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DYNAMICAL FITNESS MODELS: EVIDENCE OF UNIVERSALITY
CLASSES FOR PREFERENTIAL ATTACHMENT GRAPHS
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ANDREA FONTANARI,∗ ∗∗∗ CWI, TU Delft

Abstract

In this paper we define a family of preferential attachment models for random graphs
with fitness in the following way: independently for each node, at each time step a
random fitness is drawn according to the position of a moving average process with
positive increments. We will define two regimes in which our graph reproduces some
features of two well-known preferential attachment models: the Bianconi–Barabási and
Barabási–Albert models. We will discuss a few conjectures on these models, including
the convergence of the degree sequence and the appearance of Bose–Einstein conden-
sation in the network when the drift of the fitness process has order comparable to the
graph size.

Keywords: Preferential attachment with fitness; Barabási–Albert model; Bianconi–
Barabási model; majorization; orderings; Bose–Einstein condensation
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1. Introduction

Preferential attachment models (PAMs) are a type of dynamic network that exhibits fea-
tures observed in many real-life datasets, such as power-law decay in the tails of the degree
distribution [25]. Since the works [24] and [26], one of the versions of preferential attachment
graphs that have become prominent is the Barabási–Albert model [4]. In the simplest case, at
each discrete time step a new node attaches itself to one of the already existing vertices with
probability proportional to that vertex’s degree. One of the main features of this model is the
old-get-richer phenomenon, where older vertices tend to accumulate higher degree. PAMs have
been extended to allow for different attachment probabilities. In physics it is relevant to look at
the following generalization: each node comes into the network with an additional label called
fitness, sampled at random. Now the attachment probability to a node is not only proportional
to its degree, but to its degree times its fitness. This graph is called PAM with fitness, first
introduced by [7]. We shall henceforth refer to this model as the Bianconi–Barabási model.
One of the main interests in fitness models of preferential attachment is due to their link to
a well-known phenomenon called ‘Bose–Einstein condensation’ [5]. Roughly speaking, con-
densation for a graph means that a small fraction of the nodes collects a sum of degrees that
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610 A. CIPRIANI AND A. FONTANARI

is linear in the network size. In physical terms this means that particles in a Bose–Einstein
gas (corresponding to nodes in our graph) crowd at the lowest energy level (roughly corre-
sponding to the fitness). It has been shown ([8], [10], [11], and [12] are some of the many
references) that under suitable conditions on the fitness distribution a condensate appears in
the Bianconi–Barabási model. In recent years, applications for preferential attachment mod-
els with fitness have gone beyond physics. On the mathematical side, several variants of the
Bianconi–Barabási model have been developed to study condensation and related phenomena
[15, 19, 20]. On the modeling side they have been used to study the power law exhibited by
cryptocurrency transaction networks such as Bitcoin [2], and citation networks [16]. The rea-
son for this is that one can take the view that nodes represent agents, and connections between
them depend on their reputation (the degree) and their skills (the fitness). Studying properties
of such networks can lead to better understanding of real-life phenomena.

So far the fitness has been considered fixed in time. Clearly this may not be the case, for
example when the skills of an agent increase in time via a learning-by-doing mechanism.
Motivated by this, we want to define a family of PAMs with dynamical fitness. In our networks,
the fitness Ft(v) is allowed to vary over time, independently for each vertex i, according to a
stochastic process that arises out of the sum of i.i.d. positive random variables distributed with
the same law as ε. It turns out that by choosing the right summation scheme we are able to
range between the Barabási–Albert and Bianconi–Barabási models. More precisely, we start
by showing that if the amount of increments is finite, we are able to compare our model to the
Barabási–Albert and Bianconi–Barabási models by showing that some features resemble those
of these benchmark cases (e.g. expected asymptotic attachment probability). Furthermore, we
investigate numerically the behavior of the degree sequence and show it is asymptotically
close to that of the Barabási–Albert resp. Bianconi–Barabási model. Indeed, the old-get-richer
phenomenon is reinforced by the presence of larger fitness of older nodes.

We continue by focusing on the Bianconi–Barabási model, proving that condensation can
be induced by summing sufficiently many increments. Provided the mean increment με is less
than 1

2 , we can always find a fitness distribution ν(ε) such that the Bianconi–Barabási model
with that fitness condensates; in particular, ν(ε) is obtained via convolution of the increment
distribution. However, for a larger mean increment, condensation will not appear regardless of
the growth of the fitness (as long as it is bounded in time), thus showing a phase transition at
με = 1

2 . We then conjecture, and provide numerics in support, that this behavior carries over
to our model as well.

Finally, we conclude with several open problems and conjectures. In particular, we per-
form simulations suggesting the appearance of a condensate when the sum of the increments
grows linearly in the network size. We inquire whether this phase transition is universal in the
increment law.

Drawing conclusions from our work, both mathematical and empirical evidence hints at the
universal behavior of the Barabási–Albert and Bianconi–Barabási models, which appear to be
stable under random, but bounded in time, perturbations of the attachment probability.

The main challenge at present is that the study of random networks with fitness has been
successfully carried through via a coupling with continuous-time branching processes (CTBPs)
and generalized Pólya urns. However, our time-varying fitness corresponds to a change of the
reproduction rate in each family of the associated CTBP, at every birth event, making the CTBP
lose its Markovian properties and independence over families. Using the observation that the
degree sequence corresponds to an element of a simplex, the theory of majorization turns out
to be a good tool to control the quantities we are interested in. To the best of the authors’
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Dynamical fitness models 611

knowledge, majorization seems to be newly applied in the context of PAMs, although it has
been widely used for other random graphs [1].

Structure of the article. In Section 2 we describe the model we are considering and state our
main theorems, which are proved, together with auxiliary results, in Section 3. We describe
some conjectures and numerical simulations in Section 4. We finally conclude with the remarks
of Section 5.

Notation. For a random variable X we denote its expectation by μX . We say that f (x)� g(x)
if there exist universal constants cr, c� > 0 such that c�g(x)≤ f (x)≤ crg(x) for all x. We use
the standard notation for graphs Gt = (Vt, Et), where Vt denotes the vertex set at time t and
Et denotes the edge set. The degree of a node v at time t in a graph G=Gt is indicated by
degt(v). We write w→ v to indicate that node w is attached to node v in the graph G, and
the bond between the two nodes is written as (w, v). We will use bold fonts for vectors. For
x= (x1, . . . , xd) ∈Rd, let

x[1] ≥ · · · ≥ x[d]

denote the components of x in decreasing order, and let

x↓ := (
x[1], . . . , x[d]

)
denote the decreasing rearrangement of x. We will use the Landau notation always with respect
to a time parameter t→∞. For a probability law ν we let ν(m) denote the m-convolution of ν.
We will use E, P to denote expectations, probabilities, etc., with respect to the fitness law, and
E, P to denote expectations, probabilities, etc., with respect to the law of the graph given the
fitness. Finally, dTV denotes the total variation distance.

2. The model and main results

2.1. Definition of the model

We will now begin by setting up the definition of preferential attachment graphs. The
construction algorithm of the time-evolving graph Gi = (Vi, Ei) at time i is as shown in
Algorithm 1 (here Fi = (Fi(v))v∈Vi denotes the random vector of node fitness at time i).

In particular, in this work we will construct random trees where at each time step a new
node attaches itself to a previous one according to the preferential attachment rule given
in (2.1).

The choice of the initial graph G1 is arbitrary and does not affect our results. The random
variable

Zt :=
∑

v∈Vt−1

Ft(v) degt−1(v)

is the partition function at time t. Note also that we label a vertex by its arrival time in the
graph. This mapping is valid since our graph is a tree. Therefore we will use u, v, w, . . .

interchangeably as names of vertices or as times in the graph evolution without risk of
confusion.

The new feature of our model is that fitnesses randomly vary in time according to a specific
discrete-time stochastic process. In the next subsection we will indeed identify two regimes in
which the behavior of our model follows closely that of the Bianconi–Barabási resp. Barabási–
Albert graphs.
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612 A. CIPRIANI AND A. FONTANARI

Algorithm 1. Construction of the preferential attachment graph.

1: procedure GRAPHCONSTRUCTION

2: initial step:
3: G1 = (V1, E1)← ({1, 2}, (1, 2))
4: F1← (F1(1), F1(2))
5: recursive step:
6: For i > 2 do
7: Fi← (Fi(v)) for all v ∈ Vi−1.
8: node← j ∈ Vi−1 chosen with probability

P(i→ j)= Fi(j) degi−1(j)∑
v∈Vi−1

Fi(v) degi−1(v)
(2.1)

9: Vi← Vi−1 ∪ {i}
10: Ei = Ei−1 ∪ {(i, node)}

2.2. Identification of two regimes

The relevance of our model lies in the fact that we can construct two families of graphs that
will either behave roughly like the Bianconi–Barabási or Barabási–Albert models. Therefore
our graph can be used as a tool to test the universality of these two models.

The first step is to partition our family of graphs into suitable regimes where the associ-
ated graphs share some features. Subsequently we identify, wherever possible, a representative
benchmark for the class, which will be either the Bianconi–Barabási or Barabási–Albert model.

Given the graph Gt−1 = (Vt−1, Et−1) at time t, let (εi(v))i∈N, v∈Vt−1 be a collection of i.i.d.
non-negative random variables with law ν. In the present work we assume that supp(ν)⊂
[0, 1], as is common in the literature on condensation for preferential attachment models with
fitness [8, 12, 20]. In order to define the regimes properly, we introduce a parameter m ∈N
that roughly measures the number of fitness increments at a given time step for a vertex. Note
also that m may depend on the graph size. Three fitness categories are identified, which in turn
define the following graph regimes.

Definition 2.1. (R1 graph.) Let m ∈N be fixed. The class R1 is the class of all graphs Gt

evolving according to Algorithm 1 with fitness

Ft(v)=
t∑

i=(t−m)∨(v+1)

εi(v)

for every node v.

Definition 2.2. (R2 graph.) Let m ∈N be fixed. The class R2 is the class of all graphs Gt

evolving according to Algorithm 1 with fitness

Ft(v)=
(v+m)∧t∑
i=v+1

εi(v)

for every node v.
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Definition 2.3. (R3 graph.) Let m(t) be an N-valued function of the graph size t which is
increasing and unbounded. The class R3 is the class of all graphs Gt evolving according to
Algorithm 1 with fitness

Ft(v)=
(v+m(t))∧t∑

i=v+1

εi(v) (2.2)

for every node v.

According to the summation of increments, F spans a rich variety of stochastic processes.
Some notable ones are as follows.

(a) The i.i.d. sampling from the law ν if, for every v, we have Fi(v)= εi(v). Observe that
Fi(v) is independent from Fj(v) for all i �= j.

(b) A moving average process MA(m) of order m, m <∞, for Ft(v)= εt(v)+ εt−1(v)+
· · · + εt−(v+1)(v). Observe that, for fixed v and i, Fi(v) is independent from Fi+m(v)
(m-Markov property).

(c) The random walk with positive increments distributed according to ν for Ft(v)=∑t
i=v+1 εi(v).

(d) For m <∞ and Ft(v)=∑v+1+m
i=v+1 εi(v), the fitness is a finite sum of increments such that

Fi(v)=Fv+1+m(v) for all i≥ v+ 1+m.

(e) If, for every v, we have Fi(v)= εv+1(v) for all i≥ v+ 1, we obtain a time-independent
fitness.

The classical Bianconi–Barabási model corresponds to (e). At the other end of the spectrum,
we will provide evidence (see Section 4) to support the conjecture that the model in case (a)
resembles a Barabási–Albert model. In our opinion this motivates the choice of the summation
scheme in the fitness process since it allows for a possible interpolation between the Bianconi–
Barabási and Barabási–Albert models. A few remarks are now in order.

Remark 2.1. (On R1.) The fitness process of the class R1 covers cases (a)–(b). We will show
that in this regime a Barabási–Albert-like behavior emerges.

Remark 2.2. (On R2.) The fitness process of the class R2 covers cases (d)–(e). We will show
that in this regime a Bianconi–Barabási-like behavior emerges. Indeed, we recover a model
similar to the Bianconi–Barabási model in the following sense: nodes after m steps stop
adding increments and start behaving as if they were in a Bianconi–Barabási graph with fitness
law ν(m).

Remark 2.3. (On R3.) The fitness process of the class R3 includes case (c), which can be
obtained by setting m(t)= t in Definition 2.3. Clearly other functions can be used, e.g. m(t)=
�log t�. As we shall see, according to the speed of the chosen function, different behaviors
will arise, especially regarding the phenomenon of condensation. One may also wonder what
happens when one chooses a fitness process as

Ft(v)=
t∑

i=(t−m(t))∨(v+1)

εi(v). (2.3)
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614 A. CIPRIANI AND A. FONTANARI

When m(t)= t, then (2.3) and (2.2) coincide. Any other choice of m(t) in (2.3) is uninteresting
for the purposes of our study (for example, we will see that the phenomenon of condensation
is trivial in this case).

Before giving our main results, we conclude this subsection with heuristics on the rich-get-
richer phenomenon, a characterizing property of preferential attachment models.

Note that for every regime the expected fitness of vertex v at time t is

E[Ft(v)]=με(m∧ (t− v)),

where m can also depend on t. This equation shows different effects, all playing a role in
the growth of the graph. While for m= t older nodes tend to have higher fitness, for other
values of m=m(t) younger nodes will on average have higher fitness, though the preferential
attachment mechanism can still favor earlier-born vertices. For m constant, the fitness value
will also depend on the extreme value behavior of its distribution.

We now turn to the main results of the paper. We will start by studying the phenomenon
of condensation (defined precisely in Section 3.1.2). Then we will move to the attachment
probability.

2.3. Condensation

The first result for condensation concerns the classical Bianconi–Barabási model and shows
that condensation can be enforced by a convolution operation. More specifically, given a fit-
ness distribution in a Bianconi–Barabási model with mean less than 1

2 , we will prove that the
graph in Definition 2.4 whose fitness is the m-convolution condensates for m large enough.
On the other hand, if the mean is larger than or equal to 1

2 , condensation does not appear.
This result provides new insight on the heuristic behind condensation. Since this phenomenon
requires more ‘rarified’ high fitness population [8], the convolution, which increases the tail
decay rate of the distribution, will favor condensation. However, if the mean is too high, mass
will not escape from the upper end-point of the distribution, countering the appearance of the
condensate. Thus there is a trade-off between these two mechanisms, which results in a phase
transition at 1

2 .
We now make the above reasoning rigorous. We introduce a family of Bianconi–Barabási

graphs parametrized by the convolution of the fitness law, that is, given a probability
distribution ν in [0, 1], we say that BB(m) is a Bianconi–Barabási graph with fitness
law ν(m).

Definition 2.4. (BB(m) graphs.) Let m ∈N. We let BB(m) denote a preferential graph evolving
according to Algorithm 1 with

Ft(v)=
m∑

i=1

εi(v).

We stress that the fitness distribution is independent of time and is distributed as the convolu-
tion ν(m). Taking m= 1, one obtains a Bianconi–Barabási model with fitness ε. Below, we will
use the term ‘Bianconi–Barabási models’ to refer to any graph constructed via Algorithm 1,
and we will use the notation BB(m) when it is important to stress the dependence on the con-
volution. Before giving a condensation result, we would like to define it rigorously. The first
definition we use requires the introduction of the upper end-point of the fitness distribution
dFt of the random variable Ft(1):

h= h(F) := sup{x : dFt(−∞, x) < 1}.
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To restrict ourselves to interesting cases, we assume there is no atom at the upper end-point, i.e.
ξ{h(F)})= 0. Let Vh̃ := {

v ∈ Vt : Ft(v)≥ h̃
}

for h̃≤ h. Condensation is based on the behavior
of the functional

Mh̃ :=
∑
v∈Vh̃

degt(v)

as t→∞ (firstly) and h̃→ h (secondly). Models that do condensate are those for which

lim
h̃→h

lim inf
t→∞ E

[
Mh̃

t

]
> 0. (2.4)

This corresponds to the formal idea, given in the Introduction, that there is a positive fraction
of nodes whose fitness is pushed towards h.

Proposition 2.1. Assume that the probability distribution ν of the fitness increment ε satisfies∫ 1

0

x

1− x
dν(x) <∞ (2.5)

and ∫ 1

0
x dν(x) <

1

2
. (2.6)

Then there exists m∗ ∈N such that BB(m∗) condensates.

We see that the presence or lack of condensation translates into checking an integral con-
dition. This is not unusual, and can be explained in view of the classical representation of the
Bianconi–Barabási model as a branching process (see e.g. [12]).

Remark 2.4. (Example: Beta distribution.) The law of the beta distribution Beta(α, β) with
α < β < α + 1 satisfies (2.5)–(2.6) and does not condensate [8, Appendix C.3]. Therefore by
Proposition 2.1 there exists an m∗ such that the m∗-convolution condensates.

The second result instead is relative to the R1 regime of our model. It states that in this case
condensation does not occur.

Theorem 2.1. No condensation occurs for graphs in regime R1.

When trying to prove a similar result for regime R2 we face additional difficulties. The main
one is that we need to control the empirical degree distribution, but the available techniques
relying on continuous-time branching processes fail because of the interdependence among the
branching rates of the particles represented by the vertices in our context. However, numerical
simulations we performed in Section 4 show that when BB(m) condensates, the corresponding
graph in R2, which sums the same m increments, will also condensate.

2.4. Evolution of the attachment probability

We now state three propositions regarding the behavior of the attachment probability for
our graphs. The main challenge lies in the fact that the attachment probability depends on the
fitness, so it is a random object as well.

In particular, the role of Proposition 2.2 is to justify why in regime R1 we expect behavior
reminiscent of the Barabási–Albert model. Indeed, the refreshing of the fitness after m steps
will imply that on average we attach new nodes with a probability proportional only to the
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degree multiplied by a constant, the mean increment. This mirrors the behavior in the Barabási–
Albert graph where no fitness is present. More formally, we show the following result.

Proposition 2.2. Let Gt be a graph in regime R1. If v ∈ Vt is such that v≤ t−m, then

E[P(t+ 1→ v)]� E[degt−m(v)]

t
+E[Ym, v], (2.7)

where Ym, v is a non-negative random variable such that Ym, v ≤C/t P-a.s.

Note that in (2.7) there is no equality sign, but we are off by a multiplicative factor as the
proof will show.

Proposition 2.3 shows that the attachment probability in regime R2 depends on the fitness
distribution, resulting in the term ‘Bianconi–Barabási-like’ case.

Proposition 2.3. Let Gt be a graph in regime R2. If v ∈ Vt is such that v≤ t−m, then

P(t+ 1→ v)� degt(v)Ft(v)

mt
P-a.s.

Finally, when m depends on t (the R3 case) we cannot refer to any benchmark model, so
it is natural to investigate the attachment probability in this case too. In particular we observe
behavior more similar to the Barabási–Albert model. This is due to the fact that, essentially as
a consequence of the law of large numbers, the fitness may be replaced by a constant, its mean,
thus canceling out in the numerator and denominator of the attachment probability.

Proposition 2.4. Let Gt be a graph in regime R3. Then, for a fixed vertex v,

P(t+ 1→ v)� degt(v)

t
P-a.s.

Remark 2.5. We notice in passing that when the fitness is distributed as in (2.3), the result of
Proposition 2.4 carries over as well.

3. Proofs of the results

3.1. Preliminaries

The two main tools we use to study preferential attachment graphs are the majorization
order and some results in the theory of branching processes. Although they are by no means
complete, we wish to recall here the basics we are going to employ in our work.

3.1.1. Majorization. Majorization is a tool that was first introduced in [17]. We refer the
interested reader to the monograph [23] for a complete overview.

Definition 3.1. (Majorization order.) For two vectors u, v ∈Rd+, we will write u≺ v (‘v
majorizes u’) if and only if the following is satisfied:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k∑
i=1

u[i] ≤
k∑

i=1

v[i], k= 1, . . . , d− 1,

d∑
i=1

u[i] =
d∑

i=1

v[i].

We say that
Dd := {

(u1, . . . , ud) ∈Rd : u1 ≥ u2 ≥ . . .≥ ud
}
.
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Majorization becomes a useful tool in random graphs because it provides a way to control
functions whose domain is a simplex, and since the degree sequence satisfies

∑t
v=1 degt(v)=

2(t− 1) for trees we can apply majorization to find maxima and minima of appropriate quanti-
ties. In particular, we will look at Schur-convex functions, which are are isotonic with respect to
the majorization order (see [23, Definition A.1, Section 3]). One such function is the partition
function of the attachment probability at time t.

3.1.2. Condensation and continuous-time branching processes. The standard approach to
study condensation is the embedding of preferential attachment graphs into continuous-time
branching processes. This technique goes back to [3], [6], and [21], and we recall here the
results given in [12] for the Bianconi–Barabási model with fitness law ν.

In [12, Theorem 2.1] it is shown that a Bianconi–Barabási model exhibits condensation if∫ h

0

F

h−F
dF < 1. (3.1)

In this case the weighted empirical fitness distribution

�t := 1

2t

t∑
i=1

degt(i)δFt(i)

converges as t goes to infinity to the sum of an absolutely continuous (with respect to the fitness
law) part, called the bulk, and a Dirac mass in the essential supremum of the support of the
fitness distribution, called the condensate.

By viewing the CTBP as a reinforced Pólya urn, it is also possible to study condensation
by establishing the strict positivity in the limit of the cumulative degree for vertices with high
fitness. This is in fact the first approach to the mathematical study of condensation, pioneered
by [8]; see also [14]. We also remark that there is no ‘standard’ definition of condensation, but
it can be seen that, for instance, (2.4) and the convergence of �t to a bulk and a condensate
are equivalent via the representation with CTBPs. We remark that these conditions to define
condensation have been investigated only in the cases of static fitness. It is for example possible
to see without difficulty that (2.4) is satisfied for Ft such that limt→∞Ft =+∞ a.s. and for
which an m-Markov property holds, as one first takes the limit in t and then in h̃. This is the
reason why we are not interested in studying models with the fitness process given in (2.3).

3.2. Auxiliary lemmas

3.2.1. Condensation. The next lemma shows that for the BB(m) model defined in
Definition 2.4, condensation is monotone under the convolution operation. Namely, once
observed, the phenomenon of condensation is not disrupted by adding more increments in
the fitness.

Lemma 3.1. Assume ν has compact support and m1 < m2. If BB(m1) condensates, then
BB(m2) condensates.

Proof. Without loss of generality we can assume m1 = 1, m2 = 2. The proof will proceed
similarly for 1 < m1 < m2 by repeated application of the arguments below. We assume also
that the law ν of the fitness of BB(1) is normalized so that supp(ν)= [0, 1]. In order to prove
the result we will verify the condition of condensation (3.1). We have, by assumption,∫ 1

0

x

1− x
dν(x) < 1, (3.2)
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and we have to show ∫ 2

0

x

2− x
dν(2)(x) < 1. (3.3)

Observe that under ν(2) we have X = X1 + X2, with each Xi ∼ ν and independent from each
other. We introduce the notation

x := (x1, . . . , xm) and v := ( 1/m, . . . , 1/m︸ ︷︷ ︸
m

, 0, . . . , 0) ∈Rm+�, � ∈N.

In the present case we fix m and � in such a way that m+ �= 2. We rewrite (3.3) as∫ 2

0

x/2

1− x/2
dν(2)(x) < 1 ⇐⇒

∫∫
[0, 1]2

〈v, x〉
1− 〈v, x〉 dν(x1) dν(x2) < 1.

Consider the function

ϕ : D2→R

v �→
∫∫

[0, 1]2

〈v, x〉
1− 〈v, x〉 dν(x1)dν(x2). (3.4)

This function is Schur-convex in D2, as one can see by applying [23, Theorem A.3, Section 3]

∂ϕ

∂vi
(v2)= 1vi �=0

∫∫
[0, 1]2

xi

(1− 〈v, x〉)2
dν(x1) dν(x2)≥ 0, i= 1, 2. (3.5)

The derivative in each vi can be taken inside the integral since the integrand is C1 in the domain
D2 × [0, 1)2. Note also that

∂ϕ

∂v1
(v)= ∂ϕ

∂v2
(v).

Therefore, by definition of Schur-convexity and the fact that

( 1/m, . . . , 1/m︸ ︷︷ ︸
m

, 0, . . . , 0)� ( 1/m− 1, . . . , 1/m− 1︸ ︷︷ ︸
m−1

, 0, . . . , 0),

it follows that

ϕ((1/2, 1/2))≤ ϕ((1, 0))=
∫ 1

0

x1

1− x1
dν(x1)

(3.2)
< 1,

which implies (3.3). �

As a part of the proof (and we will call it a corollary) we have obtained the following result.

Corollary 3.1. For i, j ∈N, the function ϕ of (3.4) satisfies ϕ(vi)≤ ϕ(vj) if i≥ j and

vi := ( 1/i, . . . , 1/i︸ ︷︷ ︸
i

, 0, . . . , 0).

Proof of Proposition 2.1. Without loss of generality we assume that ν is such that BB(1)
does not exhibit condensation (otherwise m∗ = 1). To show that the model condensates for

https://doi.org/10.1017/jpr.2021.81 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.81


Dynamical fitness models 619

some m∗ ∈ {2, 3, . . .}, we observe that for a random vector Xm ∈ [0, 1]m with Xm ∼∏m
i=1 dν

one has

〈(1/m, . . . , 1/m︸ ︷︷ ︸
m times

), Xm〉 = Xm =
m∑

i=1

Xi

m
. (3.6)

Now note that (3.1) can be rewritten using (3.6) as

E

[
Xm

1− Xm

]
=E

[
(X↓)m

1− (X↓)m

]
, (3.7)

since under
∏m

i=1 dν we have

Xm
d= (X↓)m = 1

m

m∑
i=1

X[i]. (3.8)

Fix a realization x↓ of X↓. Consider the function

� : Dm→R

a �→ 〈a, x↓〉
1− 〈a, x↓〉 .

As shown for ϕ of (3.4) in (3.5), one can prove that � is Schur-convex, so that, for fixed x↓,
�(am) is decreasing in m. This enables us to say that

lim
m→∞E

[
Xm

1− Xm

]
(3.7)= lim

m→∞E

[
(X↓)m

1− (X↓)m

]
=E

[
lim

m→∞
(X↓)m

1− (X↓)m

]
, (3.9)

using the monotone convergence theorem in the last step (applicable by (2.5) and the mono-
tonicity of �). We can now show that the right-hand side of (3.9) equals με/(1−με) using
(3.8) and the strong law of large numbers. This yields that{

E

[
Xm

1− Xm

]
: m ∈N

}
is a bounded decreasing sequence converging to με/(1−με). This implies the result. �

3.2.2. Attachment probability. A classical result we need to quote is the following. Its proof
can be found in [18, Theorem 368, Section 10.2].

Lemma 3.2. (Rearrangement inequality.) For every n ∈N, every sequence of real numbers
x1 ≤ x2 ≤ . . .≤ xn, y1 ≤ y2 ≤ . . .≤ yn and every permutation σ ∈Sn, it holds that

n∑
i=1

yixn−i+1 ≤
n∑

i=1

yixσ (i) ≤
n∑

i=1

yixi.

In order to treat the attachment probability, we need to have control of the partition
functions. We will do so using majorization in regimes R1–R3.

Lemma 3.3. Let Zt := ∑
v∈Vt−1

Ft(v) degt−1(v) be the partition function of (2.1) of models in
regimes R1–R3. Then the following holds:

(Zt)
−1 � (tm)−1

P-a.s.,
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where the constants in the asymptotic upper and lower bounds are deterministic.

Proof. The proof is based on the following two steps.

1. First we find two matching a.s. upper and lower bounds for Zt that involve roughly the
same sum of independent and identically distributed random variables.

2. Secondly we show by the strong law of large numbers that the sum behaves asymptoti-
cally like mt.

Let us begin with the two bounds. Using the fact that the degree is always at least one, we
can bound Zt from below by

Zt ≥
∑

v∈Vt−1

Ft(v). (3.10)

We then look for a similar bound from above. We argue that with P-probability we have

Zt =
t∑

v=1

Ft(v)(degt(v)− 1)+
t∑

v=1

Ft(v)

≤Ft, ↓(1)
t∑

v=1

(degt(v)− 1)+
t∑

v=1

Ft(v)

≤Ft, ↓(1)(t− 2)+
t∑

v=1

Ft(v), (3.11)

using that the sum of the degrees is 2(t− 1). We have thus obtained (3.10) and (3.11), which
have the same order of magnitude as t grows. We will then study only the asymptotics for
(3.10), the other bound being very similar. We begin by observing that

Zt ≥
∑

v

Ft(v)≥
L∑

k=1

εk (3.12)

where we have relabeled all the increments. Since we are summing all increments in the tree,
we drop the dependence of ε on a vertex v since the increments are i.i.d. We have numbered
the increments until

L := (t−m)m+ (m− 1)m/2= tm−m2/2−m/2. (3.13)

Equation (3.12) holds for any regime because the total number of increments is the same.
Equation (3.13) is going to infinity for m≤ t. Now, for fixed L, Hoeffding’s inequality tells us
that

P

(∣∣∣∣∣
L∑

k=1

εk −μεL

∣∣∣∣∣≥√L(log L)2

)
≤ 2 exp

(−2(log L)4). (3.14)

The bound in (3.14) is summable in L viz. t, so using the Borel–Cantelli lemma for every
η ∈ (0, με) a.s. we can find L0 = L0(η) such that, for all L≥ L0,

L∑
k=1

εk ≥ (με − η)L.
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Then choose t0 = t0(η) in a set of probability one such that L≥ L0 for t≥ t0 (this is possible
since L is an explicit function of t). Therefore we obtain an almost-sure bound of the form

Zt ≥
∑

v

Ft(v)≥ (με − η)
(
tm−m2/2−m/2

)
.

This concludes the proof. �

3.3. Proofs of the main results

Proof of Theorem 2.1. For a preferential attachment model with fitness, we have that

Mh̃ =
∑

v∈Vt−1

degt−1(v)1{Ft(v)≥h̃}

=
∑

v

degt−1−m(v)1{Ft(v)≥h̃} +
∑

v

Dv, m1{Ft(v)≥h̃}, (3.15)

where Dv, m := {t′ ≥ t−m : t′ → v} is a random variable bounded almost surely by m. Thus,
recalling the definition Vh̃ := {

v ∈ Vt : Ft(v)≥ h̃
}
, we have that E

[
Mh̃

]
is bounded above by

P
(
Ft(1)≥ h̃

)
E

[∑
v

degt−m−1(v)

]
+mE

[
Vh̃

]= P
(
Ft(1)≥ h̃

)
2(t−m− 2)+mE

[
Vh̃

]
.

(3.16)

Here we have used the fact that Ft(1) is independent of the sigma algebra σ (Gt−m−1) (the
fitness has the m-Markov property) and that the sum of the degrees up to t−m− 1 is deter-
ministic. Furthermore, we note that, due to the independence of the fitnesses over vertices,

E
[
Vh̃

]
t− 1

∼ P

(
m∑

i=1

εi ≥ h̃

)
→ 0 (3.17)

as t→∞ and h̃→ h. We justify (3.17) since for every node v≤ t−m the fitness is a sum of m
i.i.d. increments. These two observations combined prove that, for m constant, (3.16) converges
to 0. �

Proof of Proposition 2.2. We recall the bound

μεm

(
t− m

2

)
(1+C1)≤ Zt ≤μεm

(
t− m

2

)
(1+C2)+ tm P-a.s. (3.18)

for t large enough from Lemma 3.3, where C1, C2 > 0 are two constants that do not depend
on t, m. Thus, using the left-hand side of (3.18), one can rewrite the expected attachment
probability as

E

[
degt−1(v)Ft(v)

Zt

]
≥E

[
degt−1(v)Ft(v)

μεm(t−m/2+C2)

]

=E

[
degt−m(v)Ft(v)

μεm(t−m/2+C2)

]
+E

[
Dv, mFt(v)

μεm(t−m/2+C2)

]
, (3.19)
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where Dv, m is as in (3.15). The a.s. bound on Dv, m and the fact that E[Ft(v)]=μεm yield that
the second summand in (3.19) is O(1/t). As for the first summand, note that degt−m(v) and
Ft(v) are independent. Therefore we obtain

E

[
degt−m(v)Ft(v)

Zt

]
≥E

[
degt−m(v)

t−m/2+C2

]
.

The other bound can be obtained in the same way from the right-hand side of (3.18). �

Proof of Proposition 2.3. The result follows by applying Lemma 3.3 to the partition function
of the attachment probability. �

Proof of Proposition 2.4. Again using the right-hand side of (3.18), we get

degt−1(v)Ft(v)

Zt
≥ degt−1(v)

(με + 1)tm
(
1+ με

2(με+1)
m
t + o(1)

)Ft(v)

μεm
μεm.

Observe now that Ft(v)/(μεm) converges to one by the strong law of large numbers with
probability one. This shows that a.s., for t large enough,

degt−1(v)Ft(v)

Zt

is bounded from below by
με

με + 1

degt(v)

t
(
1+ με

2(με+1)
m
t

) .

The a.s. statement is a consequence of the law of large numbers for the term Ft(v)/(μεm)
converging to one. A similar upper bound, this time using the lower bound of the partition
function in (3.18), yields that a.s., for t large enough,

degt−1(v)Ft(v)

Zt

is no greater than
degt−1(v)

(t−m/2)
. �

4. Conjectures

The condensation phenomenon and the attachment probability hint at the fact that the
Barabási–Albert and BB(m) models represent benchmarks. However, these two quantities are
not sufficient to establish a full universality result. Therefore we believe that investigating other
aspects of interest can strengthen our claim. We will devote this section to the numerical study
of some additional observables of our graph and the relation with the benchmark models.

We focus on the degree distribution and the condensation phenomenon. For the former,
since the results on the attachment probability are local, in the sense that they hold for fixed
vertices, looking at the degree distribution gives broader information on the network. For the
latter, we want to verify whether the threshold for the appearance of condensation derived in
Proposition 2.1 for the BB(m) model is mirrored in our model in regime R2.

Finally, since to the best of the authors’ knowledge there is no reference in the literature
to preferential attachment models with fitness as in regime R3, we want to shed light on the
behavior of condensation in this case.
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FIGURE 1. (a) Mean of the total variation distance (4.1), m= 1, ε ∼U(0, 1). (b) Mean of the total
variation distance (4.1), m= 5, ε ∼U(0, 1). Note that it decreases towards zero.

4.1. Degree distribution

We now present the numerical results for the degree distribution in regimes R1 and R2. We
will show that the total variation distance between the degree distribution of our model and the
benchmarks vanishes asymptotically in the graph size. We chose the total variation distance,
not just for its numerical tractability but also because it implies the convergence of the laws.

Conjecture 4.1. (Convergence of the degree distribution in R1.) Let m ∈N, and let degt be the
empirical degree distribution of a graph Gt in regime R1. Let degBA

t be the empirical degree
distribution of a Barabási–Albert graph. Then

lim
t→∞ dTV

(
degt, degBA

t

)= 0. (4.1)

The limit is taken a.s. in the fitness realization for Gt.

In Figure 1 we plot the mean of the total variation distance (4.1) averaged over 100 Monte
Carlo simulations with m= 1 and ε ∼U(0, 1) for different graph sizes. Since our result is
quenched in the fitness, we are keeping the same realization of the fitnesses and averaging the
total variation distance over the Monte Carlo trials.

Due to the convergence of (4.1) we are also conjecturing that the asymptotic survival func-
tion of the degree distribution is close to a power law with exponent τ = 2, as in the standard
Barabási–Albert model [25, Section 8.4]. We then compare the tail exponent of the survival
function of the degree distribution between our model in R1 and the Barabási–Albert model in
Figure 2.

Conjecture 4.2. (Convergence of the degree distribution in R2.) Let m ∈N, and let degt be the

empirical degree distribution of a graph Gt in regime R2. Let degBB(m)
t be the empirical degree

distribution of a BB(m) model with the same parameter m ∈N. Then

lim
t→∞ dTV

(
degt, degBB(m)

t
)= 0. (4.2)

The limit is taken a.s. in the fitness realization of Gt.

In Figure 3 we plot the mean total variation distance (4.2) over 100 Monte Carlo simulations
with m= 5 resp. m= 10 and ε ∼Beta(1, 3) for various graph sizes. As in the Barabási–Albert
case, the fitness realization is kept fixed over the various Monte Carlo trials.
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FIGURE 2. Log-log plot of the empirical survival function for our model (a) in regime R1, m= 1,
ε ∼Beta(1, 3), and a Barabási–Albert model (b). The plot looks like a straight line, which hints at a

power-law behavior [9]. On top τ is computed.

FIGURE 3. (a) Mean of the total variation distance (4.2) between our model in regime R2 and BB(m),
m= 5, ε ∼Beta(1, 3). (b) Mean of the total variation distance (4.2) between our model in regime R2 and

BB(m), m= 10, ε ∼Beta(1, 3). In both cases it goes to zero.

As a comparison, observe in Figure 4 the behavior of the mean total variation distance
between our model in regime R2 with m �= 1 and BB(1) averaged over 100 Monte Carlo simula-
tions. Again this hints at the fact that the way in which fitnesses increase does not substantially
influence the growth of the network, provided we sum finitely many increments. This also
shows that the BB(m) model is robust under dynamical perturbations.

4.2. Condensation

We now present the numerical results on condensation in regimes R1–R3. To do so, we
will plot the cumulative degree of the nodes grouped by fitness. In this setting, based on the
argument outlined in the Introduction, we expect to see condensation when the landscape of
the above has more and higher spikes concentrated towards the upper end-point of the fitness
law.

To begin with, recall that by Theorem 2.1 no condensate appears in regime R1. Indeed,
when picturing condensation using the cumulative degree grouped by fitness (see Figure 5),
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FIGURE 4. (a) Mean total variation distance (4.2) between our model with m= 5 and BB(1),
ε ∼Beta(1, 3). (b) Mean total variation distance (4.2) between our model with m= 2 and BB(1),

ε ∼U(0, 1). In both cases the mean total variation does not approach zero.

FIGURE 5. Cumulative degree of the nodes grouped by fitness for our model in regime R1 with m= 1,
ε ∼Beta(1, 3). Observe that the location of the highest spike of the degree does not escape towards the

supremum of the fitness but is randomly shuffled.

one can see that the position of the spikes varies on the whole support of the distribution. This
is due to the the m-Markov property.

We now turn our attention to regimes R2 and R3.

4.3. Condensation for R2

Given Conjecture 4.2 on the asymptotic degree distribution, we formulate a conjecture on
the condensation for R2 models.

Conjecture 4.3. Let m ∈N and let Gt be a preferential attachment graph in regime R2. Then
Gt condensates if BB(m) condensates.

We will support the above conjecture with a few simulations. We recall [8, Appendix C.3]
that in a BB(1) model the fitness distribution Beta(α, β) condensates if and only if β > α + 1.
In Figure 6 one can observe the absence of a condensate for U(0, 1)-distributed increments
and m= 1. In Figure 7 a condensate appears for the increment distribution Beta(1, 1.9) when
m= 2. Note finally in Figure 8 that there is no condensation for Beta(3, 1)-distributed incre-
ments for m= 5. Since in this case με = 3

4 > 1
2 , the threshold in Proposition 2.1 seems to be

binding in R2 as well.
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FIGURE 6. Cumulative degree in fitness intervals for regime R2 with m= 1, ε ∼U(0, 1). Note that the
degree distribution per fitness becomes smoother at the right end-point of the fitness distribution. This

model is known not to exhibit condensation.

FIGURE 7. Cumulative degree in fitness intervals for regime R2 with m= 2 with ε ∼Beta(1, 1.9). In
this case higher spikes appear as the graph size increases towards the upper end-point of the fitness
distribution. Recall that the classical Bianconi–Barabási model does not condensate for Beta(1, 1.9)-

distributed fitness.

FIGURE 8. Cumulative degree in fitness intervals for regime R2 with m= 5, ε ∼Beta(3, 1). The degree
distribution per fitness appears without peaks as the graph increases and no condensates forms.

4.4. Condensation in regime R3

The case in which m(t)� 1 presents an interesting open problem which is illustrated in the
following simulations.

In Figures 9–11 we plot the cumulative degree for nodes grouped by fitness with U(0, 1)
increments in the regimes m= �log t�, �√t�, t respectively. As one can see, the limiting fitness
distribution resembles the cumulative fitness distribution for the first two cases, while in the
m= t regime a spike appears at με t.

As stated at the beginning of Section 4.2, in these kinds of plots condensation is indicated
by the presence of spikes around the supremum of the fitness. Looking at Figures 9–10, there
are no peaks and the landscape of the empirical fitness distribution resembles the cumulative
degree grouped by fitness. On the other hand, in Figure 11 the two quantities are different:
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FIGURE 9. Cumulative degree grouped by fitness in regime R3 with m= �log2 t� with ε ∼U(0, 1). (c)
Empirical fitness distribution corresponding to the last cumulative degree plot. Note that the empirical

fitness distribution resembles the cumulative degree by fitness. The plots exhibit no spike.

FIGURE 10. Cumulative degree grouped by fitness in regime R3 with m= �√t� with ε ∼U(0, 1). (c)
Empirical fitness distribution corresponding to the last cumulative degree plot. Note that the empirical

fitness distribution resembles the cumulative degree by fitness. The plots exhibit no spike.

FIGURE 11. Cumulative degree grouped by fitness in regime R3 with m= t with ε ∼U(0, 1). (c)
Empirical fitness distribution corresponding to the last cumulative degree plot. As expected, the fitness

distribution is uniform in [0, με t]. In particular με = 1/2, t= 100 000, and με t≈ 50 000.

the cumulative degree by fitness exhibits a spike roughly around με t, t= 100 000, and the
empirical fitness distribution seems to be uniform in [0, με t]. Heuristically, a uniform law
appears because by summing a linear number of increments the central limit theorem kicks in,
so that each node has roughly a Gaussian fitness. More precisely, for most nodes i the fitness is
close in law to N (με(t− i), σ 2

ε (t− i)), where σ 2
ε is the variance of the increments. Therefore,

by Gaussian concentration properties around the mean, we see a fitness landscape close to
uniform in [0, με t].

Based on the above considerations, we expect that the speed at which m(t) grows in time
influences the appearance of a condensate. Namely, if m(t) is too slow, condensation cannot
be enforced, while a faster m(t) leads to Bose–Einstein condensation. Because of the scaling
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FIGURE 12. Cumulative degree grouped by fitness in regime R3 with m= t with increments distributed
as (4.3). (c) Empirical fitness distribution corresponding to the last cumulative degree plot. As expected,

the fitness distribution is uniform in [0, με t]. In particular με = 1/2, t= 100 000, and με t≈ 50 000.

of the central limit theorem, we conjecture m(t)=�(t) to be the threshold for condensation
in R3.

This is summarized in the following conjecture.

Conjecture 4.4. If m(t)=�(t), R3 exhibits condensation with the cumulative fitness distribu-
tion having an atom at με t.

We expect our results to be universal regardless of the increment distribution. In order to
address this topic properly, we need to identify two fitness families. Mailler, Mörters, and
Senkevich [22] proposed two fitness categories in the context of competing growth processes
and dynamical networks. The difference arises essentially in the behavior at the maximal fitness
value (regular variation vs. exponential behavior), which implies different treatment of the two
regarding condensation. The families are:

(i) bounded random variables in the maximum domain of attraction of the Weibull
distribution, e.g. Beta distribution [13, Section 3.3.2];

(ii) bounded random variables in the maximum domain of attraction of the Gumbel
distribution, e.g. those with survival function [13, Section 3.3.3], that is,

F(x)= exp(−x/(1− x)), x ∈ [0, 1]. (4.3)

So far we have used Beta-distributed increments in our simulations. In order to better sup-
port our claims, we provide a realization of our model in R3 with increments belonging to class
(ii). Namely, we will use increments distributed as (4.3). As one can see, the behavior shown
in Figure 12 is qualitatively similar to Figure 11. The intuition behind this is that the central
limit theorem works regardless of the initial increment distribution.

5. Concluding remarks

As mentioned in the Introduction, most of the main tools (urn models, continuous-time
branching processes, etc.) developed to analyze preferential attachment models with fitness are
still not able to treat dynamical fitness models. This is why the behavior of these models poses
an interesting mathematical challenge. In this paper we have started the investigation, both
mathematical and empirical, of these models. We believe that a rigorous analysis of dynamical
fitness preferential attachment graphs could shed light on the existence of universality classes
for random graphs. In particular, this can justify the use of the Barabási–Albert and Bianconi–
Barabási models in applications. As an example, since the attachment probability of a graph is
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hard to estimate, knowing that the benchmark models are robust under bounded fluctuations of
the fitness makes them suitable to fit observed networks.

Finally, a rigorous study of regime R3 is advocated. The reason for this is that it creates a
new universal model where the phase transition seems no longer to depend on the fitness but
rather on the speed of the fitness growth.
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