
Modal Sequents and Definability 

by 

Bruce Michael Kapron 

B.Math., University of Waterloo. 1984 

A THESIS SUBMITTED IK P-4RTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the Department 

of 

Mathematics and Statistics 

@ Bruce \lichael hapron 1986 

SIMON FRASI'U L \ I \  I RSITJ' 

Jul)  19M) 

All rights reserved. This thesis ma!, not be 

reproduced in whole or in part, by photocopy 

or other means, without permiss~on of the author. 



APPROVAL 

Name: 

Degree: 

Title: 

Bruce Michael Kapron 

Master of Science 

Modal Sequents and Definability 

Chairman: C. Villegas 

7 

S.L. Thomason 
4 

-I ' 
/' 
SeniBr Supervisor 

R.E. Jennings 

S . R .  Reilly 

R.1. Goldblatt 

Esternal Esaminer 
Professor 

Department of llathematics 
Victoria Lni\,ersity of lvellington 

Date Approved: July 18, 1986 



. . 

PARTIAL COPYRIGHT LICENSE 

I hereby g ran t  t o  Simon Fraser  U n i v e r s i t y  t h e  r i g h t  t o  lend 

my thes i s ,  proJect  o r  extended essay ( t h e  t i t l e  o f  which I s  shown below) 

t o  users o! the  Simon Fraser U n i v e r s i t y  L ib rary ,  and t o  make p a r t i a l  o r  

s i n g l e  copies on l y  f o r  such users o r  i n  response t o  a request  from t h e  

l i b r a r y  o f  any o the r  u n i v e r s i t y ,  o r  o t h e r  educat ional I n s t i t u t i o n ,  on 

i t s  own behalf  o r  f o r  One o f  I t s  users. I f u r t h e r  agree t h a t  permiss ion 

f o r  m u l t i p l e  copying o f  t h i s  work f o r  scho la r l y  purposes m y  be granted 

by me o r  the  Oean o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r  publication o f  t h i s  work f o r  f l n a n c l a l  ga in  s h a l l  no t  be a l lowed 

w i thout  my w r i t t e n  permission. 

Author: 

(signature) 



ABSTRACT 

We examine a certain modal consequence relation, and define the notion of validity of a 

modal sequent on a frame. We demonstrate that it is possible to define classes of frames. 

not definable by modal formulas, by modal sequents. Through the use of modal algebras 

and general frames, we obtain a characterization of modal sequent-definable classes of 

frames which are also first-order definable, and a sufficient condition for a class of frames 

to be definable by modal sequents. 
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Introduction 

In [Go], Goldblatt developed techniques for dealing with questions regarding 

definability in the relational semantics for modal languages. These techniques were used to 

characterize modally definable classes of standard relational frames which are also first- 

order definable, and characterize arbitrary modally definable classes of first-order or general 

frames. which are a generalization of standard relational frames. In [GT], a characterization 

of arbitrary modally definable classes of standard relational frames was obtained. 

In order to answer questions about the definability of relational frames, [Go] turns to 

the algebraic semantics for modal languages. Here validity of a modal formula is identified 

with the validity of a corresponding polynomial identity on a modal algebra. Many of the 

techniques used in [Go] derive from one basic result, namely that the category of descrip- 

tive frames and the category of modal algebras, with appropriate morphisms, are dual. 

Now it is straightforward to characterize modally definable classes of modal algebras. since 
' , .  

they are really just equational classes. Using this along with the above-mentioned duality, 
b 

it  IS then possible to characterize the modally definable classes of descriptive frames, and to 

work toward a characterization of such classes of standard frames. 

A number of the techniques of [Go] are refined in [vBl] and [vB2]. 

In this thesis, we use these techniques to answer some questions about definability in 

an extended relational semantics. We introduce modal sequents. which are pairs of finite 

sets of modal formulas. The definition of validity of a sequent is derived from the 

definition of a certain modal consequence relation. This relation is fairly 'natural'. insofar 

as it has a simple syntactic characterization, in terms of the common logics introduced in 

beg]. Having defined validity of a sequent. we can show that it is possible to define classes 

of frames using sequents which we cannot define using modal formulas. In order to answer 



questions about sequent definability, we take the algebraic approach: a class of modal alge- 

bras is is definable by modal sequents iff it is universal. Using the duality result of [Go], 

we then are able to characterize classes of general frames definable by modal sequents. and 

classes of standard frames definable by modal sequents which are also first-order definable. 

We are also able to provide a sufficient condition for an arbitrary class of standard frames 

to be definable by modal sequents. 



I. Relational Semantics f o r  Modal Languages 

In this chapter we will introduce the standard relational semantics for modal 

languages. It will be shown that with respect to this interpretation. modal formulas 

correspond to certain kinds of second-order formulas. 

We will be dealing with a number of formal languages, but our primary focus is on 

L,, the language of propositional modal logic. We assume that the reader is already fami- 

liar with first-order and second-order logic. If not, he can refer to [ ~ a r ]  and [vBD], respec- 

tively. 

The language L, has three components: a countable set Var of propositional variables. 

denoted po, pl. - . - .p, q. . - - , a set Con = {-.El.&) of connectives, and a set Form of formu- 

las, which are strings constructed from members of Var and Con. Form is defined induc- 

- tively as follows: 

Form is the least set such that Var G Form and 

a E Form --4 -a E Form 

a.P E Form * &aP E Form 

a E Form -4 O a  E Form 

Formulas (in any language) are denoted by lower case Greek characters: a. P, y .  4. I(r. 

A Em-formula a with all propositional variables among p,, . .p, may be denoted 

~ ( p , , .  . . . ,p,,). Sets of formulas are denoted by upper case Greek characters: 

z. r ,  A ,  O. cP. Q .  and may be subscripted by 0 (e.g To) if they are known to be finite. We 

may write r.0 for T U O  and T.a for T U { a } .  We introduce the following abbreviations for 

various L,-formulas: 



0 a for -0-a 

T for (av-a) 

&To for & a 
0 E ro 

Parentheses are used freely to indicate the precedence of connectives. but may be omitted 

given the following implicit precedence: -. 0. 0 have the highest precedence, followed by 

&, v and finally +, -. 

we now introduce the relational semantics for L,. This is considered to be the 'stan- 

dard' semantics, and is based on the work of Kripke ( [ ~ r l ] .  [Kr2]). 

Definition 1.1 A (standard) frame is a structure F = (W.K), where W is the underlying set 

of F (denoted. 1 F I ) and R G WXW. A valuation for a frame F is a mapping V:Var-+2w. 

Every valuation V for a frame F =  (W,R) extends uniquely to a mapping 

v:F0rm-+2~- via the following definitions: b 

Henceforth, we will not distinguish between V and 

Definition 1.2 A model is a triple M = (W.R.V), where (W,R) is a frame and V is a 

valuation for (W.R). M is a model based on (W,R), which is the underlying frame of M. 

An L,-formula a is valid on M = (W.R.V) ( M k a )  if V(a)  = W. The formula a is valid 

On F = (W.R) ( F k a )  if it is valid on every model based on F, and is valid ( k a )  if it is 

valid on all frames. A set r C Form is valid on M if every member of r is valid on M. 



For w E 1 R/I I . a! is true on M at w ( (Nl .w)ka)  if w E V(a j .  

We will now show that with respect to the given definition of validity on a frame, 

every modal formula a! defines a second-order formula ST(a!) (This is the approach taken in 

[ v B ~ ] ) .  ST(a)  is a formula in the second-order language with one binary predicate constant 

R , and a set {P, I i<w] of monadic predicate variables. and is defined inductively as fol- 

lows: 

where y is not free in ST(a) and [y/x]$ denotes the formula obtained by replacing all free 

occurrences of x in q5 by y . 

Theorem 1.3 Let F be a frame. a!(po. . . . .p,,) E Form.. Then Fka iff VxVPo . . . VP,ST(~!) 

is second-order valid on F. 

Proof This follows directly from the definition of ST(a!) and 1.2. 

Since VxVP0 . - - VP,ST(a!) is second-order equivalent to VP, . - . VP,VxST(a!). a 

corresponds to a second-order sentence with a prefix of universal second order quantifiers. 

and no other second order quantifiers. According to the classification scheme of [CK]. 4.1, 

Such sentences are called II: sentences. 

We will now introduce modal axiom systems. and indicate their connection with the 

relational semantics. 



Definition 1.4 A modal axiom system is a pair S = (Ax.Rule) where Ax G Form is the set of 

axioms, and Rule G {f 1 f maps Forml-+Form, i <w)  is the set of rules. For f E Rule, if 

f ( a l .  . . - . an )  = an+1, we say that an+, is inferred from al. . . . .an by f . The formula a is 

derivable i n  S ( C s a )  if there is a finite sequence al. . . . ,an of L,-formulas such that 

a = a,, and for 1 < i < n .  either ai E Ax or ai is inferred from some all, . . . .alk by some 

f E Rule, where ij < i  for 1 < j< k. For r G Form, a is deriwble from r i n  S ( r C s a )  if there 

is some To C finr with Cs&T-+a. r is S-consistent if it is not the case that T C S I .  

We now turn  to the modal axiom system K . K is formed by adding to the axioms 

of the propositional calculus (PC) the axiom scheme O ( a - + f l ) + ( ~ a + ~ P )  (that is, the set of 

all formulas of the given form, where a and P are arbitrary formulas), and to the rules of 

PC the rule of necessitation: from a infer Ua. The following theorem shows the significance 

of this system. 

Theorem IS For cr E Form, kcr iff CKa. 
b 

This is a standard result. See, e.g.. [HC]. 2.5. We present an outline of the 'only if' 

part. since some of the ideas used will be needed for later results. We construct ' 

MK = (Wli .RK.VK), the canonical model for K . as follows: 

W, = / r  C Form I r is maximally I;-consistent} 

RK = { ( r . r 1 )  I ( W ( O ~  E r + a E r ' ) l  

V,(p,) = {r I p, E r l , i < o  

The fundamental lemma then states that for a E Form and r E WK. r E VK(a)  iff a E I-. 

Assuming this, suppose G K a .  Then {-a} is K-consistent, and so can be extended to a maxi- 

mal K-consistent set r,. NOW a @ r,, so r, @ VK(a).  whence MK*a. SO we have that if 

~ K Q .  there is a frame FK = (WK,RK) such that F K b .  The desired result is obtained by 



contrapsition. 



- 
2. Common Logics and  Modal Consequence Relations 

Given an axiom system S . we normally identify S with the set { a  E Form I Csa) of 

theorems of S . Of course, we could also consider the set { ( T a )  I T C s a ] .  More generally, 

we can examine relations such as Cs in the context of arbitrary binary relations on subsets 

of Form. This is the approach taken in [Seg]. where such relations are called logics, and cer- 

tain conditions which characterize common logics are identified. In this chapter we extend 

CK to such a logic. We also use frames to define a corresponding consequence relation. 

Definition 2.1 4 logic L is a subset of 2F0rmX2F0rm. Nbte that when dealing with an 

arbitrary L . we may write T C Q  for ( T . 0 )  E L. A common logic is a logic L which meets 

the following closure conditions: 

(Refl) E C E  if Z # 0 

(Mono) If T k Q  then T.T'CO.Q' 

(Cut, ) If both T C O .  f2 and a!.T'CO1 for all a! E Q .  then T,T 'CQ,O'  

(Cut,) If both T C Q . p  for all /3 E Q .  and Q , r"CO1,  then T.r 'CO.O'  

(Susbt) 1f T C O  then S ~ C S ~ ,  where sZ denotes the set of substitution instances of 

members of E for some substitution s:Var-+Form. 

Proposition 2.2 .Any common logic L meets the following closure conditions: 

(Overl! T C O  if T n O  # 0 

(Trans) If aCP and PI-? then a&?. 

Proof (Overl): Let E = T n O. By (Refl). E C Z ,  so by (Mono). T C O .  

(Trans): This is a direct result of (Cutl). 



Let S be a modal axiom system. Ls is defined as the smallest common logic such that 

((11.0) E Ls. ({pI.{Q}) E Ls and ( b l .  - . . .an).~an+l)) E Ls whenever 

k s a l &  - - - &an-)an+,. We write r C s O  for (r.0) E Ls. 

Definition 2.3 A (modal) sequent is a pair (To.Oo), where To.Oo C finForm. We use a to 

denote an arbitrary sequent. A logic L is finitary if whenever T C O  there is a sequent 

(rc,.Oo) with To C T.Oo C O such that TOCOO. 

Since the logic Ls is the smallest logic containing a specified set L' of sequents, we say 

that Ls is generated by a set of sequents. 

Lemma 2.4 Any common logic L which is generated by a set of sequents is finitary. 

Proof This is done by induction on members of L . The result holds trivially for the basis 

I 
elements (i-e.. those in the generating set). For the induction step, we consider the case 

where (r.0) E L is obtained via the (Cut,) rule. (Other rules are handled similarly). We 
b 

have T = r ' U  r" and O = O'U O" such that T 'CO1,f i  and cr,TWi-O" for all a E f i ,  for some 

42 E Form. But then T'oCO'o,Qo. where TIo C nnr'. O', C and fro C fi,,Q, and for all 

a E 420. a.(~"o)"C(8"o)", where (17'o)Q and (Q"O)a are finite subsets of r" and 8" which 

depend on a. Let Yo = U and OUo = U (O"o)". Then Two C finT". OMo C 
a E R o  o E ( 2 ,  

and for all a E a,,. a,r"',,CO",,, by-(Mono). So we have by (Cut l )  that T',,.r",,CO',,.O",. But 

U ru0 finr and @ I c ,  U OHo C Hence L is finitary . 

As a result. Ls is finitary. By [~eg].  2.3.6, it follows that Ls can be defined using the 

rule (CutG): 

If roCsOo.a  and a.T'oCsO'o then ro.r'o~s@o.@'o 



in place of the rules (Cut,) and (Cut2). 

Definition 2.4 Let X be a class of framer. T.8 G Form. 8 is a consequence of on X 

(TkO()o)  if for all F E X and valuations V for F. 

We want to establish now that TkO(F) iff TCKO. where F is the class of all frames. 

We will use the canonical model MK constructed in Ch. 1. 

Definition 2 5  Let F = (W.R). F' = (W1,R') be frames. F' is a generated subframe of F if 

l ) W t G W  

2) (t/w,w' E W)(w E W' and wRw' w' E W') 

3)  R' =,Rn(W1xW') 

Suppose F' is a generated subframe of F and V'.V are valuations for F' and F, respectively. 
b 

(F1.V') is a generated submodel of (F,V) if for all p E Var. V'(p) = V(p) n W'. 

It is a standard result that if (Wf.R'.V') is a generated submodel of (W,R,V), then for 

all a E Form. V'(a) = V(a)fl W' (see. e.g. [HC], p. 80). This result is used to show the fol- 

lowing: 

Lemma 2.6 Suppose M' = (W'.R'.V') is a generated submodel of the canonical model 

MK = (WK.RK.VK) for K. Then for all a E Form and w E W', a E w iff w E V1(a). 

Proof w E W' C W, so 

E w w E VK(a), by the fundamental lemma 

w E VK(a) nW'. since w E W' 



w E V1(a), since V'(a) = VK(a) n W'. 

Lemma 2.7 If ai = Clkia~. cry E Form, ki bO , 16 i s n ,  then for any modal axiom system S 

{a:, . . - .aEJCS{ail. for l < i < n .  

Proof If k, = 0, then {ap}Cs{ai} by (Refl), whence {a:, - . . ,aE)Cs{ai) by (Mono). Other- 

wise, since (p}C&Op}, we have by (Susbt) that { a ~ } C s { O a ~ } ,  { O a ~ } C s { ~ ~ } .  - - .  . 

1 Clki-'a3 Cs(Clki(r~}. SO by the repeated application of (Trans). {ap} Cs( Cikicr~}. i.e.. 

{CY~)!-~{Q~}. Then by (Mono), {a?, - . . . c r ~ } ~ ~ { a ~ ) .  

Lemma 2.8 Suppose T.8 S Form. Ws8. Let O r  = {O1a I a E T,i<w} 

1) If 820, then for all p E 8. OT U { + I )  is S-consistent. 

2) If 0=0, then O r  is S-consistent. 

Proof 1)  -4 s s~me  for contradiction that there is some P E 8 for which OrU{-0)  is not S- 

consistent. Then there are a,. - . .an E OT such that CSa ,& - - - &an+P, and so 

{ a l , - . . . a , } C s { p ) .  But by2 .7 ,  { a ~ : . . , a ~ } C S { a i } ,  w h e r e a p E r f o r l < i < n .  Thenby ' 

(Mono). {a:. - . . , a ~ ) ~ ~ { a , .  - - - .an), and by (Cutl). {a!. . - . ,a:}!-s{/3) But then by 

(Mono), rCs6. contrary to hypothesis. 

2) Assume for contradiction that Clr is not S-consistent. Then there are alp . . . .an E O r  

such that Cscu,& . . . &a,,+i. and hence (al, . - . . a , ) C s { l } .  Row { I } C s O .  So by (Cut,) 

{a,. . - .an}CsO. We can now proceed as in (1) to obtain TCsO. 

Theorem 2.9 For r.8 G Form. T k N F )  iff r L K O .  

Proof ( =+- ) Assume w K @ .  We want to construct a frame F = (WR)  and a valuation 

V for F so that for all a E r. V(a) = W, and for all fl E 0. V(P) # W. This will mean 

that WQ{((W.R))),  so that WO(F).  By 2.8 O r  is K-consistent. Let 



W = {I: 2 O r  I E is maximally K-consistent} 

R = {(I:.I:') I V a ( 0 a  E Z J a E Z'l 

V(p> = {I: I p E I:), p E Var 

Now 
.- 

1) W S W , .  

2 )  For ZZ' E WK, if ERE' and Z E W, then f o r  any cu E O r ,  Oa E Or. and so Oa  E Z 

since I: 2 O r .  Thus a E E' since ERE' and so Z' 2 Or ,  whence I:' E W. 

So M = (W.R.V) is a generated submodel of the c a n o n i c a l  model. Now by 2.6 V(a )  = W 

for all a E r. If 8 = 0. then WO({(W.R))) .  O t h e r w i s e  by 2.8, OTU {-PI is K-consistent 

for each P E 8, so for each p E O there is a rS E W such that -.@ E Tp. But then since M is 

a generated subknodel of MK.  we have by 2.6 tha t  V(P) G W-{rp),  so V(P) # W for all 

P E 8. Hence W O ( {  (w.R)}) and so WO(F) .  . 
( * ) This is done by induction on members of L,. For t h e  basis, we immediately have 

C K ~ &  . - &c~,+a,+~, a, E Form. 1 6 i 6 n t  1. by t h e  - s t a n d a r d s  completeness result for K 

(1.5). For the induction step, we consider the (CutG) rule. Here we have r o k O . y ( F )  and 

Y G ~ @ ' ~ ( F ) .  We must show Tof=T',(F). Now for a l l  frames IF = (W,R) and valuat~ons 

V for F: 



As a corollary, we have that k ( F )  is compact, that is. if l%O(F), then there are 

To G anT. O0 G with TobOo(F). 

We now present a generalization of 2.9, which will apply to a number of well known 

modal systems. 

Definition 2.10 Let S be a modal system, X a class of frames. S is complete with respect to 

X if for all a E Form and F E X. Csa iff Fka. 

We have seen that validity of a modal formula on a frame corresponds to a certain 

I 
kind of 'second-order validity. We will now show that truth of a modal formula on a 

model at a point w E I n?I I corresponds to the validity of a first-order sentence on a struc- 
b 

ture derived from M and w . For a E Form. ~~ , (a )=[c , lx ]ST(a) ,  where c, is a new con- 

stant symbol and {Pi I i<w) is a set of predicate constants, rather than variables. We then 

have that the validity of & on a model (F.V) at a point w . is equivalent to the first-order 

validity of STl(a) on the structure (W.R.V(po),V(pl). . - . .w) where PI, i<w, is interpreted 

u s  \ - (p , ) ,  and s, is interpreted as w 

From the preceding comments, we see that it is possible to define an ultraproduct MU 

of modal models, using the ultraproduct construction for first-order structures. such that 

( M U . w U ) k a  iff {i  I ( M i . ~ i ) b ~ )  E U. 

Definition 2.11 Let {Fi I i E I)  be a family of frames Fi = (Wi.Ri). Vi a valuation for Fi, 

wi E W,, and U an ultrafilter in 2'. ~ F , / u ,  the ultraproduct of the Fi's over U is defined 
i E  1 



in the standard way for first-order structures ([Bs]. 5.2.1). If there is a frame F such that 

F, = F for all i E I, then we denote n F i / U  by F1/U, the ultrapower of F over u .  
i E  I 

( ~ u . w ~ r ) = ~ ( F , . v ~ . w , ) / U  is then defined to be the ultraproduct 
I €  1 

Lemma 2.12 Suppose r G Form. Let {Tg I i < d  be an enumeration of the finite subsets of 

r. If for each i<w, there is an M i  = (Wi.Ri.Vi) and wi E Wi with 

(Mi.wi)k&(r!U . . . UT:,), then there is an ultrafilter U in 2"' such that for a E T. 

(MU,wu)+a. 

Proof Let F be the collection of cofinite subsets of o. Then the intersection of any finite 

subset of F is nonempty, so F is contained in an ultrafilter U in 2'" ([BS], 1.3.5). Now 

for any a E' T. a E Tb for some i<o. But then for all j2i. (Mj.wj)ba,  so 

{ j  I STI((Y) is valid on (WI.R1.Vj(po). - . - .wj)) 2 { j  I j > i }  E U. Then by Los' Theorem ([Bs]. 

b 

5.2.1). STl(a) is valid on (WiI-.RI;,VI,(po). - - - .w,). SO ( M I . . w U ) ~ a .  

Definition 2.13 Let {F, I i E I )  be a non-empty family of frames, Fi = (Wi.Ri), with 

Wi fl Wj = 0 whenever i # j. xFi, the disjoint union of the Fi's is the frame ( U W i .  U Ri). 
i E  I i E  I I €  I 

Sote that by letting W', = W,x{i},  we can define IF, even if W, fl W, f 0 for some i,j. 
I €  I 

For a class X of frames. U(X) denotes the class of all disjoint unions formed from members 

of X. 

Theorem 2.14 Let X be a class of frames closed under the formation of ultraproducts, gen- 

erated subframes and disjoint unions, and S a modal axiom system complete with respect 

to X. Then for r.0 C Form, TCs@ iff Tk@(X). 



Proof ( ) Suppose W s Q .  Let {rb ] i <w} be an enumeration of the finite subsets of Or.  

Assuming @ f 0, choose E 8. By 2.8, OrU {-PI is S-consistent, so fo r  i < w .  

bLs&(r% - . r p P .  So for some Mi  = (Wi,Ri,Vi) and wi E Wi, such tha t  (Wi.Ri) E X. 

( M i , w i ) k ( T g ~  . . . Urb) and (Mi,wi)kP.  Let U be as in 2.13. Then for  a E Or .  

(MU.wU)ka .  However, {i  I (M, ,w, )kP} = 0 B L, so by Los' Theorem (MU,wu)PtP. Let 

MU' be the least generated submodel of MI; containing w,. Then for a E I-, M U 1 k a  and 

MI~'BtP. Since 0 was chosen arbitrarily, we have that for ali P E O, there is some Fg E X 

and valuation Vp for Fp such that for all a E T, (Fp ,Vp)ka .  while (Fp.Vp)*P. Let 

F = Fp. Define the valuation V for F by V(p) = U Vp(p), for p E Var. A straight- 
B E  O B E  Q 

forward induction shows that for a E Form. ~ ( a )  = U Vg(a). So for all a E ( F , V ) k a .  
B E  Q 

while for all /3 E O. (F,V)+P. So TPt@({F)). Since F E X. W=@(X). In case 6 = 0. we set 

8={11 and proceed as above. 

( ) As in the proof of 2.9, with F replaced by X. 

b 

We may wonder if there are any modal axiom systems complete with respect to a 

class of frames which meets the closure conditions of 2.14. It is a standard result (cf. 3.7. 

2.6)  that a system S is complete with respect to X iff it is complete with respect to U(X) 

and G(X), the class of generated subframes of members of X. Also, many well-known 

modal systems S (e.2.  T. S4, S S )  are complete * ~ t h  respect to a class Xs of frames which is 

first-order definable (cf 3.2) and hence closed under ultraproducts ([Bs]. 7.3.4). So we have 

for these systems that TI-,@ iff r k O ( U G ( X s ) ) .  



3. A Survey of Modal Definability Results 

In Chs. 1 and 2 we have been concerned primarily with completeness results. that is, 

with showing that various semantic notions such as validity and consequence can be charac- 

terized syntactically, via axiom systems and logics. We turn now to an examination of 

definability results based on the notion of 'validity on a frame' given in Ch. 1. In subse- 

quent chapters we will use some ideas from Ch. 2 to extend the 'traditional' modal 

definability results examined in this chapter. 

Traditionally ([GO]. [GT]. [ v ~ l ] ) ,  modal definability theory has been concerned with 

what can be 'said' about properties of frames using modal formulas. Some definitions are 

required to make this idea more precise. 

Definition 3.1 A class X of frames is modal axiomatic if there is a set Z C Form such that 

x = F ~ E )  = {F 1 (va E E)(FI=~)}. 

We will use the terms class and property interchangeably. A property X is modally 6 

definable if X is modal axiomatic. 

Definition 3.2 ([Bs], 7.1)  A class X of frames is A-elemenrary if there is a set Z of first- 

order sentences such that X = Mod(Z) = {IF I (Vd, E Z)(d is first-order valid on IF)) 

So a property X of frames IS first-order definable i f  it is A-elementary. Some questions 

that arlse now are the following ([vR2]. p. 131 

(3.3) When is a property of frames which is modally definable first-order definable? 

(3.4) When is a property of frames which is first-order definable modally definable? 



( 3.5) When is an arbitrary class of frames modal axiomatic? 

The first two questions can be seen as comparing the 'expressive power' of modal formulas ' 

and first-order sentences. They are particularly interesting given the fact that. according to 

1.3, modal formulas correspond to certain second-order sentences (when used to define pro- 

perties of frames). 

Our first step will be to examine various constructions on frames which preserve vali- 

dity of modal formulas. Closure under these constructions is then a necessary condition 

for a class of frames to be modal axiomatic. Note that we will present a few results 

without proof, since they are well-known. Results using ideas needed in subsequent 

chapters will be presented in more detail. 

Lemma 3.6 If F' is a generated subframe of F  and F ~ Y ,  cr E Form. then F ' b a .  
\ 

Proof [HC]. 5.8 

Lemma 3.7 If {Fi I i E I] is a nonemptv family of frames and F,ba, a E Form, for i E I ,  

Proof [ v B ~ ] ,  2.15 

We are now in a position to answer 3.3. using the follou ing: 

Lemma 3.8 Let X be a class of frames. If X is closed under isomorphism. generated sub- 

frames. disjoint unions and ultrapowers. then X is closed under ultraproducts. 

Proof [Go]. 16.4 

Definition 3.9 Structures F and F' for a first-order language L are elementarily equivalent 



(FEF') if the same L-sentences are valid on both F and F'. In particular. for frames F and 

F'. FrF'  if the same sentences of LR. the language of one binary relation, are valid on both. 

Theorem 3.10 Let X be a modal axiomatic class of frames. Then X is first-order definable 

iff X is closed under elementary equivalence. 

Proof ( * ) Say X = Mod(E). If F E X and FIEF. F" E Mod(Z), so F' E X. 

( C= ) If X is closed under elementary equivalence, it is closed under isomorphism and 

ultrapowers ([Bs]. 7.3.2). So by 3.6,  3.7 and 3.8 X is closed under ultraproducts. But then 

X is first-order definable ([Bs]. 7.3.4). 

We now present two more constrcctions which preserve validity of formulas. 

Definition 3.1 1 Let F = ( W .R) and F' = (W1,R'). f:  W+ W' is a pmorphism if 

F' is a pmorphic image of F if f (W) = W'. (F'.V1) is a pmorphic image of (F ,V)  if F' is a . 
p-morphic image of F and for p E Var. V(P) = f- ' (V1(~)).  

4 straightforward inductive argument illustrates the following: 

Lemma 3.12 I f  f\l '  = (W',R',L7') is a p-morphic image of M = (W.R.V), then for cr E Form 

\.( a ) = f-'( \-'(a ) ) where f 1s a surjective p-morphism from (W,R) onto (W1.R'). 

Lemma 3.13 Suppose IF' is a p-morphic image of IF and a E Form. If Fkcr then F ' b a .  

Proof Suppose F'Bta. Then there is a valuation V' for F' with v B V'(cr) for some v E W'. 

Define a valuation V for F by V(p) = ( w  E W I f (w)  E V'(p)} where f is a surjective p- 

morphism from F onto F'. Then (W1.R'.V') is a p-morphic image of (W.R,V). Piow since 



f (W)  = MT', v = f ( w )  for some w E W. But then w B V(cr), or else by 3.12 w E f-'(V'(a)) 

and v = f ( w )  E V1(cr). So ( F , V ) k a  and hence Wcw. 

Definition 3.14 ([vB2]. 2.24) Let F = (W.R). F' = (U7'.R'). For X C W define 

IR(X) = { w E W I (Vv E W X W R V ' ~  v E XI). F' is the ultrajlter extension of F 

(F' = ue(F)) if 

W' = {u C 2W I u is an ultrafilter in 2W) 

uR'u' (QS C W)(IR(X) E u X E u') 

Given a valuation V for F, define the valuation ue(V) for ue(F) by 

ue(y>(p> = {u I V(p) E UJ. 

Again by an inductive argument, we have the following 

\ 

Lemma 3.15 For F = (W.R), u E I ue(F) I , and a E Form, u E ue(V)(a) iff V(a )  E u. 

Lemma 3.16 For F = (W.R), cr E Form, if u e ( F ) k a  then F k a .  

Proof Suppose &a. Let w E W-V(a) where V is a valuation witnessing W a .  Let u ,  

be the principle ultrafilter in 2" generated by w . Then V ( a )  B u,, so u, B ue(V)(a). 

Hence (ue(F),ue(V))kcr, and ue(F&cr. 

Considering 3.6. 3.7 and 3.13. we see that  closure of X under disjo~nt unions, gen- 

erated subframes and p-morphic images are necessary conditions for a class X to be modal 

axiomatic, as is the closure of -X under ultrafilter extensions, by 3.16. By [Go], 20.6, these 

conditions are also sufficient, under the assumption that X is closed under elementary 

equivalence. Since X is closed under elementary equivalence whenever X is first-order 

definable, this provides an answer to 3.4. 



These results also point to an answer for  3.5, but not directly. A construction which 

'combines' the generated subframe. p-morphic image and ultrafilter extension constructions. 

known as the state-of-affairs (SA) construction, is presented in [GT] (where its name is also 

explained). In general, ultrafilter extensions do not preserve validity of formulas, but SA- 

constructions do. The pertinent result is the following 

Lemma 3.17 ([GT], 3)  A class X of frames is modal axiomatic iff X is closed under isomor- 

phism, disjoint unions, and SA-constructions. 



4. Definability Via Sequents 

In this chapter, we introduce the notion of validity of a modal sequent on a frame. 

We will then demonstrate that it is possible to define properties of frames, not definable by 

modal formulas, by modal sequents. We will also examine some constructions that 

preserve validity of sequents. 

Definition 4.1 A sequent a = (To,Oo) is valid on a frame F if Tol=Oo({F)). In this case we 

write Fka. A class (property) X of frames is sequent-axiomatic (definable by sequents) if 

there is a set L of sequents such that X = Fr(L)= { F  I (VU E L ) ( F k a ) ) .  

Proposition 4.2 For X a class of frames. let Seq(X)  be the set of sequents for which 

a E Seq(X)  iff for all F E X .  Fku. Then X is sequent-axiomatic iff X = Fr(Seq(X)). 

Proof 6 * ) Obviously X C Fr(Seq(X1). Since X is sequent-axiomatic X = Fr(L) for some 

set L of sequents. Moreover. L G Seq(X) .  So if F E Fr(Seq(X)). F E Fr(L), and hence 

F E X.  

( G ) Clear. 

Since sequents are composed of finite sets of formulas, we can establish a correspon- 

dence between sequents and l'li sentences, just as we did with modal formulas. In particu- 

lar, u = (r,,.@,,) is valid on a frame If; iff the sentence 

VP,, - . . VP,,( & VxST( (Y I-- V VxST(P ) 1 
o E r, ii E O,, 

is second-order valid on F, where n is the largest index of any propositional variable 

occurring in ToU Oo. Note that for any L,-formula a and frame F. Fka iff ~ k ( @ , { a ) ) .  

so that the correspondence between sequents and IIf sentences is an extension of that 

between formulas and I l i  sentences. It is our aim to show that this extension is proper, thai 



is, to show that there are properties of frames definable by sequents but not by modal for- 

mulas. This is done by considering properties which are definable by sequents and showing 

that these properties are not preserved by certain formula-preserving constructions. 

Lemma 4.3 The sequent (@.{p . -~pJ )  is valid on a frame F = (W.R) iff (Vw.v E W)(wRv). 

Proof ( =+ ) Suppose there are w.v E W with wRv. Then we can choose a valuation V 

such that ( W . R . V ) ~ ( @ . ( ~ , - O ~ } ) .  Namely, let V(p) = W-{v). Then w E V(Op), so 

v(-op) # W 

( ) Suppose ( h . y  E W)(xRy) and that for some v E W and valuation V for F, 

v B V(p). Now for any w E W,  wRv so that w B V(Op), whence w E V(-Op). So 

VC-Op) = W. 

Now t@e property (t/w.v E W)(wRv) is not preserved by disjoint unions, although validity 

of formulas is. Thus we have an example of a property of frames, namely the universality 

of R . which is definable by sequents but not by formulas. Another interesting sequent- . 
definable property of frames which is not preserved by disjoint unions is given in the fol- 

lowing 

Lemma 4.4 The sequent a,, = (0 , (p ,+4p ,  I O<i<j<2"}) .  n<w . is valid on F iff /I F 11 <n. 

Proof ! * ) Suppose 11 IF 11 = k 6 n .  Then for  any valuation \ for  8.. there are at  most 

2"ossible values of V(pi) .  Hence we must have V(pi) = V(p , )  for some 0 < i < j < 2 k .  So 

Fku,. 

( * ) Suppose 11 F 11 > n. Choose X G I F I with I X I = k >  n. Let X,, . - X2+ be an 

enumeration of the subsets of X . Now 2k-1 >2", so define V with V(Pj) = Xj. 0<j<2n.  

Then (F.V)ku,.  So s u n .  



Lemmas 4.3 and 4.4 demonstrate that validity of sequents is not preserved by disjoint 

unions. The following result demonstrates that it is not preserved by generated subframes. 

Lemma 4 5  The sequent ({-p.[1lp),0) is valid on a frame F = (W.R) iff (3w.v E W)(wRv). 

Proof ( * )Suppose (t/w.v E W)( wRv). Then for any valuation V for F. V(Op) = W. 

In particular, we can set V(p) = 0 so that V(-p) = W ,  and also have V(Q) = W. 

( * ) Suppose w.v E W and wRv. Now suppose that for some valuation V , V(yp) = W. 

Then v B V(p) and w B V(0p). So F!=({-pDp) .a ) .  

The preceding results demonstrate that sequents can be used to extend the 'expressive 

power' of the relational semantics for modal formulas. Thus the questions of Ch. 3 again 

become open, but now with respect to modal sequents rather than formulas. Our first step 

in o%taining some answers is an examination bf constructions which preserve validity of 

sequents. 

. b 

Lemma 4.6 If N' = (W'.R'.lT') is a p-morphic image of PLI = (W.R.V) and for some 

a E Form V ( a )  = W, then V'(a) = W'. 

Proof Let f be a surjective p-morphism from M onto M'. Then f-'(V1(a))=V(a)=W. So 

f(f-'(V1(a)))=f(W). Since f is onto, f ( f - ' (~ ' (a ) ) )=V' (a )  and f(W)=NT'. So V'(a)=mT'. 

Theorem 4.7 If F' is a p-morphic image of IF, then for any u = (T,,.Oo), if Fku tl~en 

F ' k u .  

Proof Suppose Fga. Then there is a valuation V' for F' such that (Va E T ~ ) ( v ' ( ~ )  = w') 

and (VP E @,)(V1(P> # W1>. Define a valuation V for F by 

V(p) = { w  E W I f(w) E v ' ( ~ ) ) ,  p E Var. Then (W'.R1.V') is a p-morphic image of 



(W.R.V), so by 3.12 and 4.6. (Va E ro>(V(a) = W) and (Vp E Qo)(V(P) # W). SO W c r  

Theorem 4.8 For any sequent cr = (To.Oo) and frame F, if u e ( F ) k u  then Fku. 

Proof Suppose W c r .  Let the valuation V for F witness this. Now we have that for 

a E r(,. V(a)  = W, so for every ultrafilter u in 2". V(a) E u and hence u E ue(V)(a), by 

3.15. Moreover, for every P E QO, there is some wp E W with wp B V@). If we let up be 

the principle ultrafilter in 2" generated by wp then V(P) B up so up B ue(V)(P). Hence 

(ue(F).ue(V))eu and so ue(F*cr. 

We now know how the formula-preserving constructions of Ch. 3 stand with respect 

to preservation of sequents. We will examine one more sequent-preserving construction. 

Definition 4.9 Suppose (I;<) is a directed partial order and {F, I i E I) is a family of 
\ 

frames, F, = (W,.R,). with F, a generated subframe of F, whenever i < j. F = (W ,R) is the 

direct union of the F,'s (F = U F,) if W = U W,.  R = U R,. 
I €  I I €  I I €  I b 

Lemma 4.10 If F = U IF,, then for any S,, C h,, I F I there is some I' E I for which 
I €  l . 

Xu C I F,. ( . 

Proof Suppose S,, = { w,. . . . .w, 1, li < w. Now for 1 6 j 6 k ,  there is some I, with w ,  E 17,. 

Let 1' be an upper bound for  1 1 ,  . . . .i,. Then S,, C k',. 

Lemma 4.11 If F =  U F,, then for i E I .  F i =  (W,,R,) is a generated subframe of 
1 E  I 

F = (W,R). 

Proof Obviously Wi C W and Ri = (W,xWi) f7 R. Now suppose w.w' E W ,  w E W, and 

wRw'. There is some j>i with w' E W, and wRjwl. Since Fi is a generated subframe of Fj. 



Theorem 4.12 Let F = U F,, u = (To.@o). If Fi+w for all i E I. then FLU. 
I €  I 

Proof Suppose & a .  Then there is a valuation V for F with V(a),= I F 1 . for all a E To. 

while for all P E Oo, V(P) * I F I .  For each P E Oo, choose wp BV(P). Let 

Xo = 1 wp ) p E Oo}. Let i' be as in Lemma 4.10, with Wi, 2 X,. By 4.1 1 Fir is a generated 

subframe of F. Choose Vif such that (F,~,V,,) is a generated submodel of (F.V). So for 

a E r,,. Vj,(a)  = V ( a ) n  Wi, = W,.. Moreover. for p E Oo. wp E W-V(P) and wp E Wit, so 

xp E ( w - v ( p ) )  n wit =wi.-vi8(p). SO F+U. 

Corollary 4.13 The well-foundedness of R is not definable by sequents. 

Prmf Let Fn = ({i <o 1 0 6  i 6x11, b ) , n <a. Then each F, is well-founded. Now F, is a 

geherated subframe of Fn+l, n < o ,  and so we may form the direct union U F,. But this 
n < w  

direct union is just (w,>) ,  which is not well-founded. 
b 

Interestingly, the inverse well-foundedness of R . that is the well-foundedness of 

R-' = { (v .w)  I wRv) is definable by sequents. 

Lemma 4.14 The sequent ( i p - + ~ p i . { - ~ } )  is valid on a frame F = (W.R) iff R-' is well- 

loundeti or, \\ 

Proof ( * ) Suppose R-' is nor well-founded on W . Then there is a sequence {wi}i€ of 

members of W with w,Rwi+', i <w. Letting v ( P ~ = {  w, 1 i < o ) .  we have v ( P + o ~ )  = W 

and V(-p) f W. So W ( { p + ~ p J . { i p l ) .  

( C= ) Suppose R-' is well-founded on W . So for any )i C W with X f 0, there is an 

w E X such that for all v E X, wRv. In particular, for any valuation V for F, if 



V(P) #0 we have some w E V ( p ) - v ( o p ) ,  so that V(P+OF) f w. So if 

V ( P d o p )  = W. V(p) =0 and V(yp) = W. So F k ( ( p + ~ p } , { - . p } ) .  

It is a well-known result (see. e.g.. [vB2], 2.21) that if a E Form is not valid on all 

frames then it is invalid on some frame which is a finite irreflexive intransitive tree with no 

R-loops. From this it follows that the inverse well-foundedness of R is not definable by 

modal formulas. 

We have established a number of necessary conditions for a class of frames to be 

sequent-axiomatic. In the next chapter we introduce algebraic semantics as a step toward 

determining whether these conditions are sufficient. 



5. Algebraic Semantics 

In this chapter we introduce modal algebras (MA's) and examine the notion of vali- 

dity of a sequent on an MA. Having done so, we find it possible to characterize sequent- 

axiomatic classes of MA4's using some well known results from first-order logic. 

Definition 5.1 A modal algebra (MA) is a structure B = ( B , n  .-.I), where (B.n .-) is a 

boolean algebra, and I is an operator satisfying / (an  b) = la f7 Ib, a.b E B and I1 = 1. where 1 

denotes the maximum element of B. For an MA B = (B ,n  ,-,I). I B I denotes B . the 

underlying set of B. 

Definition 5.2 Let B be an MA. d p o .  - . - .pnbl) E Form. Then f:(a,,. . - . .an-,), the n-ary 

polynomial on B induced by a is defined inductively as follows: 

It is easy to see that any MA polynomial f(a,,. . . - .a,,) is induced by a modal formula 

af(po. - - . .pn)  If u = (To.Oo) is a sequent, u is valid on B ( B b u )  if the sentence 

in LklA, the first-order language of MX's, is valid on B. (Note that we abuse notation some- 

what here. as we do not distinguish between terms f, and functions fE:B+B). By % we 

mean (x,,. . . - .x,) where n = max{i I i occurs in some a E roUOo}.  A class X of MA's is 

sequent-axiomatic i f f '  there is a set L o f .  sequents such that 

X = MaNL) = {B I (tfu E L ) ( B E u ) ) .  Note that as in 4.2, X is sequent-axiomatic iff 

X = Mal(Seq(X)). Before going on to characterizing sequent-axiomatic classes of MA's, we 



will demonstrate that Bk(r , .Oo)  for all MA's B iff ToCKO,. 

Definition 5.3 The Lindenbaum Algebra for K is the MA BK = (BK. n .-.I), where 

BK = { 11 a 11 / a E Form) where 1 )  a 11 = { p  E Form 1 !-,a-/3} 

II Il n I1 p ll = I1 ,&p I1 
- 11 al l  = I1 la II 
1 I1 a 11 = I1 C h  I1 

It is shown in [Lem]. 11, that BK is a well-defined MA. 

Definition 5.4 Let B = (B.n  .-.I) and B' = (B1.n'.-I,/') be M-4's. Then f:B-B' is an MA- 

homomorphism if 

f ( a n b )  = f (a )n l f (b )  

f(-a) = -'f(a) 

f(la> = I'f(a> 

11 f(B) = B'. B' is a homornorphic image of B. If X is a class of MA's. H(X) denotes the class 

of all homomorphic images of members of X. 
b 

Definition 5 5  Let B = (B .n  .-,I) be an MA. F -C B is a jlze7- in B if it is a filter in the BA 

(I3.n.-). For a.b E B, a E F b  if for some c E F, a n c  = bflc. For a E B. 

a/F = { b  E B I a=Fb}. 

It is a standard result ([Bs], 1.4.3 1 t h a ~  if B = ( B , n  ,-) is a BA and F 1s a filter in B, 

then 3F is an equivalence relation on B . and so we can define the set B/F = {a/F I a E B}. 

Furthermore, f:B+B/F defined by f (a)  = a/F is a well defined homomorphism of B onto 

B/F = (B/F, f l  I . - I ) ,  where a/Ffllb/F = ( a n  b)/F and --'(a/F) = ( -a ) /~ .  We can extend this 

result to MA's as follows: 



Lemma 5.6 If B = (B,n .-.I) is an MA and F is a filter in B which is closed under I (i.e., 

a E B -->z la E B), then f:B+B/F is a well defined MA-homomorphism of B onto 

B/F = (B/F,nl.-'./'). where I'(a/F) = (/a)/F. 

Proof We need to show that if a/F = b/F then I'a/F = I'blF. Now if a/F = b/F, a n c  = b n c  

for some c E F. Then l ( a n c ) = I ( b n c ) ,  so l a n l c = I b n l c  and Ic E F, so (/a)/F=(Ib)/F. 

Thus /'a/F = I'b/F. so f is well defined. It is obvious that f is a homomorphism. Since 

B/F = {a/F I a E B) ={f(a) / a E B} = f(B). B/F is a homomorphic image of B. So B/F is a 

well-defined MA. 

We call B/F the quotient MA of B modulo F. The function f is the canonical 

homomorphism of B onto B/F. 

Lemma 5.7 Let B be an MA, F an I-closed filter in B. f the canonical homomorphism 
\ 

from B onto B/F. Then f(a) = 1/F iff a E F. 

Proof ( 3 3  ) f ( a ) = a / F = 1 / F , s o a ~ c = I ~ c = c f o r s o m e c  E F. Thusc<a .soa  E F. b 

( ) If a E F, a E F 1  since a n a  = I n a  = a. So f(a) = a/F = 1/F. 

Theorem 5.8 For (ro.Oo) C fi,Forrn, roCKOo iff for all B E H({BK}), B!=(T,.Q,). 

valid on 8 for any MA B. But then B k ( { a , .  . . - ,a,,) .{a,,+, 1). _Also for an? MA4 H ,  if 

f:(~) = 1, then If:(%) = 1. so B k ( ( a ] , { ~ a } ) .  It is routine to shou that the rules sufficient 

for defining LK, restricted to sequents, preserve algebraic validity. The result is then 

obtained by induction on sequents. 

( C= ) Suppose T&Oo. By 2.8, Or,, is K-consistent. and Fo = 1 11 a 11 I a E oT,} has the 

finite intersection property in BK. and so generates a proper filter F in BK ( [Bs]. 1.2.8 ). 



Assuming that F is I-closed, we can conclude that BK/F is a homomorphic image of BK 

and a/F = 1/F iff a E F. Hence for  any u E To. f,B"IF(f( 11 p, 11 ), - . - ,f( 11 p, 11 )) = 1/F. So if 

@,=PI. we immediately have BK/F+(To.Oo). Otherwise, since F is the smallest filter con- 

taining Fo and for 0 E O0 there is a filter Fp extending F such that 11 -0 11 E Fp (since 

m o U  {-PI is K-consistent), we have that for 0 E O0 11 0 11 B F and so f (  11 0 I( ) f l /F ,  

where f is the canonical homomorphism. So for O E O O .  

fsBy'F (f(  1) 11 1. . . .f( (1 p, )I 1) * 1/F. SO BK/W(To.Oo). 

It remains to show that F is I-closed. By [Bs]. 1.2.8, a E F iff a b a l  f l  - . . n a ,  for 

some n b l  and al. - - . a,, E F,,. Then l a b l ( a l n  - . - na,) =lain - . . nla,. But for l < i < n .  

ai = 1) ui 11 for some a, E To, so lai = 11 Oui 11 E Fo. Hence la E F. 

By definition. a sequent is valid on an,MA B if some corresponding universal sentence 

fn LMA is valid on B. It is our aim now to show that any universal sentence in LMA holds 

in B iff some corresponding set of sequents is valid on B. This will enable us to character- 

ize sequent axiomatic classes'of M,4's. 

Definition 5.9 A class X of 31A's is universal if X = Mod(@) for some set @ of universal 

LMA-sentences. Note that as in 4.2. X is universal iff X = Mod(ThV(X)), where Thv(X) is 

the  set ot un~verssl  sentences \,slid on every member of X. 

Definition 5.10 ( [Gr]. 7.46.1 ) .4 set @ of universal sentences, written as a set of open for- 

mulas, is In nornzal jorm if every + E @ is of the form e l v  . . . ve,, where e,, 1 < i < n ,  is an 

atomic or  negated atomic formula. 

Lemma 5.11 Every set @ of universal sentences is equivalent to a set @' of universal sen- 

tences in normal form (i.e., Mod(@) = Mod(@') ). 



Proof For + E @, consider as an open sentence 4& - . - &+, in conjunctive normal form. 

Add +,, . . - +, to @'. 

Lemma 5.12 Every atomic LMA-sentence is equivalent to a sentence of the form f(Z) = 1 

for some MA-polynomial f . 

Proof f(Z) = g(Z) holds in an MA B iff (-f(Z) U g ( i T ) ) n ( f ( i T ) ~ - ~ ( ~ ) )  = 1 holds in B. 

Lemma 5.13 Let 4 be a universal LMA-sentence of the form VZ(O,(Z)v . - - vO,(Z)). Oi atomic 

or negated atomic, 1 < i<n. Then there is a sequent a+ = (To.Oo) such that for any MA B, 

+ is valid on B iff Bl=a6. 

Proof By 5.12 we can assume that each Oi is of the form f(il) = 1 or -.(f(Z) = 1). Let 

To = {ar I f appears in some Oi of the form -(f(I)  = 1).  1 < i < n ]  

00=  {af I f  appearsinsomeOi of the form f ( Z ) =  1. l < i < n J  
\ 

The result then follows by definition 5.2. 

Theorem 5.14 A class X of MA's is sequent-axiomatic iff it  is universal. 

Proof ( ) By 5.2 

( + ) Say X = Mod(@) for a set @ of universal sentences. By 5.11, X = Mod(@') where 

@' is a s e ~  of U ~ I L  ersal sentence:; In normal form.  Let L = {a, I 4 E @ I .  Then by- 5.13. 

X = Mal(1). So X 1s sequent-axiomatic. 

Definition 5.15 Let B.B' be MA's. B' is isomorphicaLly embedded in B (B' G B)  if there is 

an injective MA-homomorphism from B' into B. For a class X of MA's. S(X) denotes the 

class of MA's isomorphically embedded in members of X. For a family {Bi 1 i E I) of MA's 

and ultrafilter U in 2'. ~ B ~ / u ,  the ultraproduct of the Bias  over U is defined in the stan- 
I €  I 



dard way for first-order structures ([BS], 5.1.3). For a class X of MA's. PU(X) denotes the 

class of ultraproducts of members of X. 

Theorem 5.16 A class X of MA's is universal iff X = SPJX) 

Proof ( ) X C SPu(X), so it suffices to show that X is closed under ultraproducts and 

isomorphic embeddings. Now by Los' Theorem ([Bs], 5.2.1) ultraproducts preserve the 

validity of all first order sentences. and by ([CK]. 5.2.4). isomorphic embeddings preserve 

validity of universal sentences, so these closure conditions do hold. 

( ) We will show that, assuming X = SPu(X). that X = Mod(Thv(X)). Obviously. 

X G Mod(Thy(X)). Suppose B E Mod(Thv(X)). Let (4, 1 i <w) be the set of existential 

sentences ualid on B. For each $+, there is a B, E X such that q5, is valid on B,, since other- 

wise the universal sentence equivalent to -pi is in Thy(X), which means @+ is not valid on 

B. a contradiction. Let J j  = {i 1 c$j is valid on Bi).  Now for any j,. . . .j, we can find a com- 

mon element in J,,, - . . .J,,. since without loss of generality, no two of 4,,. . - . ,$," have any 

b 

variables in common. and so their conjunction is equivalent to an existential sentence which 

must be validated by some Bi E X.. In other words. {J ,  / j E w)  has the finite intersection 

property, and so can be extended to an ultrafilter L' in 2" ([BS]. 1.3.5 1. Let B' = nB,/'Li. 
i E  1 

By Los' Theorem. ever!. existential sentence valid on B is valid on B' (since 

{ i  / 6 ,  1s ~ , a l ~ d  on 13,i = J ,  E L !. ' l 'hus every un~versal sentence valid on B' is valid on B. 

But then B can be isomorphically embedded in an ultrapower of B' ([Bs], 9.3.8). and so 

B E SPI:Pcy(X). Then by [BS], 6.2.7.  B E SPU(X). 

Corollary 5.17 A class X of MA's is sequent-axiomatic iff X = SPu(X) = Mal(Seq(X)). 



6. General Frames 

Suppose F = (W.R) is a frame. Letting IR(X) = { X  E w I ( V y ) ( x ~ y  * y E XI) for 

X C W, we have (2W, n .-.IR) is an MA, where (2W. fl ,-) is the power set BA of W . This 

MA, the dual MA of F, is denoted F+. It is easy to see that there are MA's which are not of 

the form F+ for any frame F. since not all BA's are power set BA's. In this chapter we will 

alter the relational semantics to obtain frames that correspond more closely to MA's. The 

results of Ch. 5 will then be used to characterize sequent-axiomatic classes of these frames. 

Definition 6.1 A general frame is a structure F = (W,R.P), where (W.R) is a frame and 

P G 2W is closed under n. -, and IR. If u = is a sequent and F = (W.R,P) is a gen- 

eral frgme, then u is valid on F. ( F k u )  if for all valuations V:Forrn+P, 

( v a  E ro ) (v (a>  = W> - ( 3 3  E O J ( V ( ~ )  = w) 
(By a valuation V for a general frame (W.R.P) we mean a valuation V for (W.R) with 

If F = (W.R.P) is a general frame. Fo denotes the standard frame (W.R). Row for 

any sequent u = (ro.OO). (W.R)bu  iff the general frame (W,R.2W)ka.  Moreover for any 

general frame F, if FOku then F k u .  So u is valid on all general frames iff u is valid on 

all standard frames, which is the case iff ToI-Oo. 

Definition 6.2 Let F = (W,R.P) be a general frame. Define F+, the dual MA of F ,  as fol- 

lows: H." = (P, .-.IR). For a standard frame (W.R). (W.R)+ = (W.R.2")+. 

By a straightforward inductive argument, we can show that for a(po, - . ,pn) E Form, 

F a general frame, and V a valuation for F, f r ( ~ ( ~ ~ ) ,  - . . .V(pn)) = V(a). and so we have 

the following 



Lemma 6.3 For a general frame F and sequent u, F k u  iff F+ku 

Proof By 5.2, 6.1 and the preceding remarks. 

We now introduce a way to obtain general frames from MA's. 

Definition 6.4 ( [Go]. 10.1 ) Let B = (B.n .-.I) be an MA. The dual frame of B is the gen- 

eral frame B+ = (WB.RB.PB), where 

WB = {W I w is an ultrafilter in B} 

WRBV iff {a I la € w} G v 

~ ~ = { I a I ~ I a € ~ } w h e r e  I a I B = { w  € W B I a €  w} 

By [Go]. 10.2, we have ( a I B =  I b I B  iff a = b .  WB-Ia lB  = I - a IB .  I a l B n  I b I B =  
\ 

I a n  b I ', and IRB( 1 a 1 = I la I '. so that B+ is indeed a general frame. This also means 

that the map f:B+pB defined by f(a) = I a 1 is an MA-isomorphism, so we have 

Lemma 6 5  B==(B+)+. for any MA B. 

Corollary 6.6 For any sequent u and MA B. B k u  iff B++u. 

Proof B+ku  iff (B+)+ku, by 6.3, iff B ~ u  by 6.5. 

We will now examine some sequent preserving consLructions of general frames 

Definition 6.7 Let IF = (W.R.P). IF' = (W',R',P') be general frames. =\ function f:W+W1 is 

a pmorphism if f is a p-morphism from Fo to Fo' and for X E P', f-'(X) E P. If 

f( W) = W'. F' is a pmorphic image of F. 

Lemma 6.8 If F' = (W',R'.P') is a p-morphic image of F = (W.R.P). then F'+ is isomorphi- 



cally embedded in F+. 

Proof ([Go]. 5.3) Suppose f is a surjective p-morphism of F onto F'. We will show that 

f+:P8+P defined by f+(X) = f-'(X) is an injective MA-homomorphism. Suppose X.Y W'. 

Obviously f+(-X) = f-'(-XI = -f-'(X) = -f+(X), and likewise f+(XflY) = f+(X)flf+(Y). 

So to show that f is a MA-homomorphism. we need f+(IR8(X)) = IR(f+(x)). Suppose 

w 6! f+(IR8(X)). Then we have u E W' with f(w)R'u and u B X. Now by 6.1, we have 

v E W with wRv, f(v) = u t? x .  So wRv and v B f+(X), whence w B IR(f+(X)). Now sup- 

pose w B lR(f+(X)). NOW by 6.1 f ( w ) ~ ~ ( w ) ,  so f (  w) B I,YI[) and thus w B ~ + ( I ~ ' ( x ) ) .  TO 

see that f+  is injective suppose f+(X) = f+(Y). Then f(f+(X)) = f(ff(Y)), and since f is 

surjective, X = Y. 

\ 

Lemma 6.9 Let F. F' be general frames. cr a sequent. If F' is a p-morphic image of F and 

Fkcr then F ' k u .  

Proof If FLU. Ffku (6.3). But by 6.8.  F'+ C F+, so F1+ku by 5.16. Then by 6.3, F'ku. 
b 

In [Go]. Ch. 7 ,  the ultraproduct construction is extended to general frames. The 

difficulty in doing this is ensuring that for an ultraproduct FU = (WU.RU.PU). we in fact 

have that Pr C 2W" 

Definition 6.10 Suppose (IF, I I 

U is an ultrafilter in 2'. 

E I}  is a family of general frames. (IF: = (W,.K,.P,) j . and 

For f E n W , .  7 E n ~ , ,  let [ f , ~ ] = { i l f ( i )  E r(i)}. For 
I t  I I €  I 

[ f . ~ ]  E LT}. Then X,/c C WU. The ultraproduct of the F,'s 

over U is the structure FII = ~ F ~ / u  = (Wu.RU.PU), where (WU,RU) = ~ ( F ~ ) ~ / u  and 
i E  I I €  l 



It is shown in [GO], 7.5 and 7.7,  that XTlU is well-defined and that Fu is indeed a gen- 

eral frame (i.e.. P,, meets the necessary closure conditions). This also provides the follow- 

ing lemma. 

Lemma 6.11 If {Fi ( i E I \  is a family of general frames and U an ultrafilter in 2' then 

Note that 6.1 1 does not hold in general for standard frames. as is shown in [Go], Ch. 17. 

We can now show that ultraproducts of general frame preserve validity of sequents. 

Lemma 6.12 Suppose {Fi I i E I} is a family of general frames. U an ultrafilter in 2I and u 

a sequent. If for all i E I. F,ku, then ~ F , / u ~ u .  
i €  1 

Proof By 6.3 (F , )+ku ,  i E 1. So {i I (Fi)+t=c+} = I E L. But then ~ ( F ~ ) + / u +  by Los' 
I €  I 

Theorem. So by 6.1 1 ( ~ F , / u ) + ~ u  and thus by 6.3. n F , / C k ( +  
I €  I I €  l 

With the following lemma, we will be able to characterize sequent-axiomatic classes 

of general frames. 

Lemma 6.13 Let l3. H' be 54.4's. If 8' L B, then B', is a p-morphic Image of B,. 

Proof ([Go]. 10.9) Let f be a injective MA-homomorphism from B' into B. Then 

i,:B+-B8+ defined by f+(w)={b E B' I f(b) E w} is a surjective p-morphism. 

Definition 6.14 For a general frame F, the &dud of F is the frame (F+)+. 

Definition 6.15 For a class X of general frames, Xf = {B I ( 3 F  E X)(BcF+)}.  



Theorem 6.16 A class X of general frames is sequent-axiomatic iff X is closed under p- 

morphic images, ultraproducts and biduals. while -X is closed under biduals. 

Proof ( =+ ) Closure under p-morphic images and ultraproducts follows by 6.9 and 6.12, 

respectively. For closure of X and. -X under biduals, note that by 6.3 and 6.6, for any 

sequent U ,  Fku iff (F+)+br. 

( -+= ) We will show that X = GFr(Seq(X)).  where GFr(L) is the class of general frames 

validating every sequent in L . Obviously. X 5; GFr(Seq(X)). Suppose F E GFr(Seq(X1). 

Now by 6.3 Seq(X)  = Seq(Xf) .  Then, again by 6.3. F+ E Mal(Seq(X+)).  So by 5.17. 

F+ E S P U ( X + ) .  that is, F+ is isomorphically embedded in some ultraproduct ~ B ~ / U ,  
i E  I 

Bi E X+,  i E 1. But then F+ is isomorphically embedded in the ultraproduct ~ ( F ~ ) + / u .  
I €  I 

Fi E S. FT==Bi. i E I. So by 6.13, (F+)+  is a p-morphic image of ( ~ F ? / U ) + .  Now by 6.11. 
i E  I 

( ~ F : / C ) + & ( ( ~ F ~ / U ) + ) + ,  so ( F + ) +  is a p-morphic image of a bidual of an ultraproduct of 
I €  I i €  I 

members of X, so by the closure conditions on X.  (F+)+  E X. Then by the closure condi- ' 

tions on -X ,  F E X.  



7. Some Results on Sequent-Axiomatic Classes of Standard Frames 

In this chapter, we will exploit the methods developed in Chs. 5 and 6 to obtain a 

characterization of sequent-axiomatic classes of frames, under the assumption that these 

classes are A-elementary, and a relatively simple sufficient condition for an arbitrary class 

of frames to be sequent-axiomatic. Thus we will have obtained an answer to the sequent 

analogue of 3.4 and a partial answer to the sequent analogue of 3.5. 

Lemma 7.1 Let X be a class of frames closed under elementary equivalence and p-morphic 

images. Then X is closed under ultrafilter extensions. 

We require some additional model-theoretic machinery in order to prove 7.1 

Definition 7.2 Let F be a structure for the first-order language L. By a simple expansion of 

F we mean a structure Fx = ( F , ( W ) , ~  X) for some X !G I F I . For such an expansion. 

L(Fx) denotes the language LU{c, I w E X) ,  where the constant c, is interpreted as w . 

We say that F is o-saturated if for every X L ,, I F I . every set E(x) of L(Fx)-formulas . 
with free variable x which is finitely satisfiable in Fx is realized in IFx, i.e.. there is some 

w E I F I such that for +(XI E E(x), $(w) is valid in Fx. 

The important fact we will use about o-saturated structures is the following: 

Lemma 7.3 Let F be a structure for a first order language L. Then there is a structure F' 

for L such that F'=F and F' is w-saturated. 

Proof [CK] 5.1.l(i). 5.1.2(i) and 5.1.4. 

Proof of 7.1 ( [vB~] ,  8.9) For F = (W .R) E X. we will construct F" = (W'.R',(X')x r w) 

with (W1.R')=F and ue(F) = (W'.R') a p-morphic image of ( W R )  Let 



LR' = LR U {Px I X G W],  where each Px is a unary predicate constant. Expand F to a struc- 

ture F' = (W.R.(X)x W )  for LR'- Now by 7.3,  we have an w-saturated structure 

F" = (W',R'.(X')x w),  with FU=F'. Define the function f by f(w) = {X 5 W 1 w E X'} 

= {X C W I Pxw is valid on F"}, for w E W'. 

We want to show that f is a surjective p-morphism from (W'.R1) onto ue(F). We 

must first verify . that for w E W', f(w) E W'. Now vy(-.Pxy*Pw-xy) and 

Vy(Pxy&Pyy*PXn,y) are valid in F' and hence F", so for w E W', we do have that f(w) is 

an ultrafilter in 2". 

Next we need to show that f is a p-morphism. Suppose w.v E W', wR'v and 

w E (IR(X))'. Since Vy~z(PIR(x~y&Ryz*PxZ) is valid in F' (by 3.141, and hence on F". 

v E X'. So for X C W, if IR(X) E f(w), w E (IR(X))', whence v E X' and X E f(v). So 

f(w)RSf(v). Now suppose w E W', u E W* and f(w)Rau. Let X = (w} and E(y) be the set 

{Pxy I X E u} U {Rcwy} of LR'(F"x)-formulas with free variable y . We claim Z(y) is 

finitely satisfiable in FNx Let X,, . . . .S, E u, k <w and X = X I  n . - - n Xk E u. If 

{Pxl. . - . .Pxk.Rc,y} is not satisfiable in FMx, then Vy(Rcwy-)-Pxy) is valid in FWx, as is 

V ~ ( R C , ~ + P ~ - ~ Y ) .  Now VyVz((Ryz-)Pw-xz)-)PIR~w-x~y) is valid in F' (by 3.14) and 

hence in FUx. So we must have PIR(w-x$, is valid in FWx. whence IR(W-X) E f(w). But 

then since f iu - )R 'u .  W-X E u,  a contradiction since X E u and u is an ultrafilter in 2". 

Finally, we must show that f is onto. Suppose u E W'. Then U y )  = {Pxy I S E u] is 

finitely satisfiable in IF' and hence in IF". So Ziy) is realized in IF" Thus there is some 

w E W' such that for X E u, w E X' and so f(w) = u. 

Theorem 7.4 Let X be a A-elementary class of frames. Then X is sequent-axiomatic iff X 

is closed under p-morphic images and -X is closed under ultrafilter extensions. 



Proof ( =e= ) By 4.7 and 4.8. 

i * ) Since X is A-elementary. X is closed under elementary equivalence ( [BS]. 7.3.4 ). 

and so bv 7.1 X is closed under ultrafilter extensions. We want to show that 

X = Fr(Seq(X1). Obviously, X C Fr(Seq(X1). Suppose F E Fr(Seq(X1). Then 

by 5.17. F+ C ~ B ~ / u ,  where for i E I. B i z F ? .  F, E X. and U is an ultrafilter in 2'. So 
i E  I 

F+ G nF:/li. Say ~ F , / u  = (Wu,Ro). Then ~ F : / u  = n ( ~ , . 2 ' ~ ~ ~ ) + / U .  which is iso- 
1 €  1 I €  I i E  I i E  I 

W morphic to ( 2  ' ' ) = ( W . R . P )  where PI; 2 '. Thus 
I €  I 

n F ; f / ~  G ( n F 1 / U l f  and so F+ G (nF,/U)+. Then by 6.13. (Ff )+ is a p-rnorphic image 
i C  I i E  I i c  1 

of ( ( ~ F ~ / u ) + ) + .  By the definition of p-morphisms of general frames (6.7). ((F+)+)o is a 
i E  I 

p-rnorphic image of ( ( ( ~ F ~ / U ) + ) + ) , , .  But for a standard frame F. ((F+)+lo = ue(F). Now 
I €  I 

' < -  

since X is 4-elementary. nF,/G E X ([Bs], 7.3.4). But then ue(F) E X since X is closed 
i E  I 

under p-morphic images and ultrafilter extensions. Then since -X is closed under 

ultrafilter extensions. F E X. 

It is clear that validity of sequents is not preserved by ultraproducts. Consider the 

structure = (cu,>), which is inversely well-founded. By a well known result ([BS], 

6.4.31, the ultrapower R"/u, where U is a nonprincipal ultrafilter in 2", is not inversely 

well-founded. Thus X,, = Fr((({p-t 0 p) .{-.p\)) ) is not closed under ultraproducts, since 

by 4.14 F E Xi, iff F is inversely well-founded. Also, i t  is not clear that the sequent 

analogue of 3.10 holds, since sequent-axiomatic classes are not closed under disjoint unions 

or generated subframes. This means that we have not obtained an answer to the sequent 



analogue of question 3.3, and so we have not been able to determine whether the conclusion 

of 7.4 holds under any assumption weaker than X being A-elementary. We also note that 

by [vB2]. Ch. 2, sequent-axiomatic classes are not closed under ultrafilter extensions. 

For an arbitrary class X of frames, the conditions of 7.4, along with closure under 

ultrafilter extensions and ultraproducts. are sufficient for X to be sequent-axiomatic. We 

now present a sufficient condition that does not require the ultraproduct construction. 

Lemma 7 5  Let X be a class of MA's. B an MA. Suppose for some finite MA Bo G B. 

Bo B S(X).  Then there is a universal LMA-sentence @ valid in every B' E X which is not 

valid in B. 

Proof Suppose I B, I = {al, . . - ,a,). Let 

@ = Vx, . - - Vx,(V{x, = xj I ~ < i < j < n )  v 

V{xinxj  f xk I a i n a j  = a,, i.j.k<n) v 

V{-x, # xj I -ai = aj, i.j<nJ v 

V { h i  # x, I /ai = a,, i.jG1-11). 

Now al. - . - .a, witness that 4 is not valid in Bo. Hence 4 is not valid in B (5.16). More- 

over, if @ is not valid in B' E X, then B' has a subalgebra Bo' isomorphic to Bo. Namely. Bo' 

is the subalgebra of B' generated by all, . - - ,a,', which witness that @ is not valid in B'. 

Corollary 7.6 Let X be a class of \ IX 's .  B an I\I1-4. If R E Mod(Thv(X)), then every finite 

subalgebra of B 1s isomorphically embedded in some member of X. 

Theorem 7.7 Let X be a class of frames. For X to be sequent axiomatic. it is sufficient that 

for any frame F, if for every finite p-morphic image FO of F, F%s a p-morphic image of 

ue(F1), for some F' E X, then F E X. 



Proof We need to show that Fr(Seq(X)) C X. Let F E Fr(Seq(X)). Then as in 7.4. 

F+ E Mal(Seq(X+)). Since every sequent corresponds to a universal LMA-sentence, 

F+ E Mod(ThV(XC)). Now suppose F0 is a finite p-morphic image of F. Then by 6.8 

Fo+ G F+. So by 7.6. FO+ G B, B z F ' + ,  F' E X, whence FO+ G F'+. So (FW)+ is a p- 

morphic image of of (F1+)+. As in 7.4, we then have that ue(FO) is a p-morphic image of 

ue(F1). Since for finite F. F=ue(F),  we have by assumption that F E X. 

As there are frames with no finite p-morphic images. the condition of 7.7 is not neces- 

sary. 
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