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ABSTRACT

We exémine a certain modal consequence relation, and define the notion of validity of a
modal sequent on a frame. We demonstrate that it is possible to define classes of frames,
not definable by modal formulas, by modal sequents. Through the use of modal algebras
and general frames, we obtain a characterization of modal sequent-definable classes of
frames which are also first-order definable, and a sufficient condition for a class of frames

to be definable by modal sequents.
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Introduction

In [Gol. Goldblatt developed techniques for dealing with questions regarding
definability in the relational semantics for modal languages. These techniques were used to
characterize modally definable classes of standard relational frames which are also first-
order definable, and characterize arbitrary modally definable classes of first-order or general
frames, which are a generalization of standard relational frames. In [GT], a characterization

of arbitrary modally definable classes of standard relational frames was obtained.

In order to answer questions about the definability of relational frames, [Go] turns to
the algebraic semantics for modal languages. Here validity of a modal formula is identified
with the validity of a corresponding polynomial identity on a modal algebra. Many of the
techniques used in [Go] derive from one basic result, namely that the category of descrip-
tive frames and the category of modal algebras, with appropriate morphisms, are dual.
Now it is straightforward to characterize modally definable classes of modal algebras, since
they are really just equétion;l classes. Using this along with the above-mentioned duality,

it is then possible to characterize the modally definable classes of descriptive frames. and to

work toward a characterization of such classes of standard frames.
A number of the techniques of [Go] are refined in [vB1] and [vB2].

In this thesis. we use these techniques to answer some questions about definability in
an extended relational semantics. We introduce modal sequents. which are pairs of finite
sets of modal formulas. The definition of wvalidity of a sequent is derived from the
definition of a certain modal consequence relation. This relation is fairly 'natural'.\insofar
as it has a simple syntactic characterization, in terms of the common logics introduced in
(Seg]. Having defined validity of a sequent, we can show that it is possible to define classes

of frames using sequents which we cannot define using modal formulas. In order to answer
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questions about sequent definability, we take the algebraic approach: a class of modal alge-
bras is is>deﬁnab1e by modal sequents iff it is universal. Using the duality result of [Gol,
we then are able to characterize classes of general frames definable by modal sequents, and
classes of standard frames definable by modal sequents which are also first-order definable.
We are also able to provide a sufficient condition for an arbitrary class of standard frames

to be definable by modal sequents.



1. Relational Semantics for Modal Languages

In this chapter we will introduce the standard relational semantics for modal
languages. It will be shown that with respect to this interpretation, modal formulas

correspond to certain kinds of second-order formulas.

We will be dealing with a number of formal languages, but our primary focus is on
L., the language of propositional modal logic. We assume that the reader is already fami-
liar with first-order and second-order logic. If not. he can refer to [Bar] and [vBD], respec-
tivelyv.

The language L, has three components: a countable set Var of propositional variables,
denoted py. p1. - - - .p. Q. - - -, a set Con = {=,0.&} of connectives, and a set Form of formu-
las, which are‘strings constructed from members of Var and Con. Form is defined induc-
-tively as follows:

Form is the least set such that Var & Form and
a € Form => -~a € Form

a.f € Form => &afl € Form
a € Form => Oa € Form

Formulas (in any lar;guage) are denoted by léwer case Greek characters: a, 8, y. ¢, .
A L,—formula a with all propositional variables among py. - - .p, may be denoted
alp,. - --.,p,). Sets of formulas are denoted by upper case Greek characters:
Z,T. A, 0.9, Q. and may be subscripted by O (e.g. T'y) if they are known to be finite. We
may write I',0 for TU® and I'.a for TU{a}. We introduce the following abbrev~iations for
various L,—formulas: |
(a&B) for &af

(avB) for ~(~a&~B)
(a—B) for (~avpB)



(a—B) for ((a—=B)&(B—a))
< a for -0-«
L for (a&=a)
T for (av=-a)
&T, for aé&roa
Parentheses are used freely to indicate the precedence of connectives, but may be ‘omitted

given the following implicit precedence: =, 0. <> have the highest precedence, followed by

&, v and finally —, «—.

We now introduce the relational semantics for L. This is considered to be the ‘stan-

dard’ semantics, and is based on the work of Kripke ([Kr1], [Kr2]).

Definition 1.1 A (standard) frame is a structure F = (W ,R), where W is the underlying set

of F (denoted. | F|) and R € WXW. A valuation for a frame F is a mapping V:Var—2V.

Every valuation V for a frame F = (W,R) extends uniquely to a mapping
. V:Form—2¥ via the following definitions:
V(-a) = —V(a) = {w € W|w ¢ V(a)}

V(a&B) = V(a)NV(B) |
V(Oa)={w €W | (Vv € W)(WRv =2 v € Via)))

Henceforth. we will not distinguish between V and V.

Definition 1.2 A model is a triple M = (W,R.V), where (W ,R) is a frame and V is a
valuation for (W R). M is a model based on (W R), which is the underlying frame of M.
An L —formula « is valid on M = (W.R,V) (MkEa) if V(a) = W. The formula « is valid
on F=(WR) (Fk=a) if it is valid on every model based on F, and is valid (FEa) if it is

valid on all frames. A set I' € Form is valid on M if every member of T is valid on M.



Forw € |M|. aistrueon Mar w ({(M,w)F=a) if w € V(a).

We will now show that with respect to the given definition of validity on a frame,
every modal formula o« defines a second-order formula ST(a) (This is the approach taken in
.[vB3]). ST(a) is a formula in the second-order language with one binary predicate cohstant

R . and a set {P;|i<w} of monadic predicate variables, and is defined inductively as fol-
lows:
ST(p;) = Pi(x)
ST(-a) = -ST(a)

ST(a&B) = ST(a)&ST(B)
ST(Oa) = (Vy)(Rxy—[y/x]ST(a))

where y is not free in ST(a) and [y/x]¢ denotes the formula obtained by replacing all free

occurrences of x in ¢ by y.

Theorem 1.3 Let F be a frame. alpy. - - - .p,) € Form. Then FE=a iff YxVP, - - - VP, ST(a)

1S second-order valid on F.

Proof This follows directly from the definition of ST(a) and 1.2.

Since VxVP,--- VP, ST(a) is second-order equivalent to VP;:--- VP VxST(a), «
corresponds to a second-order sentence with a prefix of universal second order quantifiers,
and no other second order quantifiers. According to the classification scheme of [CK], 4.1,

such sentences are called I} sentences.

We will now introduce modal axiom systems, and indicate their connection with the

relational semantics.



Definition 1.4 A modal axiom system is a pair S = (Ax.Rule) where Ax & Form is the set of

axioms. and Rule C {f | f maps Form'=Form, i<w} is the set of rules. For f € Rule, if

flay, - -+ .0p) = @pyy. We say that ., is inferred from oy, - - - ,0, by f. The formula « is
derivable in S (l—ga) if there is a finite sequence «,. - - - ,&, of L —formulas such that
a =a,, and for 1<i<n, either a; € Ax or «; is inferred from some a;, .05 by some

f € Rule, where i;<i for 1<jSk. For T € Form, a is derivable from T in S (Tsa) if there

is some I'y € 4, with —¢&I'—a. T is S-consistent if it is not the case that ¢!,

We now turn to the modal axiom system K. K is formed by adding to the axioms
of the propositional calculus (PC) the axiom scheme (= B8)—(Oa—0B) (that is. the set of
all formulas of the given form, where a and B are arbitrary formulas), and to the rules of
PC the rule of necessitation: from « infer Oa. The following theorem shows the significance

of this system.
Theorem 1.5 For o € Form, =a iff o

This is a standard result. See, e.g.. [HC], 2.5. We present an outline of the ‘only if’
part, since some of the ideas used will be needed for later results. We construct -
My = (W .Rx. Vi), the canonical model for K . as follows:

Wy = {T € Form | T is maximally K—consistent!
Ry = (T.T") | (Va)(Do € T => a € T)}
Vilp) =1{T'|p € Tli<w
The fundamental lemma then states that for a € Form and I € Wy, T € Vi(a) iff a €T.

Assuming this, suppose —xa. Then {-a} is K-consistent, and so can be extended to a maxi-
. mal K-consistent set I',. Now o €T, so I, € Vkx(a). whence Mgf=a. So we have that if

V—xa. there is a frame Fg = (Wg.Rg) such that Fy¥=a. The desired result is obtained by



contraposition.



2. Common Logics and Modal Consequence Relations

Given an axiom system S, we normally identify S with the set {a € Form | l—ga} of
theorems of S. Of course, we could also consider the set {{I".a) | o). More generally,
we can examine relations such as l—g in the context of arbitrary binary relations on subsets
of Form. This is the approach taken in [Segl. where such relations are called logics, and cer-
tain conditions which characterize common logics are identified. In this chapter we extend

—x to such a logic. We also use frames to define a corresponding consequence relation.

Formszorm

Definition 2.1 A logic L is a subset of 2 . Note that when dealing with an

arbitrary L. we may write [0 for {I'.©) € L. A common logic is a logic L which meets

the following closure conditions:

(Refl) Z—EZifZ=o@

(Mono) If I'—0 then I'.['—0,0

(Cuty) It bothI'—0,Q and o,I'—0" for all « € Q, then I'.['—06,0’
(Cut,) U bothT—©,8forallB € Q,and Q.I'—O'. then . I'—0.0"

(Susbt) 1f TO then sI'—s®. where sI denotes the set of substitution instances of

members of T for some substitution s:Var— Form.

Proposition 2.2 Any common logic L. meets the following closure conditions:
(Over) THOifINO =&
(Trans) 1f al—B and B—y then a—7y.

Proof (Overl): Let £ =T'N@. By (Refl), £Z. so by (Mono), ['—6.

(Trans): This is a direct result of (Cut,).



Let S be a modal axiom system. Lg is defined as the smallest common logic such that

({L}@) € Ls. ({p}.{Op}) € Ly and oy, - - ot fageg)) € Lg whenever

s & - - - &ap,—an,. We write I'—¢0 for {I'.0) € Ls.

Definition 2.3 A (modal) sequent is a pair {I';.0,), where I';,,0, C ;,Form. We use o to
denote an arbitrary sequent. A logic L is finitary if whenever '@ there is a sequent

(r().®0> with FO c F,@O € O such that r0'—®0.

Since the logic Lg is the smallest logic containing a specified set L' of sequents, we say

that Lg is generated by a set of sequents.

Lemma 2.4 Any common logic L which is generated by a set of sequents is finitary.

Proof This is done by induction on members of L . The result holds triviz;lly for the basis
elements (i.e., those in the generating set). For the induction step. we consider the case
where (I'.©) € L is obtained via the (Cut;) rule. (Other rules are handled similarly). We
have ' =T"UT" and © = ®'U©" such that I'—0',Q and a.I'"—0" for all a € Q, for some
Q € Form. But then I'}—©',,Q,, where I'"y € ;. I", 0, € 4,0 and Q, S 5, Q. and for all
a € Qg o,(I")*—(0"y)*, where (I'"y)* and (©",)* are finite subsets of I'" and ©" which

depend on o. Let "y = |J (I'()* and 0" = U (@")®. Then I'*y S 4. I € S 4,0".
a€ Qg o€

and for all « € Q, a.I""(—0", by (Mono). So we have by (Cut;) that I'",,[",—0',.0",. But

['oUT", S ¢, and ©',UG", C 4,0. Hence L is finitary.

As a result, L is finitary. By [Seg], 2.3.6, it follows that Lg can be defined using the

rule (Cutg):

If rol—seo,a and a,rlol—se'o then ro,rlol—seo,@‘()
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in place of the rules (Cut,) and (Cut,).

Definition 2.4 Let X be a class of frames, I'.©® & Form. © is a consequence of T on X

(T'=0(X)) if for all F € X and valuations V for F,

, (Va e T)(V(a) = |F|)=> (3B € ©XV(B) = |F|)
We write F=(TI',0) for I'=0({F}).

We want to establish now that T=0(F) iff T—®, where F is the class of all frames.

We will use the canonical model My constructed in Ch. 1.

Definition 2.5 Let F = (W.,R), F' = (W'R’) be frames. F'is a generated subframe of F if

W oW
2) (Vw,w' € W)w € W and wRw' => w' € W")
3R =|Rﬂ(W'XW')

Suppose F' is a generated subframe of F and V'V are valuations for F' and F, respectively.

(F'.V') is a generated submodel of (F,V) if for all p € Var, V'(p) = V(p)N'W".

It is a standard result that if {W'.R".V') Iis a generated submodel of (W ,R,V), then for
all o € Form, V'(a) = V(a)N'W’ (see. e.g. [HC]. p. 80). This result is used to show the fol-

lowing:

Lemma 2.6 Suppose M'= (W'R"V') is a generated submodel of the canonical model

My = (Wy.Ry. V) for K. Then forall « € Formand w € W', a € w iff w € V'(a).

Proof w € W' € W, so

a€w <> w € Vi(a), by the fundamental lemma
<> w € Vi(a)NW', since w € W'
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<> w € V'(a), since V'(a) = Vg(a)NW".

Lemma 2.7AIf o; = O0%a?, af € Form, k,20, 1<i<n, then for any modal axiom system S
{af, - - - ,a8—sloy}, for 1<i<n.

Proof If ki = 0, then {al}—slo;} by (Refl). whence {a?, - - - .a8}—sla;} by (Mono). Other-
wise. since {p}l—s{Op}. we have by (Susbt) that {al}—g{Oaf}, {Oaf}—slC0af). - - -.
0% afl—{0%aP). So by the repeated application of (Trans), {a}—¢l0%0), ie..

{a?}—sia;}. Then by (Mono), {a?, - - - .a8}—lay).

Lemma 2.8 Suppose I, C Form, T¥—¢0. Let OI = {O'a | & € T.i<w).
1) If @%@, then for all 8 € ©, O U{-B} is S-consistent.
2) If ©=@, then OT is S-consistent.

Proof 1) Assyme for contradi;:tion that there is some 8 € © for which O U{-B} is not S-
consistent. Then there are a;, - -:.a, € O such that +go& - &a,—B, and so
{ay, - - - .apt—s{B). But by 2.7, {af, - - - .aQ}—sla;}, where o € T for 1<i€<n. Then -by
(Mono)r {ad, - &l —glay, - - - .}, and by (Cuty). {af, - -- ,ég}l—s{ﬁ}. But then by

(Mono), T¢@, contrary to hypothesis.

2) Assume for contradiction that OI is not S-consistent. Then there are a;, - - - ,a, € O
such that —ga;& - - - &a,— L. and hence {oy, - - .ayl—s{1}. Now {L}¢@. So by (Cut;)
{og, - - - La,}—¢@. We can now proceed as in (1) to obtain ['—4®.

Theorem 2.9 For I, € Form, I'=0(F) iff T—x0O.

Proof ( => ) Assume I'/x®. We want to construct a frame F = (W ,R) and a valuation
V for F so that for all « € T, V(a) = W, and for all 8 € ©, V(B8) = W. This will mean

that T¥=0{({W.R))}, so that [¥=©(F). By 2.8 OT is K-consistent. Let
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W = {£ 2 0TI | £ is maximally K—consistent}
R={(Z.2) |Va(Da € L => a € T}
V(p) ={Z|p €z} pé€ Var

Now
1) WG Wy
2) For L.I' € Wy, if ZRT' and L € W, then for any a € OI', O« € OTI', and so Oa €

since L 2 OI'. Thus a € I'since ZRT' and so £' 2 OI', whence ' € W.
3) R=RgN(WxW).
4) Forp € Var, V(p) = Vi(p)NW.
So M = (W.R.V) is a generated submodel of the canonical model. Now by 2.6 Vi) =W
for all « € T. If © =@, then =O({{W,R)}). Otherwise by 2.8, OI' U{-8} is K-consistent
for each B € ©, so for each B € O thereisa I'; € W such that -8 € I';. But then since M is

a generated submodel of M. we have by 2.6 that V(B8) & W—{T;}, so V(B) = W for all

B € ©. Hence T=0({{W R)}) and so T¥=0(F).

( <= ) This is done by induction on members of Lx. For the basis, we immediately have
{L}=a(F), {p}={0p}(F), pe€Var, and {a,, - - - t={o, . (F)  whenever
g & - - - &a,—=ay,y, a; € Form, 1€i<n+1, by the “standard’ completeness result for K
(1.5). For the induction step. we consider the (Cutg) rule. Here we have [=0.y(F) and
y.I'o=0'o(F). We must show I'\=I",(F). Now for all frames F = (W.R) and valuations
V for F:

(Va € To)(V(e) = W) => (3B € O,UlyD(V(B) = W) (1)
(Va € T’ U{y)(V(a) = W) = (3B € @' )(V(B) = W) (2)

Now choose Fy=(WR) and V, a valuation for F, and suppose

(Va € ToUT'))(V(a) = Wy). Then by (1), (3B € ©,U {y})(V(B) = W,). Suppose B = 7.
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Then B € 0. so (3B € ©,)(V(B) = W,). Otherwise (Va € T',U{y})(V(a) = W), so by (2),
(3B € ©'x)(V(B) = W,). In either case, (IB € O,UO'))(V(B) = W,). Since F, is arbitrary,

To.T0=00.0'(F).

As a corollary, we have that =(F) is compact. that is, if TE=O(F), then there are

rO ; ﬁnr. 90 ; ﬁn@ Wlth r0'=@0(F)

We now present a generalization of 2.9, which will apply to a number of well known

modal systems.

Definition 2.10 Let S be a modal system, X a class of frames. S is complete with respect to

X if for all « € Form and F € X. o« iff FFa,

We have seen that validity of a modal formula on a frame corresponds to a certain
kind of 'seconli—order validity. We will now show that truth of a modal formula on a
model at a point w € | M| corresponds to the validity of a first-order sentence on a struc-
ture derived from M and w . For a € Form, ST,(a)=[c,,/x]ST(a), where c,, is a new con-
stant symbol and {P; | i<w} is a set of predicate constants. rather than variables. We then
have that the validity of & on a model (F.V) at a point W . is equivalent to the first-order
validity of ST;(a) on the structure {W.R.V(p,),V(p;). - - - .w) where P,, i<w, is interpreted
as Vpy), and ¢, is interpreled as w .

From the preceding comments. we see that it is possible to define an ultraproduct My
of modal models, using the ultraproduct construction for first-order structures, such that

(MU'WU>=U iff {l I (Mi,wi)l=0'} € U.

Definition 2.11 Let {F; Ii € I} be a family of frames F; = (W R;). V; a valuation for F,

w; € W;, and U an ultrafilter in 2. HFi/U, the witraproduct of the F;'s over U is defined
i€l
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in the standard way for first-order structures ([BS]. 5.2.1). If there is a frame F such that

F,=F for all i €1, then we denote [[F/U by F!/U, the ultrapower of F over U.
i€l

(My.wy) = TI(F.V,.w;)/U is then defined to be the ultraproduct
i€l

II<{W,.R.Vi(po).Vi(py). - - - .w;)/U.

€1

Lemma 2.12 Suppose I' € Form. Let {T'})|i<w} be an enumeration of the finite subsets of
I If for each i<w, there is an M;=(W;R;,V,) and w;€ W, with
(M, w;Y=&(T§U - - - UT}), then there is an ultrafilter U in 2% such that for a €T,

(Mu,Wu>t=a.

Proof Let F be the collection of cofinite subsets of w. Then the intersection of any finite
subset of F is nonempty. so F is contained in an ultrafilter U in 2% ([BS], 1.3.5). Now
for any o €T, a €T} for some i<w. But then for all j2i, (M,w;)=a. so
{j| STy(a) is valid on {W.R;.V{(py). - -+ .w}} 2 {j]j=i} € U. Then by Los" Theorem ([BS],

521), STl(a) is valid on (\fV[j,RU,VU(pO)- o qu>' SO <MU'Wu>L==a'

Definition 2.13 Let {F;|i € I} be a non-empty family of frames, F;,=(W;R;}, with 4

W;NW,; =@ whenever i # j. ) F,, the disjoint union of the F;'s is the frame ('EJIWi,_tJIRi).
i€l i i

Note that by letiing W', = W x{i}, we can define } F, even if W,N'W, # @ for some i.j.
i€

For a class X of frames, U(X) denotes the class of all disjoint unions formed from members
of X.

Theorem 2.14 Let X be a class of frames closed under the formation of ultraproducts, gen-
erated subframes and disjoint unions, and S a ﬁlodal axiom system complete with respect

to X. Then for I.® € Form, ['—¢0 iff T=0(X).
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Proof ( <= ) Suppose MSG. Let {T} | i<w} be an enumeration of the finite subsets of OT.
Assuming © = @, choose B €0©. By 28, OruU{-B} is S-consistent, so for i<w,
F—s&(T§. - - - Th)=B. So for some M, = (W, R, V,) and w, € W,, such that (W.R;) € X,
(M; w)E=(TU -+ - UT}) and (M, w;)¥=B. Let U be as in 2.13. Then for « € 0T,
(My.wy)E=a. However, {i| (M, w;)=B} =@ € U, so by Los" Theorem (My.wy)¥=B. Let
My’ be the least generated submodel of My containing w,. Then for « € T, My'FEa and
My¥%B. Since B8 was chosen arbitrarily, we have that for ali B € ©, there is some FgeX
and valuation Vg for Fg such that for all a € T, (FgVg)E=a. while (Fg Vg)=p. Let

F= ﬁ;@Fﬁ. Define the valuation V for F by V(p) = Bg@Vp(p). for p € Var. A straight-

forward induction shows that for o € Form, V(a) = BLEJGVB(C!). So for all & € T (F.V)E=a,
while for all B € ©, (F.V)¥=B. So I'=0({F}). Since F € X, [*=0(X). In case © = 3, we set

©={1} and proceed as above.

( => ) As in the proof of 2.9, with F replaced by X.

We may wonder if there are any modal axiom systems complete with respect to a
class of frames which meets the closure conditions of 2.14. It is a standard result (cf. 3.7,
2.6) that a system S is complete with respect to X iff it is complete with respect to U(X)
and G(X), the class of generated subframes of members of X. Also, many well-known
modal systems S (e.g. T. 84, §5) are complete with respect 1o a.class X of frames which is
first-order definable (cf 3.2) and hence closed under ultraproducts ([BS}. 7.3.4). So we have

for these sysiems that I''—¢@ iff TE=O(UG(X)).
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3. A Survey of Modal Definability Results

In Chs. 1 and 2 we have been concerned primarily with completeness results, that is,
with showing that various semantic notions such as validity and consequence can be charac-
terized syntactically, via axiom systems and logics. We turn now 10 an examination of
definability results based on the notion of ‘validity on a frame’ given in Ch. 1. In subse-
quent chapters we will use some ideas from Ch. 2 to extend the ‘traditional’ modal

definability results examined in this chapter.

Traditionally ([Go], [GT], [vB1]), modal definability theory has been concerned with
what can be ‘said” about properties of frames using modal formulas. Some definitions are

required to make this idea more precise.

Definition 3.1 A class X of frames is modal axiomatic if there is a set L € Form such that

X = Fr(E) = {F | (Yo € E)(Fi=a)).

We will use the terms class and property interchangeably. A property X is modally

definable if X is modal axiomatic.

Definition 3.2 ([BS]. 7.1) A class X of frames is A-elementary if there is a set L of first-

order sentences such that X = Mod(Z) = {F | (V¢ € Z)(& is first-order valid on F)}.

So a property X of frames is first-order definable if it is A-elementary. Some questions

that arise now are the {ollowing ([vB2], p. 13):
(3.3) When is a property of frames which is modally definable first-order definable?

(3.4) When is a property of frames which is first-order definable modally definable?
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(3.5) When is an arbitrary class of frames modal axiomatic?

The first two questions can be seen as comparing the ‘expressive power of modal formulas -
and first-order sentences. They are particularly interesting given the fact that, according to
1.3, modal formulas correspond to certain second-order sentences (when used to define pro-

perties of frames).

Our first step will be to examine various constructions on frames which preserve vali-
dity of modal formulas. Closure under these constructions is then a necessary condition
for a class of frames to be modal axiomatic. Note that we will présem a few results
without proof. since they are well-known. Results using ideas needed in subsequent

chapters will be presented in more detail.

Lemma 3.6 If F'is a generated subframe of F and F=a, o € Form, then F'Fa.
\

Proof [HC]. 5.8

Lemma 3.7 If {F;|i € I} is a nonempty family of frames and F/=a, a € Form, for i €1, =

then Z]Fi;=a.
€]

Proof [vB2], 2.15

We are now in a position 1o answer 3.3. using the following:

Lemma 3.8 Let X be a class of frames. If X is closed under isomorphism. generated sub-

frames, disjoint unions and ultrapowers, then X is closed under ultraproducts.

Proof [Go], 16.4

Definition 3.9 Structures F and F' for a first-order language L are elementarily equivalent
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(F=F') if the same L-sentences are valid on both F and F'. In particular, for frames F and

F'. F=F' if the same sentences of Ly, the language of one binary relation, are valid on both.

Theorem 3.10 Let X be a modal axiomatic class of frames. Then X is first-order definable

iff X is closed under elementary equivalence.
Proof ( => ) Say X = Mod(Z). If F € X and F'=F, F' € Mod(Z), so F' € X.

( <= ) If X is closed under elementary equivalence, it is closed under isomorphism and
ultrapowers ([BS]. 7.3.2). So by 3.6, 3.7 and 3.8 X is closed under ultraproducts. But then

X is first-order definable ([BS]. 7.3.4).
We now present two more constructions which preserve validity of formulas.

Definition 3.11 Let F = (W.R) and F = {(W'R"). {:-W—>W'is a p-morphism if

\
(Vw € W)(Vu € WH(f(w)R'u) <> (Iv € W)(WRv and f(v) =u))

F' is a p-morphic image of F if f(W)=W'. (F'.V') is a p-morphic image of (F.V) if F isa

p-morphic image of IF and for p € Var, V(p) = f~1(V'(p)).
A straightforward inductive argument illustrates the following:

Lemma 3.12 If M' = (W' R" V") is a p-morphic image of M = (W.R,V), then for o € Form

Via) = {71 V'(a)) where [ is a surjective p-morphism from (W R) onto (W'.R").

Lemma 3.13 Suppose F' is a p-morphic image of F and a € Form. If F=a then F'=a.

Proof Suppose F¥=a. Then there is a valuation V' for F' with v € V'(a) for some v € W',
Define a valuation V for F by V(p) ={w € W|f(w) € V'(p)} where f is a surjective p-

morphism from F onto F'. Then (W'.R', V') is a p-morphic image of (W,R,V_). Now since
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f(W)=W', v=1_f(w) for some w € W. But then w € V(a), or else by 3.12 w € f"}(V'(a))

and v=f(w) € V'(a). So (F.V)¥a and hence F-a.

Definition 3.14 ([vB2], 2.24) Let F=(W,RR)., F=(W'R). For XC W define
R(X)={w € W| (Vv € WwWRv=>v €X)). F is the ultrafilter extension of F
(F' = ue(F)) if

W' ={u € 2% | uis an ultrafilter in 2V} (1)
uR'v' <= (VX S W)(r(X) €u=> X € u) (2)

Given a valuation V for F, define the valuation ue(V) for ue(F) by

ue(V)(p) = {u| V(p) € U}.

Again by an inductive argument, we have the following

\

Lemma 3.15 For F= (W.R), u € |ue(F) |, and « € Form, u € ue(V)(a) iff V(a) € u.
Lemma 3.16 For F = (W R), o € Form, if ue(F)=a then F=a.

Proof Suppose F=a. Let w € W—V(a) where V is a valuation witnessing F=a.. Let u,,
be the principle ultrafilter in 2% generated by w . Then V(a) € u, so u, ¢ ue(V)(a).

Hence (ue(F),ue(V))¥Ea, and ue(F¥=a.

Considering 3.6. 3.7 and 3.13. we see that closure of X under disjoint unions. gen-
erated subframes and p-morphic images are necessary conditions for a class X to be modal
axiomatic, as is the closure of —X under ultrafilter extensions, by 3.16. By [Gol, 20.6, these
conditions are also sufficient, under the assumption that X is closed under elementary
equivalence. Since X is closed under elementary equivalence whenever X is first-order

definable, this provides an answer to 3.4.
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These results also point to an answer for 3.5, but not directly. A construction which
‘combines’ the generated subframe, p-morphic image and ultrafilter extension constructions.
known as the state-of-affairs (SA) construction, is presented in [GT] (where its name is also
explained). In general, ultrafilter extensions do not preserve validity of formulas, but SA-

constructions do. The pertinent result is the following

Lemma 3.17 ([GT]}. 3) A class X of frames is modal axiomatic iff X is closed under isomor-

phism, disjoint unions, and SA-constructions.
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4. Definability Via Sequents

In this chapter, we introduce the notion of validity of a modal sequent on a frame.
We will then demonstrate that it is possible to define properties of frames, not definable by
modal formulas, by modal sequents. We will also examine some constructions that

preserve validity of sequents.

Definition 4.1 A sequent o = (T(,0,) is valid on a frame F if T (=0,({F}). In this case we
write F=o. A class (property) X of frames is sequent-axiomatic (definable by sequents) if

there is a set L of sequents such that X = Fr(L)={F | (Vo € L)(F=o0)}.

Proposition 4.2 For X a class of frames. let Seq(X) be the set of sequents for which

o € Seq(X) iff for all F € X, Fi=o. Then X is sequent-axiomatic iff X = Fr(Seq(X)).

Proof € => ) Obviously X S Fr(Seq(X)). Since X is sequent-axiomatic X = Fr(L) for some
set L of sequents. Moreover, L C Seq(X). So if F € Fr(Seq(X)), F € Fr(L), and hence

F e X

( <= ) Clear.

Since sequents are composed of finite sets of formulas. we can establish a correspon-
dence between sequents and II} sentences. just as we did with modal formulas. In particu-

lar, o = (I',.0,) is valid on a frame F iff the sentence

VP,---VP,( & VxST(a)— V VxST(B))
a €Ty B € O
is secohd-order valid on F, where n is the largest index of any propositional variable
occurring in T',U®,. Note that for any L,—formula a and frame F, Fi=a iff F=(3.{a}).

so that the correspondence between sequents and II} sentences is an extension of that

between formulas and I1] sentences. It is our aim to show that this extension is proper, that
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is, to show that there are properties of frames definable by sequents but not by modal for-
mulas. This is done by considering properties which are definable by sequents and showing

that these properties are not preserved by certain formula-preserving constructions.

Lemma 4.3 The sequent {@.{p.~0Op}) is valid on a frame F = (W R) iff (Vw,v € W)(WRV).

Proof ( => ) Sup’pose there are w,v € W with wRv. Then we can choose a valuation V
such that (W.R.V}=(@.{p.~Op}). Namely. let V(p)=W—{v}. Then w € V(Op). so
V(-0p) = W

( <= ) Suppose (Vx,y € W)(xRy) and that for some v € W and valuation V for F,
v € V(p). Now for any w € W, wRv so that w € V(Op), whence w € V(=Op). So

V(-Op) = W.

Now the property (Vw.,v € W)(wRv) is not preserved by disjoint unions, aithough validity
of formulas is. Thus we have an example of a property of frames, namely the universality
of R . which is definable by sequents but not by formulas. Another interesting sequent-
definable property of frames which is not preserved by disjoint unions is given in the fol-

lowing

Lemma 4.4 The sequent 0, = (@.,Ip—p, | 0Si<j<2"}). n<w .is valid on Fiff ||F| <n.
Proof ( <= ) Suppose || F|| = k<n. Then for any valuation \" for I, there are at most
2% possible values of V(p;). Hence we must have V(p;) = V(p,) for some 0Si<j<2¥. So
F=o,.

( => ) Suppose ||F|| >n. Choose X € |F| with |X| =k>n. Let X, - - X,x_, be an
enumeration of the subsets of X . Now 2¥—1>2" so define V with V(p) =X, 05j<2"

Then (F.V)}¥*co,. So F+o,.
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Lemmas 4.3 and 4.4 demonstrate that validity of sequents is not preserved by disjoint

unions. The following result demonstrates that it is not preserved by generated subframes.

Lemma 4.5 The sequent {{-p,0p}.@) is valid on a frame F = (W ,R) iff (Iw.v € W)(wWRvV).

Proof ( => ) Suppose (Vw,v € W)(wRv). Then for any valuation V for F, V(Op) = W.

In particular, we can set V(p) = @ so that V(=p) = W, and also have V(Op) = W.

( <= ) Suppose w,v € W and wRv. Now suppose that for some valuation V , V(-p) = W.

Then v € V(p) and w € V(Op). So Fe=({-p.0p}.@).

The preceding results demonstrate that sequents can be used to extend the ‘expressive
power’ of the relational semantics for modal formulas. Thus the questions of Ch. 3 again
become open, but now with respect to modal sequents rather than f ormulaé. Our first step
in obtaining some answers is an examination of constructions which preserve validity of

sequents.

Lemma 4.6 If M = (W'R'V') is a p-morphic image of M = (W .R.V) and for some
a € Form V(a) = W, then V'(a) = W".

Proof Let f be a surjective p-morphism from M onto M". Then Y V'(a))=V(a)=W. So

f(f~4(V'(a)))=f(W). Since f isonto, f(fHV'(a)))=V'(a) and f(W)=W'. So V'(a)=W",

Theorem 4.7 If F' is a p-morphic image of F, then for any o =(I.0,), if F=o then
F=o. }

Proof Suppose F¥=0. Then there is a valuation V' for F' such that (Va € T)(V'(a) = W')
and (VB € ©)(V'(B) = W"). Define a valuation \Y% for F by

V(p) ={w € W|f(w) € V(p)}, p€ Var. Then (W'.R'V') is a p-morphic image of
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(W.R.V), soby 3.12 and 4.6. (Va € T()(V(a) = W) and (VB € ©,X(V(B) = W). So F=o.

Theorem 4.8 For any sequent 0 = ([4,0,) and frame F, if ue(F)=0 then F=o.

Proof Suppose F=o. Let the valuation V for F witness this. Now we have that for
a €T, Ve) =W, so‘for every ultrafilter u in 2%, V(a) € u and hence u € ue(V)(a), by
3.15. Moreover, for every B € ©,, there is some wz € W with wg € V(B8). If we let ug be
the principle ultrafilter in 2% generated by wg then V(B) € ug so ug € ue(V)(B8). Hence

(ue(FF),ue(V))Eo and so ue(Fl&o.

We now know how the formula-preserving constructions of Ch. 3 stand with respect
to preservation of sequents. We will examine one more sequent-preserving construction.
Definition 4.9 Suppose (1<) is a directed partial order and {F;|i €1} is a family of

N

frames, F, = (W,R;), with F, a generated subframe of F; whenever i<j. F=(W,R) is the

direct union of the F;'s (F = -glFi) if W= .ngi. R= glR,.

Lemma 4.10 If F = gFi. then for any X, € 4,|F| there is some i' €1 for which
€1

Xo S |Fi .
Proof Suppose X, = {w,. - .wi}, k<w. Now for 1<j<k, there is some i; with w, € W,_
Let i’ be an upper bound for iy, - - - .i;. Then X, & W,.

Lemma 4.11 If F = %J]Fl, then for 1 €1, F,=(W,R,) is a generated subframe of
1€1
F = (W.R).

Proof Obviously W; € W and R, =(W;xW;)NR. Now suppose w,w' € W, w € W, and

wRw'. There is some j2i with w' € W; and WR;w'. Since F, is a generated subframe of F;.
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Theorem 4.12 Let F = g,Fi‘ g ={ly,0,). If F=o foralli € I, then F=0o.

Proof Suppose F=0". Then there is a valuation V for F with V(a).= |F|, forall a € T,
while for all B €@, V(B)= |F|. For each B €0, choose wg & V(B). Let
Xo=1{wg|B € ©y}. Let i’ be as in Lemma 4.10, with W; 2 X,. By 4.11 F; is a generated
subframe of F. Choose V; such that (F;,V;) is a generated submodel of (F,V). So for
a €T, Vi{a) = V(a)NW; = W;. Moreover, for B € 8, wgz € W=V(B) and wy € W;, so

Xg € (W=V(B)NW,; =W;—V(B). So Fi¥=0.

Corollary 4.13 The well-foundedness of R is not definable by sequents.

Proof Let F, = ({i<w|0<i<n},2), n<w. Then each F, is well-founded. Now F; is a

generated subframe of F,;,. n<w, and so we may form the direct union U F,. But this
n<w

direct union is just {w,2 ). which is not well-founded.

Interestingly. the inverse well-foundedness of R, that is the well-foundedness of

R™! = {{v.w) | wRv} is definable by sequents.

Lemma 4.14 The sequent {{p— <>pl.{=pl) is valid on a frame F = (W ,R) iff R™! is well-
tounded on W .

Proof ( =2 ) Suppose R™! is not well-founded on W . Then there is a sequence {wilie o of
members of W with wRw,,;, i<w. Letting V(p)={w;|i<w}, we have V(p—<>p)=W
and V(-p) = W. So F=({p— < p}.{-p}).

( <= ) Suppose R7! is well-founded on W . So for any X & W with X # @, there is an

w € X such that for all v € X, wRv. In particular, for any valuation V "for F, if
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V(p) #@ we have some w € V(p)=V(<p), so that V(p=<p)#=W. So if

V(p—<p) =W. V(p) =@ and V(=p) = W. So F=({p— < p}.{~p}).

It is a well-known result (see. e.g., [VB2], 2.21) that if & € Form is not valid on all
frames then it is invalid on some frame which is a finite irreflexive intransitive tree with no
R-loops. From this it follows that the inverse well-foundedness of R is not definable by

modal formulas.

We have established a number of necessary conditions for a class of frames to be
sequent-axiomatic. In the next chapter we introduce algebraic semantics as a step toward

determining whether these conditions are sufficient.
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5. Algebraic Semantics
In this chapter we introduce modal algebras (MA's) and examine the notion of vali-

dity of a sequent on an MA. Having done so. we find it possible to characterize sequent-

axiomatic classes of MA's using some well known results from first-order logic.

Definition 5.1 A modal algebra (MA) is a structure B = (B,N,—,/), where (B,N.=) is a
boolean algebra, and / is an operator satisfying /(aNb) =/aN/b, a,b € Band /1 = 1, where 1
denotes the maXimum element of B. For an MA B =(B,N,~-./), |B| denotes B. the

underlying set of B.

Definition 5.2 Let B be an MA, a(py. - * - .pn—1) € Form. Then fB(a,, - - - .a,_;), the n-ary

polynomial on B induced by « is defined inductively as follows:

N fg(a(), ot .a.n_l) = a;, i<n
B (ay. -+ ap—y) = —fB(ag, - - - ap-1)
f(nf&ﬁ(ao. e .an_l) = fs(a”, ot ,an_l)nfg(ao, St ,an_l)
f?n'(a“- e an—l) = /fclsa(a(w T 'an—l)
It is easy to see that any MA polynomial f(a,. - - - .a,) is induced by a modal formula
a(py. - - - .py). If 0 =(T,.0,) is a sequent, O is valid on B (B=0) if the sentence

vl & (fB(x)=1)—- V (fB(x)=1))
a€ Ty BE Oy

in Ly, the first-order language of MA's. is valid on B. (Note that we abuse notation some-

what here. as we do not distinguish between terms f, and functions f®:B—B). By % we

mean (X, - - - .X,) where n = max{i|ioccurs in some o € ToU®,}. A class X of MA's is

sequent-axiomatic iff  there is a  set L of  sequents such  that

X =Mal(L) = {B| (Vo € L)(B~o)}. Note that as in 4.2, X is sequent-axiomatic iff

X = Mal(Seq(X)). Before going on to characterizing sequent-axiomatic classes of MA's, we
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will demonstrate that BE=(T(.0,) for all MA's B iff Tj—4©,,.

Definition 5.3 The Lindenbaum Algebra for K is the MA By = (Bg.N,—,/). where

By =1{|la]| |a € Form} where ||a|| ={B € Form | —xa—B}
lallnflBll = ||e&B |
—lleafl = |-l
Hiall = || Gel|

It is shown in [Lem], 11, that Bg is a well-defined MA.

Definition 5.4 Let B=(B,N,—./) and B'= (B'.N'.—"./') be MA's. Then f:B—B' is an MA-
homomorphism if
f(anb) = f(a)N'f(b)
f(—a) = —'f(a)

f(la) = I'f(a)
I¥ f(B) = B, B' is a homomor phic image of B. If X is a class of MA’s, H(X) denotes the class

of all homomorphic images of members of X.

Definition 5.5 Let B = (B.N.—./) be an MA. F C B is a filier in B if it is a filter in the BA
(B.N,—). For ab€B, a=gb if for some c€F, aNc=bNc. For a€B,

a/F = {b € B|a=b}.

It is a standard result ([BS], 1.4.3) that if B =(B.N.—) isa BA and F is a filter in B,
then =g is an equivalence relation on B, and so we can define the set B/F = {a/F|a € B}.
Furthermore, {:B—B/F defined by f(a) = a/F is a well defined homomorphism of B onto
B/F = (B/F.N".—"), where a/FN'b/F = (aNb)/F and —'(a/F) = (—a)/F. We can extend this

result to MA's as follows:



Lemma 5.6 If B= (B,N,—.,/) is an MA and F is a filter in B which is closed under / (i.e.,
a € B=> /a € B), then {:B—B/F is a well defined MA-homomorphism of B onto
B/F = (B/F,N'.—".I'Y, where /'(a/F) = (/a)/F.

Proof We need to show that if a/F = b/F then /'a/F = I't/F. Now if a/F = b/F, aNc =bN¢
for some ¢ € F. Then /l(aNc) = /(bNc), so faNlc =/bN/c and Ic € F, so (Ja)/F = (/b)/F.
Thus /'a/F = I'b/F, so { is well defined. It is obvious that f is a homomorphism. Since
B/F = {a/F | a € B} ={f(a)|a € B} = f(B), B/F is a homomorphic image of B. So B/F is a

well-defined MA.

We call B/F the quotient MA of B modulo F. The function f is the canonical

homomor phism of B onto B/F.

Lemma 5.7 Let B be an MA, F an /—closed filter in B, f the canonical homomorphism
N

from B onto B/F. Then f(a) = 1/F iff a € F.
Proof ( => )f(a)=a/F=1/F.soaNc=1Nc=c for somec € F. Thusc<a.soa € F.

(<= )Ifa€F a=glsinceaNa=1Na=a. Sof(a)=a/F=1/F.

Theorem 5.8 For (I,.0,) € ;,Form, I'\—x@, iff for all B € H({Bg}). Bk=(1'0,60)..

Proof ( => ) By [Lem], 12, if & - - &e =gy then VXD o -, ()=1)is
valid on B for any MA B. But then B={{a;, - - - .a,}.la,4i1). Also for anv MA B, if
fB(%) = 1, then /fB(X) = 1. so B={{a}.{Oa}). It is routine to show that the rules sufficient
for defining Ly, restricted to sequents, preserve algebraic validity. The result is then
obtained by induction on sequents.

( <=) Suppose I'¥=0,. By 2.8, OT, is K—consistent, and Fy ={ || a|| | « € Oy} has the

finite intersection property in By, and so generates a proper filter F in By ( [BS], 1.2.8 ).



30

Assuming that F is /—closed, we can conclude that By/F is a homomorphic image of By
and a/F = 1/F iff a € F. Hence for any a € T, ff“/F(f( ool ). - -~ £C] pa || ) = 1/F, So if
©,=0. we immediately have By/F¥=(T,.0,). Otherwise, since F is the smallest filter con-
taining F, and for B € ©, there is a filter Fg extending F such that ” - || € Fg (since
Or,U{-B} is K—consistent), we have that for 8 € ©, ||B|| €F and so f(||B]) = 1/F,
where f is the canonical homomorphism. So for B € 0O,

55 (6 po 1) - - (| pa || )) = 1/F. So By/F¥=(T4.0,).

It remains to show that F is /—closed. By [BS], 1.2.8, a € F iff aZa,N - - - ﬂa,{ for
some n21 and a;.- - -a, € F,. Then fa2/a;N --- Na,) =la,N --- N/a,. But for 1<i<n,

a;= ||a;|| for some a; € Ty, s0 fa; = || Doy || € Fo. Hence /a € F.

By definition, a sequent is valid on an MA B if some corresponding universal sentence
in Ly, is valid on B. It is our aim now to show that any universal sentence in Ly, holds
in B iff some corresponding set of sequents is valid on B. This will enable us to character-

ize sequent axiomatic classes'of MA's.

Definition 5.9 A class X of MA's is universal if X = Mod(®) for some set ® of universal
Lya-sentences. Note that as in 4.2, X is universal iff X = Mod(ThV(X)), where ThV(X) is

the set of universal sentences valid on every member of X.

Definition 5.10 ( {Gr], 7.46.1 ) A set ® of universal sentences, written as a set of open for-
mulas, is in normal form if every ¢ € ® is of the form 0,v - - - v0 . where 8, 1<i<n, is an

atomic or negated atomic formula.

Lemma 5.11 Every set ® of universal sentences is equivalent to a set ®' of universal sen-

tences in normal form (i.e., Mod(®) = Mod(®') ).
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Proof For ¢ € &, consider ¢ as an open sentence ¢& - - - &, in conjunctive normal form.

Add ¢y, - -, to D"

Lemma 5.12 Every atomic Ly,s-sentence is equivalent to a sentence of the form f(X) =1

for some MA-polynomial f .

Proof f(%X) = g(X) holds in an MA B iff (—f(X)Ug(X))N(f(x)U—g(x)) = 1 holds in B.

Lemma 5.13 Let ¢ be a universal Ly,-sentence of the form Vx(8,(X)v - - - v8,(X)), 8; atomic
or negated atomic, 1XiSn. Then there is a sequent o, = (T',.8,) such that for any MA B,
 is valid on B iff B=o,.

Proof By 5.12 we can assume that each 6, is of the form f(X) =1 or ~(f(X) = 1). Let

Ty = {a; | f appears in some 6; of the form ~(f(X) = 1), 1<i<n}

©, = lag | f appears in some 6; of the form f(X) = 1, 1<i<n}

AN

The result then follows by definition 5.2.

Theorem 5.14 A class X of MA's is sequent-axiomatic iff it is universal.
Proof ( => ) By 5.2
( <= ) Say X = Mod(®) for a set ® of universal sentences. By 5.11, X = Mod(®') where

®' is a sel of universal sentences in normal form. Let L ={o,|® € ®}. Then by 5.13.

X = Mal(L). So X is sequent-axiomatic.

Definition 5.15 Let B.B' be MA's. B’ is isomorphically embedded in B (B' € B) if there is
an injective MA-homomorphism from B’ into B. For a class X of MA's, S(X) denotes the
class of MA's isomorphically embedded in members of X. For a family {B;|i € I} of MA's

and ultrafilter U in 2!, HB,/U. the ultraproduct of the B;'s over U is defined in the stan-
€]
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dard way for first-order structures ([BS], 5.1.3). For a class X of MA's, Py(X) denotes the

class of ultraproducts of members of X.

Theorem 5.16 A class X of MA's is universal iff X = SP(X)

Proof ( => ) X € SP(X), so it suffices to show that X is closed under ultraproducts and
isomorphic embeddings. Now by Los" Theorem ([BS], 5.2.1) ultraproducts preserve the
validity of all first order sentences, and by ([CK], 5.2.4), isomorphic embeddings preserve

validity of universal sentences, so these closure conditions do hold.

( <=) We will show that, assuming X = SPy(X), that X = Mod(Th,(X)). Obviously.
X< Mod(Thv(X)?. Suppose B € Mod(Thy(X)). Let {¢, | i<w) be the set of existential
sentences valid on B. For each ¢;, there is a B; € X such that ¢, is valid on B;, since other-
wise the universal sentence equivalent to =¢; is in Thv(X), which means ¢; is not valid on
B. a contradiction. Let J; = {i| ¢, is valid on B;}. Now for any j;. - - - .j, we can find a com-

mon element in J;. - - - J; , since without loss of generality, no two of ¢; .- -~ '¢jn have any

b
variables in common, and so their conjunction is equivalent to an existential sentence which
must be validated by some B; € X.. In other words. {Jj | j € w} has the finite intersection

property. and so can be exlended to an ultrafilter U in 2 ([BS], 1.3.5 ). Let B'= J]B,/U.
€1

Bv Los’ Theorem. every existential sentence valid on B is valid on B' (since
{i] ¢;1s valid on Bii =] € U). Thus every universal sentence valid on B’ is valid on B.
But then B can be isomorphically embedded in an ultrapower of B’ ([BS], 9.3.8), and so

B € SPP(X). Then by [BS]. 6.2.7. B € SPy(X).

Corollary 5.17 A class X of MA's is sequent-axiomatic iff X = SPy(X) = Mal(Seq(X)).
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6. General Frames

Suppose F = (W.R) is a frame. Letting /z(X) ={x € W |(Vy)(xRy => y € X)} for
X € W, we have (2¥,N,—.) is an MA, where (2¥,N,=) is the power set BA of W . This
MA., the dual MA of F, is denoted F*. It is easy to see that there are MA's which are not of
the form F* for any frame F, since not all BA's are power set BA's. In this chapter we will
alter the relational semantics to obtain frames that correspond more closely to MA's. The

results of Ch. 5 will then be used to characterize sequent-axiomatic classes of these frames.

Definition 6.1 A general frame is a structure F = (W R P), where (W .R) is a frame and
P C 2% is closed under N, —, and . If o = (,.0,) is a sequent and F = (W R,P) is a gen-
eral frame, then o is valid on F, (F=o) if for all valuations V:Form—P,

(Va € T)(V(a) = W) => (3B € ©,)(V(B) = W)
(By a valuation V for a general frame (W R,P) we mean a valuation V for (W,R) with

im(V) & P).

If F=(WR,P) is a general frame. F, denotes the standard frame (W.R). Now for
any sequent 0 = (I',,0,). (W.,R)Fo iff the general frame (W .R2¥)=0. Moreover for any
general frame F, if Fj=o0 then FFo. So o is valid on all general frames iff o is valid on

all standard frames, which is the case iff T'j—@,,.

Definition 6.2 Let F = (W ,R,P) be a general frame. Define F*, the dual MA of F, as fol-

lows: F* = (P,N,—.Ig). For a standard frame (W R), (W R)* = (W R2W¥)*

By a straightforward inductive argument, we can show that for a(py. - - - .p,) € Form,
F a general frame, and V a valuation for F, f¥ (V(py). - - - .V(p,)) = V(a). and so we have

the following
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Lemma 6.3 For a general frame F and sequent o, Fi=0 iff F*=0.

Proof By 5.2, 6.1 and the preceding remarks.
We now introduce a way to obtain general frames from MA's.

Definition 6.4 ( [Gol, 10.1 ) Let B = (B.N,—,/) be an MA. The dual frame of B is the gen-
eral frame B, = (WB,RB,PB), where
Wg = {w | w is an ultrafilter in B}

WRBviff{a|/a€w}§V
PB={|a|B|a€B)where |a|B={w € Wg|ac€ w)

By [Gel, 10.2, we have |a|B= |b|®B iff a=b. Wg—|a|®B =|—a|B |a|BN|b|B=
\

|anb|®, and kg (|a|®) = |/a|® so that B, is indeed a general frame. This also means

that the map f:B—PEB defined by f(a) = |a|® is an MA-isomorphism. so we have

Lemma 6.5 B=(B,)*, for any MA B.

Corollary 6.6 For any sequent 0 and MA B, B=0 iff B,=0.

Proof B,=0 iff (B,)*E=c, by 6.3.iff B=o by 6.5.
We will now examine some sequent preserving constructions of general frames.

Definition 6.7 Let F = (W ,R.P), F' = (W' R"P') be general frames. A function ffW—-W' is
a pmorphism if { is a p-morphism from F, to Fy' and for X € P, f~4(X) € P. If

f(W) = W', F'is a p-morphic image of F.

Lemma 6.8 If F = (W' R’.P') is a p-morphic image of F = (W R,P), then F'* is isomorphi-
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cally embedded in F*.

Proof ([Go), 5.3) Suppose f is a surjective p-morphism of F onto F'. We will show that
f+:P'—P defined by f*(X) = {~}(X) is an injective MA-homomorphism. Suppose X.Y & W',
Obviously f*(=X) = f}(=X) = —=f"4X) = =f*(X), and likewise f*(XNY) = fH(X)N{*(Y).
So to show that f is a MA-homomorphism., we need f*(/g(X)) = lR(f*(X)). Suppose
w € f*(Jp(X)). Then we have u € W' with f(w)R'u and u ¢ X. Now by 6.1, we have
v € W with wRv, f(v) =u €X. So wRv and v € f¥(X), whence w & /g(f*(X)). Now sup-
pose w € I(f*(X)). Now by 6.1 F(w)R'F(w). so f(w) € Ig'(X) and thus w € fH(/x'(X)). To
see that f* is injective suppose f*(X) = f*(Y). Then f(f*(X)) = f(f*(Y)). and since f is
surjective, X =Y.

\

Lemma 6.9 Let F, F' be general frames, o a sequent. If F' is a p-morphic image of F and

F=o then F=o.

Proof If F=0, F*=0 (6.3). But by 6.8, F* C F*, so F'*=0 by 5.16. Then by 6.3, F=0.

In [Go]. Ch. 7, the ultraproduct construction is extended to general frames. The
difficulty in doing this is ensuring that for an ultraproduct Fy = (Wy,Ry.Py), we in fact

have that P © 2V,

Definition 6.10 Suppose {F,|i € I} is a family of general frames. (F, = (W _R,.P)}. and

U is an ultrafilter in 2!. For f€ [IW. 7e€IlIP. let [f.r]={i|f(i) € 7(i)l. For
€1 i€

7/U € Hpi/U, let X0 ={f/U|[f.r] € U}. Then X, & Wy. The ultraproduct of the F;'s
i€l

over U is the structure Fy = [JF/U =(Wy.Ry.Py), where {(Wy.Ry) = [[(F))/U and
i€l i€1

Py ={X;u |7 € [P}
: €1
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It is shown in [Go). 7.5 and 7.7. that X,y is well-defined and that Fy is indeed a gen-
eral frame (i.e.. P; meets the necessary closure conditions). This also provides the follow-

ing lemma.

Lemma 6.11 If {F;|i € Il is a family of general frames and U an ultrafilter in 2! then

[IF/U=(T]F/U)*.

i€ i€ ]

Note that 6.11 does not hold in general for standard frames, as is shown in [Go], Ch. 17.

We can now show that ultraproducts of general frame preserve validity of sequents.

Lemma 6.12 Suppose {F;|i € 1} is a family of general frames, U an ultrafilter in 2! and o

a sequent. If for alli € I, Fj=0, then [[F,/U=0o.
i€1

Proof By 6.3 (F)*=0, i €1 So {i|(F)*=c)=1€ U. But then J[](F)*/U=0c by Los’

i€1

Theorem. So by 6.11 (J]F,/U)*=0 and thus by 6.3, [[F/U=0o.
i€ 1 i€ 1

With the following lemma, we will be able to characterize sequent-axiomatic classes

of general frames.

Lemma 6.13 [.et B. B'be MA's. If B € B, then B'. is a p-morphic image of B,.

Proof ([Gol. 10.9) Let f be a injective MA-homomorphism from B' into B. Then

f,:B,—B', defined by f.(w)={b € B'| f(b) € w} is a surjective p-morphism.
Definition 6.14 For a general frame F. the bidual of F is the frame (F*),.

Definition 6.15 For a class X of general frames, X* = {B | (F € X)(B=F")}.
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Theorem 6.16 A class X of general frames is sequent-axiomatic iff X is closed under p-

morphic images, ultraproducts and biduals. while —X is closed under biduals.

Proof ( => ) Closure under p-morphic images and ultraproducts follows by 6.9 and 6.12,
respectivelv. For closure of X and. —X under biduals, note that by 6.3 and 6.6, for any

sequent o, F=o iff (F*), =0

( <= ) We will show that X = GFr(Seq(X)). where GFr(L) is the class of general frames
validating every sequent in L. Obviously, X & GFr(Seq(X)). Suppose F € GFr(Seq(X)).
Now by 6.3 Seq(X) = Seq(X*). Then. again by 6.3. F* € Mal(Seq(X*)). So by 5.17,

F* € SPy(X*). that is, F* is isomorphically embedded in some ultraproduct ]_—_[Bi/U,
i€1

B, € X*, i € 1. But then F* is isomorphically embedded in the ultraproduct [](F)*/U.
, €1

F, € X, Ff=B, i € I. Soby 6.13, (F*), is a p-morphic image of (J[F;/U),. Now by 6.11,
’ i€l

(TTF;/0).=T]F/U)*).. so (F*), is a p-morphic image of a bidual of an ultraproduct of
€1 i€l ’

members of X, so by the closure conditions on X, (F*), € X. Then by the closure condi-

tionson =X, F € X.
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7. Some Results on Sequent-Axiomatic Classes of Standard Frames

In this chapter, we will exploit the methods developed in Chs. 5 and 6 to obtain a
characterization of sequent-axiomatic classes of frames, under the assumption that these
classes are A-elementary, and a relatively simple sufficient condition for an arbitrary class
of frames to be sequent-axiomatic. Thus we will have obtained an answer to the sequent

analogue of 3.4 and a partial answer to the sequent analogue of 3.5.

Lemma 7.1 Let X be a class of frames closed under elementary equivalence and p-morphic

images. Then X is closed under ultrafilter extensions.

We require some additional model-theoretic machinery in order to prove 7.1

beﬁnition 7.2 Let F be a structure for the first-order language L. By a simple expansion of
F we mean a structure Fy = (F,(w)¢ x) for some X & |F|. For such an expansion,
L(Fy) denotes the language LU{c, | w € X}, where the constant c,, is interpreted as w .
We say that F ié w-saturated if for every X C g, | F|. every set Z(x) of L(Fy)-formulas
with free variable x which is finitely satisfiable in Fy is realized in Fy, i.e., there is some

w € | F| such that for ¢(x) € E(x). ¢(w) is valid in Fy.
The important fact we will use about w-saturated structures is the following:

Lemma 7.3 Let F be a structure for a first order language L. Then there is a structure F

for L such that F'=F and F' is w-saturated.

Proof [CK] 5.1.1(i), 5.1.2(i) and 5.1.4.

Proof of 7.1 ([vB2], 8.9) For F = (W,R) € X, we will construct F' = (W' R' (X")x cw)

with (W'.R)=F and ue(F)=(W'R') a p-morphic image of (W'R'). Let
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Ly = LgU{Px | X C W}, where each Py is a unary predicate constant. Expand F to a struc-
ture F'=(WR{(X)xcw) for Lg. Now by 7.3, we have an w-saturated structure
F'= (W' R (X)x cw). with F'=F'. Define the function f by f(w)={XC W I w € X'}
={X € W | Pxw is valid on F"}, for w € W'".

We want to show that f is a surjective p-morphism from {(W'R') onto ue(F). We
must first verify -that for w € W', f(w) € W. Now Vy(-Pxy—Py_xy) and
Vy(Pyxy&Pyy—Pxnyy) are valid in F' and hence F", so for w € W', we do have that f(w) is |
an ultrafilter in 2V.

Next we need to show that f is a p-morphism. Suppose w.v € W', wR'v and
w € ([(X)). Since VyVz(P x)y&Ryz—Pyz) is valid in F' (by 3.14), and hence on F",
vEX. So for XC W, if Ix(X) € f(w), w € ([g(X)), whence v € X' and X € f(v). So
f(w)R'f(v). Now suppose w € W', u € W' and f(w)R'u. Let X = {w} and Z(y) be the set
{Pxy | X € u}U{Rc,y} of LR'(F"X)—f(;rmulas with free variable y. We claim Z(y) is
finitely satisfiable in F"y. Let X, ---. X €u, k<w and X=X;N---NX; €u. If
{Px,. - - .Px Reyy} is not satisfiable in F“x, then Vy(Reyy—=Pxy) is valid in F'y, as is
Vy(Reyy—=Pw_xy). Now VyVz((Ryz—Pyw_xz)—=P (w_x)y) is valid in F' (by 3.14) and
hence in F'yx. So we must have P (w_x)cy is valid in F"x. whence IR(W=X) € f(w). But
then since f(w)R'u, W=X € u, a contradiction since X € u and u is an ultrafilter in 2%,

Finally. we must show that { isonto. Suppose u € W'. Then Z(y) = {Pxy | X € u} is

finitelv satisfiable in F' and hence in F". So I(y) is realized in F" Thus there is some

w € W'such that for X € u, w € X’ and so f(w) = u.

Theorem 7.4 Let X be a A—elementary class of frames. Then X is sequent-axiomatic iff X

is closed under p-morphic images and —X is closed under ultrafilter extensions.
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Proof ( => ) By 4.7 and 4.8.

( <) Since X is A—elementary, X is closed under elementary equivalence ( {BS). 7.3.4 ),
and so by 7.1 X is closed under ultrafilter extensions. We want to show that
X = Fr(Seq(X)). Obviously, X & Fr(Seq(X)).  Suppose F € Fr(Seq(X)).  Then
(F21F1) € GFr(Seq(X)), so F* = (F.2|Fl)* € Mal(Seq(X*)), as in the proof of 6.16. So

by 5.17. F* € J[B/U, where for i € [, B=F, F, € X, and U is an ultrafilter in 2.. So
(€1

F* C TIF}/U. Say [IF/U =(WyRy). Then []F{/U = H(Fi,2'w“)+/U, which is iso-
i€ 1 i€ 1 - i€ 1 i€l

Wy

morphic to (T1¢F.2 “Fi')/U)+ = (Wyu.Rp. Pyt where P; &2 Thus

i€l

[IF#/U C (TIF/U)* and so F* € (TJF/U)*. Then by 6.13, (F*), is a p-morphic image
€T €l i€l

of ((JTFy/U)*),. By the definition of p-morphisms of general frames (6.7). ((F*),), is a
i€

p-morphic image of (((JJF/U)*),),. But for a standard frame F, ((F*),), = ue(F). Now
€1

since X is A—elementary. [JF;/U € X ([BS]. 7.3.4). But then ue(F) € X since X is closed
€T

under p-morphic images and ultrafilter extensions. Then since —X is closed under

ultrafilter extensions. F € X.

It is clear that validity of sequents is not preserved by ultraproducts. Consider the
structure IN = (w,> ). which is inversely well-founded. By a well known result ([BS].
6.4.3), the ultrapower IN“/U, where U is a n"onprincipal ultrafilter in 2%, is not inversely
well-founded. Thus X, = Fr({({p'* <> p}{=pi)}) is not closed under ultraproducts, since
by 4.14 F € X;, iff F is inversely well-founded. Also, it is not clear that the sequent
analogue of 3.10 holds, since sequent-axiomatic classes are not closed under disjoim unions

or generated subframes. This means that we have not obtained an answer to the sequent
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analogue of question 3.3, and so we have not been able to determine whether the conclusion
of 7.4 holds under any assumption weaker than X being A—elementary. We also note that

by [vB2], Ch. 2, sequent-axiomatic classes are not closed under ultrafilter extensions.

For an arbitrary class X of frames, the conditions of 7.4, along with closure under
ultrafilter extensions and ultraproducts, are sufficient for X to be sequent-axiomatic. We

now present a sufficient condition that does not require the ultraproduct construction.

Lemma 7.5 Let X be a class of MA's, B an MA. Suppose for some finite MA B, & B,
B, ¢ S(X). Then there is a universal Lys-sentence ¢ valid in every B' € X which is not

valid in B.
Proof Suppose |B,| =1{a;. - .a,}. Let

@ =Vx; - Vx,(Vix; = x;] 0<i<j€n} v
Vix,Nx; = x, | a;Na; = a;. i.jkSn} v
V{—x; #= x;| —a; = a;, i,j<n} v
Vi = x| fa; = a;, 1,j<n}).
Now a;, - - - .a, witness that ¢ is not valid in B,. Hence ¢ is not valid in B (5.16). More-

over, if ¢ is not valid in B' € X, then B' has a subalgebra B, isomorphic to B,. Namely, By’

is the subalgebra of B' generated by a;’. - - - .a,". which witness that ¢ is not valid in B".

Corollary 7.6 Let X be a class of MA's, Ban MA. If B € Mod(ThV(X)), then every finite

subalgebra of B is isomorphically embedded in some member of X.

Theorem 7.7 Let X be a class of frames. For X to be sequent axiomatic, it is sufficient that
for any frame F, if for every finite p-morphic image F° of F, F® is a p-morphic image of

ue(F"), for some F' € X, then F € X.



42

Proof We need to show that Fr(Seq(X)) € X. Let F € Fr(Seq(X)). Then as in 7.4,
F* € Mal(Seq(X*)). Since every sequent corresponds to a universal Ly,-sentence,
F* € Mod(Thy,(X*)). Now suppose F° is a finite p-morphic image of F. Then by 6.8
F'* C F* So by 7.6, F°* & B, B=F*, F € X, whence F** C F*. So (F°*), is a p-
morphic image of of (F'*),. As in 7.4, we then have that ue(F°) is a p-morphic image of

ue(F'). Since for finite F, F==ue(F), we have by assumption that F € X.

As there are frames with no finite p-morphic images, the condition of 7.7 is not neces-

sary.
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