialogue systems. Each participant repeats the rating
process for 14 random image-instruction pairs from our dataset. During the
study, we did not reveal which question is generated by which system.

Figure [6a] shows the average correctness ratings for the ambiguity states.
The questions generated by TTR are perceived to be more accurate for the
image-instruction pairs that belong to the ANF, AOA, and IMA states. This
result is most likely due to the absence of the fine-grained ambiguity states
in INGRESS. INGRESS uses generic questions to tackle different scenarios
in a similar way, which possibly impacts the correctness perceived by the
participants. Also, the questions generated by TTR are perceived to be more
natural across all the ambiguity states, as shown in Figure [6b] We show the
overall rating comparison in Figure [6d where the average correctness rating
for TTR is 3.46 (SD=1.52) and for Ingress is 3.0 (SD=1.63). Also, the
average naturalness rating for TTR is 4.02 (SD=1.32) and for Ingress is 3.08
(SD=1.56). A paired two-tailed t-test reveals the results are statistically
significant for both perceived correctness and naturalness. For correctness
ratings, the t value is 4.79, p < 0.00001. For naturalness ratings, the ¢ value
is 9.27, p < 0.00001.
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6. Discussion

In this section, we provide some discussion points that would be helpful
to adapt the proposed work and perform future research.

e In this article, we have analyzed the possibilities of ambiguity in the
problem setting and introduced the ambiguity states that are generic
and comprehensive. We have also defined a question template asso-
ciated with each of the ambiguity states. Thus, we reduce the crux
of the problem to predicting an ambiguous state and populating the
corresponding question template with relevant information. However,
predicting the ambiguity states solely from the image and the instruc-
tion is difficult, and we have proposed a method that performs this
prediction with decent accuracy.

e To adapt the system to a new domain, the CRF models for task type,
argument, and semantic class prediction need to be retrained. However,
this does not require a large amount of annotated data. For example,
the hyperparameters of the proposed semantic similarity function can
easily be fine-tuned with a minimal set of examples, as we use only
10% of the total dataset for the same. While the question templates
may also need to be changed for a different task domain (e.g., UAV for
surveillance task), the effort to do so would be minimal as the ambiguity
states would be more or less the same.

e In regards to End-to-end approaches that directly generate a question,
given an image and instruction pair, such a system would not have
the fine-grained understanding of the object descriptions. As a result,
grounding from the dialogue response of the human would require ad-
ditional models to parse and match the response to the input. For
example, suppose the question generated is “Do you mean the green
or the blue cup” and the human responds “the blue cup”). We can
easily handle the response using the same semantic class prediction
model. Moreover, due to the auto-regressive nature of the state-of-the-
art text generation models (P(wq|w;_1,...,w)), it is generally difficult
to control the semantics of the text. Even with beam search decoding,
the generation of grammatically correct and semantically incorrect sen-
tences is common. Also, the existing end-to-end models that perform
only grounding and no question generation do not handle ambiguity
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and always choose a single, most appropriate candidate for ground-
ing. In our problem setting, we allow the user to choose the candidate
instead of the model. However, with a sufficiently large amount of an-
notated data, compute power, and research effort, an end-to-end model
can be developed in the future.

7. Conclusions

In this article, we describe our Talk-to-Resolve (TTR) system that helps
a robot in resolving visual ambiguity and inconsistent perception, while ex-
ecuting an instruction. By taking natural language instruction as input,
our system analyzes the scene perceived by the robot to convey the exact
problem, which helps a human user to correctly signal a confirmation or
modification of the task. To achieve this, we propose a semantic similarity
function to find relevant object description(s) of the scene and a semantic
class labeling model to compare the object descriptions with the instruction.
Thus, we identify the appropriate ambiguity state so that the exact problem
faced by the robot can be expressed as a question. Our experiments suggest
that we benefit from our proposed approach for ambiguity state identification
in comparison to several baseline systems. We further improve the robust-
ness of our proposed method by suppressing redundant object descriptions.
In a user study, we also find that human users perceive the questions from
our system to be more accurate and natural, in comparison to the state-
of-the-art. Thus, TTR provides a significant leap forward in achieving an
easy-to-use collocated robotic system in any indoor space.
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