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The continuity problem, i.e., the question whether effective maps between effectively

given topological spaces are effectively continuous, is reconsidered. In earlier work it was

shown that this is always the case, if the effective map also has a witness for

noninclusion. The extra condition does not have an obvious topological interpretation.

As is shown in the present paper, it appears naturally where in the classical proof that

sequentially continuous maps are continuous the Axiom of Choice is used. The question

is therefore whether the witness condition appears in the general continuity theorem

only for this reason, i.e., whether effective operators are effectively sequentially

continuous. For two large classes of spaces covering all important applications it is shown

that this is indeed the case. The general question, however, remains open.

Spaces in this investigation are in general not required to be Hausdorff. They only need

to satisfy the weaker T0 separation condition.

1. Introduction

Computations are usually required to end in finite time. Because of this only a finite

amout of information about the input can be used during a computation. Moreover,

an output once written on the output tape cannot be changed anymore: given more

information about the input, the machine can only extend what is already written on

the output tape (Monotonicity).

These properties not only hold for functions on the natural numbers, but also for the

computation of operators on such functions. A natural topology can be defined on such

spaces with respect to which computable operators turn out to be (effectively) continuous.

If one restricts one’s interest to functions which are computable and can therefore be

presented by the programs computing them (or their codings), there is another way of

† The research leading to these results has received funding from the People Programme (Marie Curie
Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant
agreement no. PIRSES-GA-2011-294962-COMPUTAL.

http://arxiv.org/abs/1602.04125v2


Dieter Spreen 2

specifying the computability of operators: an operator is effective if it is tracked by a

computable function on the code.

The continuity problem is the question whether effective operators are the restric-

tions (to computable inputs) of (effectively) continuous operators. Obviously, both ap-

proaches are rather unconnected. Nevertheless for certain important cases positive so-

lutions were presented: In the case of operators on the partial computable functions

this is due to Myhill and Shepherdson (1955); in the case of the total computable func-

tions to Kreisel, Lacombe and Shoenfield (1959). In the first case the result has been

generalised to certain types of directed-complete partial orders with the Scott topology

(cf. e.g. (Egli and Constable 1976; Sciore and Tang 1978; Weihrauch and Deil 1980)), in

the other to separable metric spaces (Cĕıtin 1962; Moschovakis 1964). These two types

of spaces are quite different, not only topologically: they also offer different algorithmic

techniques to use. As follows from an example by Friedberg (1958), effective operators

are not continuous, in general.

The situation remained unclear for quite a while. Spreen and Young (1984) showed

that for second-countable topological T0 spaces effective maps are effectively continuous

if they have a witness for noninclusion. The requirement says that if the image of a basic

open set under the operator is not included in a given basic open set in its co-domain,

then one needs be able to effectively produce a witness for this. Later, in (Spreen 1998), a

mathematically more civilized framework for the derivation of this result was developed.

The condition seems natural when dealing with continuity. In the present note we will

give even more evidence for its canonicity. In classical topology it is well known that

for second-countable spaces sequentially continuous maps are continuous. The proof can

be transferred into a constructive framework. There is however one step in which the

classical proof uses the Axiom of Choice and the effective information needed here is

exactly what is provided by the witness for noninclusion condition.

So, the question comes up whether effective operators are effectively sequentially con-

tinuous and the extra condition is only needed for the step from effective sequential

continuity to effective continuity. We will show for a large class of spaces that effective

operators are effectively sequentially continuous. To this end we require the spaces to

come equipped with a set of canonical computable sequences which are such that se-

quences can be stretched by wait-and-see strategies and the operator taking convergent

sequences to their limits is effective. In addition all basic open sets need be completely

enumerable, uniformly in their index. All these conditions seem very natural, but as we

will see, in particular the combination of wait-and-see strategies with the computation

of limits has a strong impact on the topology.

If we deal with spaces as the total computable functions or the computable real num-

bers, then a metric is at hand which allows putting stronger conditions on the convergence

of sequences, e.g., we can prescribe its velocity. These conditions are important in order

to be able to render the limit operator computable, however they are not compatible with

wait-and-see strategies. Other algorithmic techniques like decision procedures are at hand

instead. Also for spaces of this kind it is shown that effective operators are effectively

sequentially continuous. However, we have not been able to present a uniform approach

to the question whether effective operators are effectively sequentially continuous as we
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did in the case of effective continuity. It is even not clear whether this holds in general. A

modification of Friedberg’s example shows that effective operators are not sequentially

continuous in general. But this still leaves open the possibility that they are effectively

sequentially continuous as we are dealing with computable sequences only in this case.

As is well known, limits of point sequences in a T0 space are not uniquely determined. In

the joint paper (Spreen and Young 1984) we had to make a special assumption to handle

this problem. Later, in (Spreen 1998) we based our approach on filter convergence to get

rid of it. In both cases we had to assume that one can effectively pass from a computable

enumeration of the sequence elements and/or a filter base to the points they converge

to. The relationship between both conditions will be studied as well.

The paper is organized as follows: Section 2 contains basic definitions. In Section 3 no-

tions and results from the theory of effective spaces are recalled. A new construction of

an acceptable numbering is given. Important special cases of such spaces are considered

in Section 4. The condition of a numbering having a limit algorithm and the existence

of such numberings is discussed in Section 5. In Section 6 the relationship between effec-

tive continuity notions of different strength is investigated, in particular the connection

between effective continuity and effective sequential continuity. Finally, in Section 7, the

question of when an effective map is effectively sequentially continuous is examined.

2. Basic definitions

In what follows, let 〈 , 〉 : ω2 → ω be a computable pairing function with corresponding

projections π1 and π2 such that πi(〈a1, a2〉) = ai. We extend the pairing function to an n-

tupel encoding in the usual way. Let P (n) (R(n)) denote the set of all n-ary partial (total)

computable functions, and let Wi be the domain of the ith partial computable function

ϕi with respect to some Gödel numbering ϕ. We let ϕi(a)↓ mean that the computation

of ϕi(a) stops, ϕi(a)↓ ∈ C that it stops with value in C, and ϕi(a)↓n that it stops within

n steps. In the opposite cases we write ϕi(a)↑ and ϕi(a)↑n respectively. Moreover, we

write F : X ⇀ Y to mean that F is a partial function from set X into set Y with domain

dom(F ).

A (partial) numbering ν of a set S is a partial map ν : ω ⇀ S (onto). The value of ν

at n ∈ dom(ν) is denoted by νn. If s ∈ S and n ∈ dom(ν) with νn = s, then n is said to

be an index of s. Numberings ν with dom(ν) = ω, are called total. Note that instead of

numbering we also say indexing.

Definition 2.1. Let ν, κ be numberings of set S.

1 ν ≤ κ, read ν is reducible to κ, if there is some function g ∈ P (1) with dom(ν) ⊆

dom(g), g(dom(ν)) ⊆ dom(κ), and νm = κg(m), for all m ∈ dom(ν).

2 ν ≡ κ, read ν is equivalent to κ, if ν ≤ κ and κ ≤ ν.

A subset X of S is completely enumerable, if there is a computably enumerable set

A ⊆ ω such that νi ∈ X if and only if i ∈ A, for all i ∈ dom(ν). X is enumerable, if there

is a computably enumerable set E ⊆ dom(ν) such that X = { νi | i ∈ E }.

Thus, X is enumerable if we can enumerate a subset of the index set of X which

contains at least one index for every element of X , whereas X is completely enumerable
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if we can enumerate all indices of elements of X and perhaps some numbers which are

not used as indices by numbering ν.

Definition 2.2. A map F : S → T between sets S and T with numberings ν and κ,

respectively, is effective, if there is a function f ∈ P (1) such that f(i)↓ ∈ dom(κ) and

F (νi) = κf(i), for all i ∈ dom(ν). Function f is said to track F and any Gödel number

of f is called index of F .

Note that the preimage of a completely enumerable set with respect to an effective

map is completely enumerable again.

A sequence (ya)a∈ω of elements of S is computable if there is some function g ∈ R(1)

with range(g) ⊆ dom ν) so that ya = νg(a), for all a ∈ ω. Every Gödel number of g is

called index of (ya)a. Let ω be enumerated by its identity. Then the computable sequences

in S are the effective maps from ω to S.

Note that the effectivity notions introduced so far depend on numbering ν (and/or

numberings ν and κ in the case of Definition 2.2). In what follows we will fix certain

numberings and consider them as being part of the effective structure we are considering.

Therefore, we refrain from always denoting this dependency, in particular from using

notation that would make it explicit.

3. Effective spaces

Let T = (T, τ) be a countable topological T0 space with a countable basis B. As has been

demonstrated by the author in a series of papers (Spreen 1995, 1996, 1998, 2001a, 2001b,

2010, 2014), topological spaces of this kind are well suited for effectivity considerations.

Assume further that B is a total numbering of B. In the applications we have in mind

the basic open sets can be described in a finite way. B is then obtained by encoding the

finite descriptions. If we want to deal with the points and open sets of space T in an

effective way, the interplay between both should at least be such that we can effectively

list the points of each basic open set, uniformly in its index.

Definition 3.1. Let T = (T, τ) be a countable topological T0 space with countable basis

B, and let x and B be numberings of T and B, respectively, such that B is total. We say

that x is computable if there is some computably enumerable set L ⊆ ω such that for all

i ∈ dom(x) and all n ∈ ω,

〈i, n〉 ∈ L ⇐⇒ xi ∈ Bn.

Thus, x is computable if and only if all basic open sets Bn, are completely enumerable,

uniformly in n.

We consider the numberings B and x as being part of the topological structure.

As said, in the applications we have in mind basic open sets can be described in a

finite way and the indexing B is then obtained by an encoding of the finite descriptions.

Moreover, in these cases there is a canonical relation between the (code numbers of the)

finite descriptions which is stronger than the usual set inclusion between the described

sets. This relation is computable enumerable, which is not true for set inclusion, in

general.
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Definition 3.2. Let ≺B be a transitive binary relation on ω. We say that:

1 ≺B is a strong inclusion, if for all m,n ∈ ω, from m ≺B n it follows that Bm ⊆ Bn.

2 B is a strong basis, if ≺B is a strong inclusion and for all z ∈ T and m,n ∈ ω with

z ∈ Bm ∩Bn there is some a ∈ ω such that z ∈ Ba, a ≺B m and a ≺B n.

In what follows, we always assume that ≺B is a strong inclusion with respect to which

B is a strong basis.

Definition 3.3. Space T is effective, if the property of being a strong basis holds ef-

fectively, which means that there exists a function sb ∈ P (3) such that for i ∈ dom(x)

and m, n ∈ ω with xi ∈ Bm ∩ Bn, sb(i,m, n)↓, xi ∈ Bsb(i,m,n), sb(i,m, n) ≺B m, and

sb(i,m, n) ≺B n.

Lemma 3.1 (Spreen 1998). Let x be computable and ≺B be computably enumerable.

Then T is effective.

As is well known, each point y of a T0 space is uniquely determined by its neighbour-

hood filter N (y) and/or a base of it.

Definition 3.4. Let H be a filter. A nonempty subset F of H is called strong base of H

if the following two conditions hold:

1 For all m, n ∈ ω with Bm, Bn ∈ F there is some index a ∈ ω such that Ba ∈ F ,

a ≺B m, and a ≺B n.

2 For all m ∈ ω with Bm ∈ H there is some index a ∈ ω such that Ba ∈ F and a ≺B m.

If x is computable, a strong base of basic open sets can effectively be enumerated for

each neighbourhood filter. Here, we are interested in enumerations that proceed in a

normed way.

Definition 3.5. An enumeration (Bf(a))a∈ω with f : ω → ω is said to be normed if f is

decreasing with respect to ≺B. If f is computable, it is also called computable and any

Gödel number of f is said to be an index of it.

In case (Bf(a))a is normed and enumerates a strong base of the neighbourhood filter

of some point, we say it converges to that point.

Recall here that because of the T0 requirement every point is uniquely determined by a

base of its neighbourhood filter. So, if a normed enumeration of basic open sets converges

to a point, the point is uniquely determined by the enumeration. This is unlike the case

of point sequences where limits need not be uniquely determined in general.

Lemma 3.2 (Spreen 1998). Let T be effective and x be computable. Then there is a

function q ∈ R(1) such that for each i ∈ dom(x), q(i) is an index of a normed computable

enumeration of basic open sets converging to xi.

We not only want be able to generate normed recursive enumerations of basic open

sets converging to a given point, but conversely, we need also be able to pass effectively

from such enumerations to the point they converge to.

Definition 3.6. Let x be a numbering of T . We say that:
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1 x allows effective limit passing if there is a function pt ∈ P (1) such that, if m is an

index of a normed computable enumeration of basic open sets converging to a point

y ∈ T , then pt(m)↓ ∈ dom(x) and xpt(m) = y.

2 x is acceptable if it allows effective limit passing and is computable.

Lemma 3.3 (Spreen 1998). Let x′, x′′ be numberings of T . Then the following three

statements hold:

1 If x′ is computable and x′′ ≤ x′, then x′′ is computable as well.

2 If x′ allows effective limit passing and x′ ≤ x′′, then also x′′ allows effective limit

passing.

3 If x′ is computable, T effective with respect to x′, and x′′ allows effective limit passing,

then x′ ≤ x′′.

The next result is now a consequence of Lemma 3.1.

Corollary 3.1. Let ≺B be computably enumerable and x acceptable. Then, for any

other numbering x′ of T , x′ is acceptable exactly if x and x′ are equivalent.

We will now give an example of an acceptable numbering that shall be used again

later.

Proposition 3.1. Let T be such that ≺B is computably enumerable and the neighbour-

hood filter of each point in T has an enumerable strong base of basic open sets. Then, T

has an acceptable numbering.

Proof. If {Bn | n ∈ We } is a strong base of the neighbourhood filter of some point y ∈

T , set x̄e = y. Otherwise, let x̄ be undefined. Because of the assumption, x̄ is a numbering

of T . Let L = { 〈e, n〉 | n ∈ We }. Then L is computably enumerable. Moreover, we have

for i ∈ dom(x̄) that

x̄i ∈ Bn ⇐⇒ (∃m ∈ Wi)m ≺B n ⇐⇒ (∃m)〈i,m〉 ∈ L ∧m ≺B n,

which shows that x̄ is computable.

Next, let m be an index of a normed computable enumeration of basic open sets

converging to some point y ∈ T . Then {Bn | n ∈ range(ϕm) } is a strong base of N (y).

Hence, y = x̄t(m), where t ∈ R(1) is such that Wt(a) = range(ϕa), showing that x̄ also

allows effective limit passing.

For basic open sets Bn, let

hl(Bn) =
⋂

{Ba | n ≺B a }.

Sometimes, when we need to choose certain elements in Bn, we may not be able to find

them in Bn, but then we want to find them as close to Bn as possible.

Let X be an subset of T . A typical situation in many proofs is that we need to show

for some basic open set Be that Be ⊆ X . We would try a proof by contradiction and

assume that Be 6⊆ X . Then we would choose, uniformly in e and perhaps some index of

X , an element z ∈ Be\X and derive a contradiction. In a non-effective setting the Axiom

of Choice permits proceeding in this way. In an effective context, however, we have to
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effectively find such a witness z. The situation particularly occurs in continuity proofs.

In this case X is the preimage of a basic open set B′
n under a map F : T → T ′, where

T ′ = (T ′, τ ′) is a further countable T0 space with countable basis B′, a total numbering

B′ of B′, and an indexing x′ of T ′.

Definition 3.7 (Spreen and Young 1984). F has a witness for noninclusion, if there

is a pair (s, r) ∈ P (2) × P (3), the noninclusion witness, such that for i ∈ dom(x) and

e, n ∈ ω the following hold:

1 If F (xi) ∈ B′
n, then s(i, n)↓ so that F (xi) ∈ B′

s(i,n) ⊆ B′
n.

2 If, in addition, F (Be) 6⊆ B′
n, then also r(i, e, n)↓ ∈ dom(x) with xr(i,e,n) ∈ hl(Be) \

F−1(B′
s(i,n)).

To understand this definition, suppose that F (xi) ∈ B′
n, but the neighbourhood Be

of xi does not map into the neighbourhood B′
n of F (xi). Then we can effectively find a

(possibly) smaller neighbourhood B′
a with F (xi) ∈ B′

a ⊆ B′
n and a point xr(i,e,n) which,

under F , maps, not necessarily outside B′
n, but at least outside B′

a. Obviously, a may

depend on i and n.

4. Special cases

In this section we introduce some important standard examples of effective T0 spaces:

constructive domains and constructive metric spaces. Domains play a major role in the-

oretical computer science, particularly in programming language semantics (Gunter 1992;

Amadio and Curien 1998; Gierz et al. 2003) and exact real number computation (Edalat 1997).

Metric spaces, on the other hand, are well known from applied mathematics. Topolog-

ically, as well as computationally, both spaces are quite different: In general domains

satisfy only T0 separation, whereas metric spaces are Hausdorff.

As is well known, T0 spaces come equipped with a canonical order ≤τ , called special-

ization order : For y, z ∈ T ,

y ≤τ z ⇐⇒ (∀n ∈ ω)[y ∈ Bn ⇒ z ∈ Bn].

Every open set is upwards closed under the specialization order and continuous maps are

monotone with respect to it.

As has already been pointed out, limits of point sequences in T0 spaces need not be

uniquely determined. In case the sequence is monotonically increasing with respect to

the specialization order, every sequence element is a limit.

4.1. Constructive domains

Let Q = (Q,⊑) be a partial order with least element. A nonempty subset S of Q is

directed, if for all y1, y2 ∈ S there is some u ∈ S with y1, y2 ⊑ u. The way-below relation

≪ on Q is defined as follows: y1 ≪ y2 if for every directed subset S of Q the least upper

bound of which exists in Q, the relation y2 ⊑
⊔

S implies the existence of an element

u ∈ S with y1 ⊑ u. Note that ≪ is transitive.
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A subset Z of Q is a basis of Q, if for any y ∈ Q the set Zy = { z ∈ Z | z ≪ y } is

directed and y =
⊔

Zy. A partial order that has a basis is called continuous.

Now, assume that Q is countable and let x be an indexing ofQ. ThenQ is constructively

d-complete, if each of its enumerable directed subsets has a least upper bound in Q. Let

Q be constructively d-complete and continuous with basis Z. Moreover, let β be a total

numbering of Z. Then (Q,⊑, Z, β, x) is said to be a constructive domain, if the restriction

of the way-below relation to Z as well as all sets Zy, for y ∈ Q, are completely enumerable

with respect to the indexing β, and β ≤ x.

A numbering x of Q is said to be admissible, if the set { 〈i, j〉 | βi ≪ xj } is com-

putably enumerable and there is a function d ∈ R(1) such that for all indices i ∈ ω

for which β(Wi) is directed, xd(i) is the least upper bound of β(Wi). As shown in

(Weihrauch and Deil 1980), such numberings always exist. They can even be chosen as

total.

Partial orders come with several natural topologies. In the applications we have in

mind, one is mainly interested in the Scott topology σ: a subset X of Q is open in σ,

if it is upwards closed with respect to the partial order and intersects each enumerable

directed subset of Q of which it contains the least upper bound.

The Scott topology satisfies T0 separation, but in general not T1. The partial or-

der on Q coincides with the specialization order defined by the topology in this case

(Gierz et al. 2003). Moreover, least upper bounds of monotonically increasing sequences

are limits; in particular they are maximal limits.

In the case of a constructive domain the Scott topology is generated by the sets Bn =

{ y ∈ Q | βn ≪ y } with n ∈ ω. It follows that Q = (Q, σ) is a countable T0-space with

countable basis. Obviously, every admissible numbering is computable.

Define

m ≺B n ⇔ βn ≪ βm.

Then ≺B is a strong inclusion with respect to which the collection of all Bn is a strong

basis. Because the restriction of ≪ to Z is completely enumerable, ≺B is computably

enumerable. It follows that Q is effective. Moreover, each admissible indexing allows

effective limit passing, i.e., it is acceptable. Conversely, every acceptable numbering of Q

is admissible.

Note that the set P (1) of partial computable functions, ordered by f ⊑ g, if g extends

f , is a constructive domain. The finite functions form a basis and each Gödel numbering

is admissible.

As a further example consider the set I[0, 1]c of all closed subintervals of [0, 1] with

computable real numbers as endpoints. Ordered by converse set inclusion I[0, 1]c is a

constructive domain with the closed intervals having rational endpoints as basis. The

computable real numbers z in [0, 1] correspond to the one-point intervals [z, z].

Domains are usually introduced as an ordered structure. The basic notions are order-

theoretic, topology is introduced only at a later step. In order to provide a (more) topo-

logical approach to domain theory, Eršov (1972, 1973, 1975, 1977) introduced A- and

f -spaces. They are not required to be complete. Constructive A- and f -spaces as intro-

duced in (Spreen 1998) are further examples of effective T0 spaces.
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An essential property of constructive domains, just as of Eršov’s A- and f -spaces, is

that their canonical topology has a basis with every basic open set Bn being an upper

set generated by a point which is not necessarily included in Bn, but in hl(Bn).

Definition 4.1. A countable T0 space T with countable basis B and numberings x and

B of T and B, respectively, is effectively pointed, if there is a function pd ∈ P (1) such

that for all n ∈ ω with Bn 6= ∅, pd(n)↓ ∈ dom(x), xpd(n) ∈ hl(Bn) and xpd(n) ≤τ z, for

all z ∈ Bn.

Note that { xa | a ∈ range(pd) } is dense in T . For a constructive domain (Q,⊑, Z, β, x),

let pd ∈ R(1) with β = x ◦ pd. It follows that Q is effectively pointed.

4.2. Constructive metric spaces

Whereas domains as well as A- and f -spaces typically do not satisfy T2 separation, in

this section we will consider the standard example of an effective Hausdorff space.

Let M = (M, δ) be a countable separable metric space and β be a total numbering of

its dense subset M0. As is well-known, the collection of sets B〈i,m〉 = { y ∈ M | δ(βi, y) <

2−m } (i, m ∈ ω) is a basis of the canonical Hausdorff topology ∆ on M .

Define

〈i,m〉 ≺B 〈j, n〉 ⇔ δ(βi, βj) + 2−m < 2−n.

Using the triangle inequality it is readily verified that ≺B is a strong inclusion and the

collection of all Ba is a strong basis.

Definition 4.2. M is said to be constructive, if the sets

{ 〈i, j, a, n〉 | δ(βi, βj) < a · 2−n } and { 〈i, j, a, n〉 | δ(βi, βj) > a · 2−n }

are computably enumerable, and the neighbourhood filter of each point has an enumer-

able strong base of basic open sets.

Obviously, ≺B is computably enumerable in this case.

Well-known examples of constructive metric spaces include Rn
c , that is the space of

all n-tuples of computable real numbers with the Euclidean or the maximum norm;

Baire space, that is the set R(1) of all total computable functions with the Baire metric

(Rogers 1967); and the set ω with the discrete metric. By using an effective version of

Weierstraß’s approximation theorem (Pour-El and Richards 1989) and Sturm’s theorem

(Sturm 1835) it can be shown that Cc[0, 1], the space of all computable functions from

[0, 1] to R with the supremum norm (Pour-El and Richards 1989), is a constructive metric

space too. A proof of this result and further examples can be found in (Blanck 1997).

5. Limit algorithms

In this note we assume each space to come with a rich collection Seq of canonical

computable sequences with the following properties:
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1 All computable sequences that are monotonically increasing with respect to the spe-

cialization order are in Seq.

2 There is a function p ∈ R(1) such that for each index m of a normed computable

enumeration of basic open sets converging, say, to y ∈ T , p(m) is an index of a

computable sequence of points in Seq satisfying the subsequent two conditions:

(a) xϕp(m)(a) ∈ hl(Bϕm(a)).

(b) In case T does not satisfy T1 separation, there exist at most finitely many a ∈ ω

with xϕp(m)(a) ∈ Bn, for every basic open set Bn 6∈ N (y).

3 If (ya)a is in Seq, then, for every ā ∈ ω, (y′a)a is in Seq as well, where y′a = ya, for

a < ā, and y′a = yā, otherwise.

In the case of effectively pointed spaces, Seq consists of all computable monotonically

increasing sequences. Let pd ∈ P (1) be as in Definition 4.1. Then, if m is an index of a

converging normed computable enumeration of basic open sets, we have for all a ∈ ω that

xpd(ϕm(a)) ∈ hl(Bϕm(a)). In order to see that also the second condition holds, note that

by definition each open set is upwards closed under the specialization order. Therefore,

if for some a ∈ ω, xpd(ϕm(a)) ∈ Bn, then for all a′ > a, also xpd(ϕm(a′)) ∈ Bn. Thus,

p ∈ R(1) with ϕp(m)(a) = pd(ϕm(a)) has the desired property.

In the metric case we let Seq be the set of all computable regular Cauchy sequences,

where a Cauchy sequence (ya)a is regular (or, fast), if δ(ym, yn) < 2−m, for all n ≥

m. Instead, one could also take the set of all computable Cauchy sequences with a

computable Cauchy criterion (cf. (Moschovakis 1965)). If x is such that for some g ∈ R(1),

β = x ◦ g, and m is an index of a normed computable enumeration of basic open sets,

choose p ∈ R(1) with ϕp(m)(a) = g(π1(ϕm(a))), for a,m ∈ ω.

In Section 3 as well as in other papers we based our approach to the computation of

limits on filter convergence. In the earlier paper (Spreen and Young 1984), however, we

used point sequence convergence. One of the main reasons for moving to filters was that

in T0 spaces the limit of a point sequence is not uniquely determined, in general: if y is a

limit point, every z with z ≤τ y is a limit point as well. We denote the set of limit points

of a sequence (ya)a by Lima ya.

Because every normed enumeration (Bϕm(a))a of basic open sets converging to a point

y ∈ T is a base of N (y), it follows with Property (2a) that y ∈ Lima xϕp(m)(a). With (2b)

we moreover obtain that y = max≤τ
Lima xϕp(m)(a).

To see this, assume there is some z ∈ Lima xϕp(m)(a) with z 6≤τ y. Then there exists

Bn ∈ N (z) \ N (y). It follows for some ā ∈ ω that xϕp(m)(a) ∈ Bn, for all a ≥ ā, which is

impossible by Property (2b).

Definition 5.1. A numbering x of T has a limit algorithm, if there is a function li ∈ P (1)

such that the following four conditions hold, for all indicesm,m′ of convergent† sequences

in Seq:

1 li(m)↓ ∈ dom(x).

2 xli(m) ∈ Lima xϕm(a)

† The convergence of point sequences in Seq is to be understood in the usual topological way.
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3 If, for some ā ∈ ω, xϕm(a) = xϕm(ā), for all a ≥ ā, then xli(m) = xϕm(ā).

4 If Lima xϕm(a) = Lima xϕm′ (a), then xli(m) = xli(m′).

The property of being able to compute limits may seem unusually strong, in particular

in the light of Specker’s result that being able to compute limits of arbitrary computable

(not necessarily fast) converging sequences is equivalent to deciding the halting prob-

lem (Specker 1949). But note that here this property is only required to hold for canoni-

cal sequences in Seq. Note further that we are not interested in computing just one limit

of a given computable canonical sequence. Instead we want to compute a distinguished

limit which in the case of monotonically increasing sequences is the maximal limit, if it

exists. This will become clear in the sequel.

A typical technique in enumeration is to wait and see, i.e., to repeat what has already

been enumerated till new information becomes available. This motivates the following

condition.

Definition 5.2. A sequence (ya)a in Seq is said to allow delaying, if for all ā,m ∈ ω the

sequence (y′a)a with y′a = ya, for a < ā, y′a = yā, for ā ≤ a ≤ ā +m, and y′a = ya−m+1,

otherwise, is in Seq as well.

We start with a general result.

Proposition 5.1. Let x have a limit algorithm. Moreover, let X be a completely enu-

merable subset of T and (ya)a a convergent sequence in Seq that allows delaying. Then

for every index m of (ya)a and each number ā ∈ ω, if yā ∈ X , also xli(m) ∈ X .

Proof. Let We witness the complete enumerability of X and set g(b̄) = µc > ā :

li(b̄)↓c ∧ ϕe(li(b̄))↓c. By the recursion theorem there is then some b ∈ ω with

ϕb(a) =















ϕm(a) if a ≤ ā,

ϕm(ā) if a > ā, and li(b)↑a or ϕe(li(b))↑a,

ϕm(ā+ a− g(b) + 1) if a > ā, li(b)↓a, and ϕe(li(b))↓a.

Suppose that g(b)↑. Because of Property 3 of Seq, the sequence (xϕb(a))a is in Seq

in this case. Moreover, it converges to yā. With Condition 5.1(3) we therefore obtain

that li(b)↓ and xli(b) = yā. By our assumption, yā ∈ X , i.e., ϕm(ā) ∈ We. It follows that

li(b) ∈ We as well, which means that g(b)↓, a contradiction.

So we have that both, li(b)↓ and ϕe(li(b))↓. Since (ya)a allows delaying, it follows that

the just defined sequence with index b is in Seq, also in this case. Moreover, Lima xϕb(a) =

Lima ya and hence, by Condition 5.1(4), xli(m) = xli(b). As a further consequence, li(b) ∈

We, which means that xli(b) ∈ X . This shows that xli(m) ∈ X .

Let u, z ∈ T with u ≤τ z. Then the sequence with ya = u, for a ≤ ā and ya = z,

otherwise, for some ā ∈ ω, is in Seq, by Condition 1 for Seq, and obviously allows

delaying. Thus, if u ∈ X , then z ∈ X as well.

Corollary 5.1. Let x have a limit algorithm. Then each completely enumerable subset

of T is upwards closed under the specialization order.
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Next, suppose that T ′ = (T ′, τ ′) is a further countable T0 space with countable basis B′

and numberings x′ and B′ of T ′ and B′, respectively, such thatB′ is total. Moreover, recall

that the preimage of a completely enumerable set under an effective map is completely

enumerable again.

Corollary 5.2. Let x have a limit algorithm and x′ be computable. Then every effective

map F : T → T ′ is monotone with respect to the specialization order.

In case that T is effectively pointed, this result implies that every effective map

F : T → T ′ has a witness for noninclusion. In what follows we need that noninclusion

witnesses respect the canonicity of the sequences in Seq. Let to this end p ∈ R(1) be as

in Condition 2 for Seq.

Definition 5.3. A noninclusion witness (s, r) ∈ P (2) × P (3) for a map F : T → T ′ is

called appropriate if for each index m of a computable normed enumeration of basic

open sets converging to xi, every n ∈ ω so that F (xi) ∈ B′
n, and each e ∈ ω such that

F (Bϕm(e)) 6⊆ B′
n, the sequence (ya)a with ya = xϕp(m)(a), for a < e, and ya = xr(i,ϕm(e),n),

otherwise, is in Seq.

A requirement of this kind was already used when the condition of having a witness

for noninclusion was introduced in (Spreen and Young 1984), but dropped later.

Corollary 5.3. Let T be effectively pointed, x have a limit algorithm and x′ be com-

putable. Then every effective map F : T → T ′ has an appropriate witness for noninclu-

sion.

Proof. Set s(i,m) = m and r(i, e, n) = pd(e). Then xr(i,e,n) ∈ hl(Be). Suppose that

F (xr(i,e,n)) ∈ B′
n, i.e., F (xpd(e)) ∈ B′

n. By the preceding corollary it follows that F (Be) ⊆

B′
n. Because of Properties (2) and (3) of Seq the witness is also appropriate.

Corollary 5.4. Let x be computable and have a limit algorithm. Then, for every index

m of a convergent sequence in Seq that allows delaying, the following two statements

hold:

1 xϕm(a) ≤τ xli(m), for all a ∈ ω.

2 y ≤τ xli(m), for all y ∈ Lima xϕm(a).

Proof. (1) Let a, n ∈ ω with xϕm(a) ∈ Bn. Then it follows with the preceding proposi-

tion that xli(m) ∈ Bn as well. Thus, xϕm(a) ≤τ xli(m).

(2) Let y ∈ Lima xϕm(a) and n ∈ ω with y ∈ Bn. Then there is some ā ∈ ω so that

xϕm(a) ∈ Bn, for all a ≥ ā. By Statement 1 and the definition of the specialization order

it follows that also xli(m) ∈ Bn, which shows that y ≤τ xli(m).

In case that the function li ∈ P (1) in Definition 5.1 also satisfies the condition in

Statement 5.4(2), we say that the limit algorithm computes maximal limits.

It is well known that if space T satifies T1 separation its specialization order coincides

with the identity relation on T . Under the assumptions of the above corollary we therefore

obtain that convergent sequences in Seq that allow delaying must be constant. In other
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words, except in the case of T0 spaces that violate the T1 condition, only trivial sequences

in Seq satisfy the assumption.

As we will see next, the property in Corollary 5.4(1) is characteristic for limit algo-

rithms.

Lemma 5.1. Let li ∈ P (1) such that for all indices m of convergent sequences in Seq,

li(m)↓ ∈ dom(x) with xli(m) ∈ Lima xϕm(a) and xϕm(a) ≤τ xli(m), for all a ∈ ω. Then x

has a limit algorithm.

Proof. As in the preceding proof we obtain that y ≤τ xli(m), for all y ∈ Lima xϕm(a).

Hence, xli(m) = max≤τ
Lima xϕm(a). If m

′ is an index of a further converging sequence

in Seq so that Lima xϕm′(a) = Lima xϕm(a), we therefore have that

xli(m′) = max≤τ
Lima xϕm′ (a) = max≤τ

Lima xϕm(a) = xli(m).

If there is some ā ∈ ω such that ϕm(a) = ϕm(ā), for all a ≥ ā, then xϕm(ā) ∈

Lima xϕm(a). Thus, xϕm(ā) ≤τ xli(m). To see that also the converse inequality holds, let

n ∈ ω with xli(m) ∈ Bn. Since xli(m) is a limit point of (xϕm(a))a, there is some â ∈ ω

with xϕm(a) ∈ Bn, for all a ≥ â. In particular, we have that xϕm(ā) ∈ Bn, which shows

that xli(m) ≤τ xϕm(ā).

Proposition 5.2. Let x be computable and all sequences in Seq allow delaying. Then

x has a limit algorithm if, and only if, there is some function li ∈ P (1) so that for all

indices m of convergent sequences in Seq, li(m)↓ ∈ dom(x) with xli(m) ∈ Lima xϕm(a)

and xϕm(a) ≤τ xli(m), for all a ∈ ω.

This gives us a hint of how to construct a numbering of T that has a limit algorithm

in the case of T0 spaces that do not satisfy T1 separation. We say that Seq has maximal

limits if Lima ya has a greatest element, for each converging sequence (ya)a in Seq.

As in the case of effectively pointed spaces, we now let Seq contain only sequences that

monotonically increase with respect to the specialization order. Such sequences always

allow delaying. As follows from the definition of the specialization order, every sequence

element is a limit in this case and the greatest limit point, if it exists, is the least upper

bound.

In addition, we assume that ≺B is computably enumerable and the neighbourhood

filter of each point has an enumerable strong base of basic open sets. As we have seen

in Section 4, the just mentioned spaces always satisfy these assumptions. Let x̄ be the

numbering constructed in Proposition 3.1 and li ∈ R(1) with

Wli(m) = {n ∈ ω | (∃a ∈ ω)n ∈ Wϕm(a) }.

Suppose that m is an index of a monotonically increasing sequence with a largest limit

element y. Then all Bn with n ∈ Wli(m) contain y. On the other hand, if Bn contains y

then there is some a ∈ ω with xϕm(a) ∈ Bn, as y is a limit point. Thus, n ∈ Wli(m). It

follows that {Bn | n ∈ Wli(m) } is the set of all basic open sets containing y and hence a

strong base of N (y). So, y = x̄li(m), which shows that x̄ has a limit algorithm.
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Proposition 5.3. Let Seq contain only monotonically increasing sequences and have

maximal limits. Moreover, let x be acceptable, ≺B be computably enumerable, and the

neighbourhood filter of each point in T have an enumerable strong base of basic open

sets. Then x has a limit algorithm.

Proof. By assumption x is computable and ≺B computably enumerable. Moreover, as

we have seen, the numbering x̄ constructed in Proposition 3.1 is acceptable and has a limit

algorithm. Hence, T is effective with respect to x as well as x̄, because of Lemma 3.1. With

Corollary 3.1 we therefore obtain that x and x̄ are equivalent. Obviously, the property

of having a limit algorithm is inherited under equivalence.

Proposition 5.4. Let M be a constructive metric space. Then every acceptable num-

bering of M has a limit algorithm.

Proof. Again it suffices to show that the numbering x̄ constructed in Proposition 3.1

has a limit algorithm. Let (ya)a be a computable regular Cauchy sequence that converges

to some point y ∈ M . Because of regularity we have that δ(ya, y) ≤ 2−a, for all a ∈ ω.

Let a > 0. Since M0 is dense in M , there is some βi ∈ M0 such that δ(βi, ya) < 2−a.

By the triangular inequation it then follows that { u ∈ M | δ(ya, u) ≤ 2−a } ⊆ B〈i,a−1〉.

We need to enumerate a strong base of N (y). To this end we will enumerate all pairs

〈i, a − 1〉 with a > 0 and ya ∈ B〈i,a〉. Let m be an index of (ya)a. By definition of x̄,

{Bd | d ∈ Wϕm(a) } is a strong basis of N (x̄ϕm(a)). Therefore,

x̄ϕm(a) ∈ B〈i,a〉 ⇐⇒ (∃d ∈ Wϕm(a)) d ≺B 〈i, a〉. (1)

Hence, if we let li ∈ R(1) such that

Wli(m) = { 〈i, a− 1〉 | a > 0 ∧ (∃d ∈ Wϕm(a)) d ≺B 〈i, a〉 },

then all basic open set B〈i,a−1〉 with 〈i, a − 1〉 ∈ Wli(m) contain the limit point y. It

remains to show that they form a strong filter base.

Let 〈i, a− 1〉, 〈j, c − 1〉 ∈ Wli(m). Then y ∈ B〈i,a−1〉 ∩ B〈j,c−1〉. Since the set of all Bd

forms a strong basis of the metric topology, there exist b, n ∈ ω such that y ∈ B〈b,n〉 and

〈b, n〉 ≺B 〈i, a − 1〉 as well as 〈b, n〉 ≺B 〈j, c − 1〉. Let n̄ ∈ ω with 2−n̄ < 2−n − δ(βb, y).

Moreover, choose n̂ > n̄ + 2 so that δ(yn̂, y) ≤ 2−n̂ and e ∈ ω with δ(βe, yn̂) < 2−n̂ as

well. It then follows that

δ(βe, βb) + 2−n̂+1 ≤ δ(βe, y) + δ(y, βb) + 2−n̂+1

< 2 · 2−n̂+1 + δ(y, βb) < 2−n̄ + δ(y, βb) < 2−n,

which means that 〈e, n̂− 1〉 ≺B 〈b, n〉. Thus we have that 〈e, n̂− 1〉 ≺B 〈i, a− 1〉 as well

as 〈e, n̂− 1〉 ≺B 〈j, c − 1〉. Moreover, as x̄ϕm(n̂) ∈ B〈e,n̂〉 ⊆ B〈e,n̂−1〉, we obtain with (1)

that 〈e, n̂− 1〉 ∈ Wli(m).

So far we have seen for two important and large classes of effective spaces that accept-

able numberings in addition have a limit algorithm. We will now, conversely, study when

numberings that have a limit algorithm also allow effective limit passing.
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Proposition 5.5. Let either T satisfy T1 separation or every sequence in Seq allow

delaying. Moreover, let x be computable as well as have a limit algorithm. Then x also

allows effective limit passing.

Proof. Let li ∈ P (1) witness that x has a limit algorithm, and p ∈ R(1) be as in

Property 2 of Seq. If m is an index of a normed computable enumeration of basic open

sets converging to y ∈ T , then y = max≤τ
Lima xϕp(m)(a), as we have already seen. Thus,

xli(p(m)) ≤τ y.

If T satisfies T1 separation, the specialization order coincides with the identity on

T . Hence, y = xli(p(m)) in this case. In the other case, every sequence in Seq allows

delaying. As a consequence of Corollary 5.4(2) we therefore again have that y = xli(p(m)).

So, pt = li ◦p witnesses that x allows effective limit passing.

6. Continuity

By definition, a sequence (ya)a converges to a point y, if for any n ∈ ω with y ∈ Bn

there is some Ny
n ∈ ω with ya ∈ Bn, for all a ≥ Ny

n . If y
′ ≤τ y, then (ya)a converges

to y′ as well and we can take Ny′

n = Ny
n . Hence, if (ya)a has a maximal limit point z,

we can choose Ny
n = Nz

n, for all y ∈ Lima ya. We call any function that maps n with

Bn∩Lima ya 6= ∅ to some Nn with yc ∈ Bn, for all c ≥ Nn, a uniform convergence module

of (ya)a.

Definition 6.1. A sequence (ya)a of elements of T converges computably, if Lima ya 6= ∅

and (ya)a has a computable uniform convergence module, i.e., there is some function

k ∈ P (1) such that for all n ∈ ω with Bn∩Lima ya 6= ∅ it follows that k(n)↓ and yc ∈ Bn,

for all c ≥ k(n).

Let m be an index of a computable normed enumeration of basic open sets converging

to y ∈ Bn. Then, for all a > 0, xϕp(m)(a) ∈ Bϕm(a−1), where p ∈ R(1) is as in Property 2

of Seq. Assume that ≺B is computably enumerable and set

A = { 〈a′,m′, n′〉 | a′ > 0 ∧ ϕm′(a′ − 1) ≺B n′ }.

As {Ba | a ∈ range(ϕm) } is a strong basis of N (y), A is not empty. With respect to some

fixed enumeration, let 〈ā,m, n̄〉 be the first element enumerated in A with m = m and

n̄ = n. Set ϕk(m)(n) = ā. Then ϕk(m) witnesses that (xϕp(m)(a))a converges computably

to y, uniformly in m.

Lemma 6.1. Let ≺B be computably enumerable, p ∈ R(1) as in Property 2 of Seq, and

m an index of a converging normed computable enumeration of basic open sets. Then

the associated sequence (xϕp(m)(a))a of points converges computably, uniformly in m.

We say that T has a uniformly computable convergence module, if there is a function

cm ∈ R(1) such that for all indices m of computably converging sequences in Seq, ϕcm(m)

is a corresponding uniform convergence module.

Classically, a map F : T → T ′ is sequentially continuous, if for all sequences (ya)a in

T , F (Lima ya) ⊆ Lima F (ya). It follows that F (max≤τ
Lima ya) ≤τ ′ max≤τ′

Lima F (ya),
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if both maxima exist. If F is monotone with respect to the specialization order and

max≤τ
Lima ya is an upper bound of all sequence elements ya, also the converse inequality

holds.

In the effective version of sequential continuity we distinguish whether when computing

an approximation of F (y), for some y ∈ Lima ya, the existence of a computable uniform

convergence module for (ya)a is used or not.

Definition 6.2. A map F : T → T ′ is

1 strongly effectively sequentially continuous, if for every converging sequence (ya)a in

Seq, the sequence (F (ya))a converges computably with Lima F (ya) ⊇ F (Lima ya),

uniformly in any index m of (ya)a, i.e., there is some function k′ ∈ R(1) so that

λn. ϕk′(m)(n) witnesses the computable convergence of (F (ya))a.

2 effectively sequentially continuous, if for every computably converging sequence (ya)a
in Seq with computable uniform convergence module k ∈ P (1), the sequence (F (ya))a
converges computably with Lima F (ya) ⊇ F (Lima ya), uniformly in any index m of

(ya)a and any Gödel number of k.

Obviously, every strongly effectively sequentially continuous map is effectively sequen-

tially continuous. As for computably indexed effectively pointed spaces as well as for

constructive metric spaces converging sequences in Seq always converge computably

with a uniformly computable convergence module, both notions coincide in these cases.

For topological spaces with countable topological basis it is well known that sequen-

tially continuous maps are continuous, and vice versa. In this section we will study this

relationship in the effective context described so far.

Definition 6.3. A map F : T → T ′ is said to be

1 effectively pointwise continuous, if there is a function h ∈ P (2) such that for all

i ∈ dom(x) and n ∈ ω with F (xi) ∈ B′
n, h(i, n)↓, xi ∈ Bh(i,n), and F (Bh(i,n)) ⊆ B′

n;

2 effectively continuous, if there is a function g ∈ R(1) such that for all n ∈ ω,

F−1(B′
n) =

⋃

{Ba | a ∈ Wg(n) }.

The interrelationship between effective and effective pointwise continuity was investi-

gated in (Spreen 1998, 2000).

Proposition 6.1. Let x be computable. Then every effectively continuous mapping

F : T → T ′ is effectively pointwise continuous.

For the converse implication stronger requirements are needed. Among others, strong

inclusion must be computably enumerable‡ and T recursively separable, which means

that T has to contain an enumerable dense subset.

Proposition 6.2. Let T be effective and recursively separable such that ≺B is com-

putably enumerable. Moreover, let x be acceptable and x′ computable. Then every effec-

tive and effectively pointwise continuous map F : T → T ′ is also effectively continuous.

‡ This condition was not mentioned when stating the result in (Spreen 1998, 2000), but used in the
proof.
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Proposition 6.3. Let T ′ be effective such that ≺B′ is computably enumerable. More-

over, let x be computable and x′ allow effective limit passing. Then every effectively

continuous map F : T → T ′ is effective.

Corollary 6.1. Let T and T ′ be effective with ≺B and ≺B′ being computably enu-

merable. Moreover, let x and x′ be acceptable, and T recursively enumerable. Then, for

every map F : T → T ′, F is effectively continuous if, and only if, it is effectively pointwise

continuous and effective.

Let us first see how the continuity of sequentially continuous maps is usually shown, in a

non-effective context. Assume to this end that T = (T, τ) and T ′ = (T ′, τ ′), respectively,

are T0 spaces with countable bases B and B′, let F : T → T ′ be a sequentially continuous

map, and y a point in T .

— First, one uses the countability of B to construct a sequence of basic open sets U0 ⊇

U1 ⊇ · · · that forms a basis of the neighbourhood filter of y.

— Next, one assumes that F is not continuous. Hence, there is some basic open set V

containing F (y) such that F (Ua) 6⊆ V , for all a ∈ ω.

— Using the Axiom of Choice, one then selects some point ya ∈ Ua, for each a ∈ ω, such

that F (ya) 6∈ V .

— It follows that (ya)a converges to y, but (F (ya))a does not converge to F (y), a con-

tradiction.

Now assume that B and B′ are total numberings of B and B′, respectively, and that T

and T ′ are both countable with numberings x and x′, respectively. Moreover, suppose that

T is effective and x is computable. Then, by Lemma 3.2, there is some function q ∈ R(1)

such that, for each i ∈ dom(x), q(i) is an index of a normed computable enumeration of

basic open set converging to xi. In particular, we have that Bϕq(i)(0) ⊇ Bϕq(i)(1) ⊇ · · · .

In the second step, assuming that

Bϕq(i)(a) 6⊆ F−1(B′
n)

we need to be able to effectively find a witness ya for this, uniformly in n, a and i. It is

here where we need F to have a(n appropriate) witness for noninclusion. As we have seen

in Corollary 5.3, effective maps F : T → T ′ have an appropriate witness for noninclusion,

if T is effectively pointed. In (Spreen and Young 1984, Theorem 4.1) an analogous result

was shown for the case that T is recursively separable and T ′ a constructive metric

space. In addition, x must be computable and have a limit algorithm, and x′ must be co-

computable, which means that for every n ∈ ω, ext(B′
n), the exterior of B

′
n, is completely

enumerable, uniformly in n. However, as follows from an example in (Friedberg 1958),

this is not the case, in general.

Theorem 6.1. Let T be effective and x computable. Then every strongly effectively

sequentially continuous map F : T → T ′ that has an appropriate witness for noninclusion

is effectively pointwise continuous.

Proof. Let k′ ∈ R(1) witness the effective sequential continuity of F and s ∈ P (2) as

well as r ∈ P (3) its having an appropriate witness for noninclusion. Moreover, let q ∈ R(1)
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be as in Lemma 3.2 and p ∈ R(1) as in Property 2 of Seq. By the recursion theorem

there is a function g ∈ R(2) with

ϕg(i,n)(a) =















ϕp(q(i))(a) if ϕk′(g(i,n))(s(i, n))↑a, or ϕk′(g(i,n))(s(i, n))↓a

and a < ϕk′(g(i,n))(s(i, n)),

r(i, ϕq(i)(ϕk′(g(i,n))(s(i, n))), n) otherwise.

Set h(i, n) = ϕk′(g(i,n))(s(i, n)) and assume that h(i, n)↑, for some i ∈ dom(x) and n ∈ ω

with F (xi) ∈ B′
n. Then s(i, n)↓ and F (xi) ∈ B′

s(i,n) ⊆ B′
n. Moreover, xϕg(i,n)(a) =

xϕp(q(i))(a), for all a ∈ ω. Thus, (xϕg(i,n)(a))a is a sequence in Seq converging to xi. It

follows that ϕk′(g(i,n))(s(i, n)) is defined, a contradiction. Therefore, h(i, n) is defined, for

all i ∈ dom(x) and n ∈ ω with F (xi) ∈ B′
n.

Next, assume that Bϕq(i)(h(i,n)) 6⊆ F−1(B′
n), for some i ∈ dom(x) and n ∈ ω with

F (xi) ∈ B′
n. Then r(i, ϕq(i)(h(i, n)), n)↓ ∈ dom(x) with

xr(i,ϕq(i)(h(i,n)),n) ∈ hl(Bϕq(i)(h(i,n))) \ F
−1(B′

s(i,n)).

As the noninclusion witness is appropriate, (xϕg(i,n)(a))a is in Seq. Moreover, it converges

to xr(i,ϕq(i)(h(i,n)),n).

Since λb. ϕk′(g(i,n))(b) is a module of the convergence of (F (xϕg(i,n)(a)))a to

F (xr(i,ϕq(i)(h(i,n)),n)),

it follows that for all c ≥ ϕk′(g(i,n))(s(i, n)), F (xϕg(i,n)(c)) ∈ B′
s(i,n). In particular, we

have that F (xϕg(i,n)(ϕk′(g(i,n))(s(i,n)))
) ∈ B′

s(i,n). As

ϕg(i,n)(ϕk′(g(i,n))(s(i, n))) = r(i, ϕq(i)(ϕk′(g(i,n))(s(i, n))), n) = r(i, ϕq(i)(h(i, n)), n),

it follows that F (xr(i,ϕq(i)(h(i,n)),n)) ∈ B′
s(i,n), a contradiction. Consequently, the function

λi, n. ϕq(i)(h(i, n)) witnesses that F is effectively pointwise continuous.

Classically, continuous maps are also sequentially continuous. Let us see next in as

much this holds in the effective setting.

Proposition 6.4. Let Seq have maximal limits and x a limit algorithm that computes

maximal limits. Then every effectively pointwise continuous maps F : T → T ′ is effec-

tively sequentially continuous.

Proof. Let h ∈ P (2) witness that F is effectively pointwise continuous, and assume that

m is an index of a computable sequence in Seq with computable convergence module

k ∈ P (2) converging to a point y ∈ T . Moreover, let n ∈ ω so that F (y) ∈ B′
n. Then

(xϕm(a))a also converges computably to its largest limit point xli(m). As is easily verified,

effectively pointwise continuous maps are monotone with respect to the specialization

order. Therefore, F (xli(m)) ∈ B′
n. It follows that h(li(m), n)↓, xli(m) ∈ Bh(li(m),n), and

F (Bh(li(m),n)) ⊆ B′
n. Hence, xϕm(a) ∈ Bh(li(m),n) and consequently F (xϕm(a)) ∈ B′

n, for

all a ≥ k(h(li(m), n)), which shows that F is effectively sequentially continuous.
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7. Effective maps

In this section we will investigate when an effective map F : T → T ′ is effectively sequen-

tially continuous.

Assume that (ya)a is a computable sequence in Seq converging to y ∈ T . Then (F (ya))a
is computable as well. We will now show that in certain general cases it converges com-

putably to F (y), i.e., we will show that in these cases each effective map is effectively

sequentially continuous.

Let m be an index of (ya)a and n ∈ ω with F (y) ∈ B′
n. Then, uniformly in m and n,

we recursively construct a computable sequence (za)a with index b:

1 We follow the sequence (ya)a as long as the computation of li(b) has not terminated

or F (xli(b)) has not been found in B′
n.

2 If the computation of li(b) has terminated and F (xli(b)) has been found in B′
n, say in

step N0, we delay our strategy to follow the sequence (ya)a and repeat the element

yN0 as long as F (yN0) has not been found in B′
n.

3 If, in step N1, we have found F (yN0) in B′
n, we go to element yN0+1 and repeat it as

long as we have not found F (yN0+1) in B′
n.

4 If, in step N2, we have found F (yN0+1) in B′
n, we go to element yN0+2 and repeat it

as long as we have not found F (yN0+2) in B′
n, and so on.

As we will see, all steps N0, N1, N2. . . . exist and depend computably on m,n. Obvi-

ously, then N0 is a module for the convergence of (F (ya))a to F (y).

Theorem 7.1. Let x be computable and have a limit algorithm, x′ be computable, and

the sequences in Seq allow delaying. Then every effective map F : T → T ′ is strongly

effectively sequentially continuous.

Proof. Since x′ is computable, B′
n is completely enumerable, uniformly in n. Hence, as

F is effective, F−1(B′
n) is completely enumerable as well. Let this be witnessed by Wv(n)

with v ∈ R(1). Obviously, v uniformly depends on the index of F . Finally, let li ∈ P (1)

witness that x has a limit algorithm and let t ∈ R(1) with range(t) ⊆ dom(x) so that

(xt(a))a is a sequence in Seq converging to some y ∈ T .

Set ḡ(b̄, n) = µc : ϕv(n)(li(b̄))↓c and define ū ∈ P (3) by

ū(b̄, n, 0) = 0,

ū(b̄, n, a+ 1) =















ū(b̄, n, a) + 1 if ϕv(n)(li(b̄))↑a+1, or ϕv(n)(li(b̄))↓a+1

and ϕv(n)(t(ū(b̄, n, a)))↓a+1,

ū(b̄, n, a) if ϕv(n)(li(b̄))↓a+1 and ϕv(n)(t(ū(b̄, n, a)))↑a+1.

In addition, let h ∈ R(2) with

ϕh(b̄,n)(a) = t(ū(b̄, n, a)).

By the recursion theorem there is then a function b ∈ R(1) with ϕb(n) = ϕh(b(n),n). Set

g(n) = ḡ(b(n), n) and u(n, a) = ū(b(n), n, a).

Suppose that g(n)↑, for some n ∈ ω with F (y) ∈ B′
n. Then u(n, a) = a and hence

xϕb(n)(a) = xt(a). It follows that (xϕb(n)(a))a converges to y. Hence, y ≤τ xli(b(n)) because
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of Corollary 5.4. By assumption, y ∈ F−1(B′
n). With Corollary 5.1 we therefore obtain

that xli(b(n)) ∈ F−1(B′
n) as well, since F

−1(B′
n) is completely enumerable. Consequently,

li(b(n)) ∈ Wv(n), i.e., g(n) is defined, a contradiction.

Next, let

k(n, 0) = µc : ϕv(n)(li(b(n)))↓c ∧ c > g(n) ∧ ϕv(n)(t(g(n) + 0))↓c,

k(n, e+ 1) = µc : k(n, e)↓c ∧ c > k(n, e) ∧ ϕv(n)(t(g(n) + e+ 1))↓c,

and assume that there is some n, ā ∈ ω so that k(n, ā)↑. Let ā be minimal with this

property. Then

ϕb(n)(a) =















































t(a) if a < g(n),

t(g(n)) if g(n) ≤ a < k(n, 0)),

t(g(n) + 1)) if k(n, 0) ≤ a < k(n, 1),
...

t(g(n) + ā− 1) if k(n, ā− 2) ≤ a < k(n, ā− 1),

t(g(n) + ā) if a ≥ k(n, ā− 1).

As Seq is closed under delaying, the sequence (xϕb(n)(a))a is in Seq. Moreover, it is

a sequence that is eventually constant. With Condition 5.1(3) it therefore follows that

xli(b(n)) = xt(g(n)+ā). As we have already seen, li(b(n)) ∈ Wv(n), i.e., xli(b(n)) ∈ F−1(B′
n).

The latter set is completely enumerable. Therefore, also t(g(n)+ā) ∈ Wv(n), which means

that k(n, ā)↓, a contradiction.

This shows that k(n, e)↓, for all n, e ∈ ω. In other words, g is a computable convergence

module, i.e., the sequence (F (xt(a))a converges computably to F (y). As follows from the

construction, g depends computably on the Gödel number of t. So, we have that F is

sequentially continuous, strongly effectively.

Note that the construction of the convergence module g not only depends computably

on the index of the sequence transformed by F , but also on the index of F . Moreover, we

do not know whether effective maps have a witness for noninclusion under the assump-

tions of the theorem.

Corollary 7.1. Let x have a limit algorithm and be computable. Moreover, let the

sequences in Seq allow delaying. Then every convergent sequence in Seq converges com-

putably and T has a uniformly computable convergence module.

Proof. Let F be the identity on T in the above theorem.

The most restrictive assumption in the above result is that sequences in Seq should

allow delaying. In the proof the constructed sequence had to be delayed several times.

This is certainly not possible for sequences that have to satisfy strong conditions as the

regular Cauchy sequences. In what follows we will derive an analogous result for spaces

like constructive metric spaces in which the requirement that sequences in Seq allow

delaying is no longer used. As we will see, the construction in the proof is very much

the same as the one in the previous proof, only where we had to wait and see whether a
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certain computation will terminate, we can now use a decision precedure. We will derive

the result for the rather general class of effective T3 spaces. For a subset X of a topological

space, let cl(X) denote its closure.

Definition 7.1. T is effectively T3, if there is some function s ∈ P (2) such that s(i,m)↓

with

xi ∈ Bs(i,m) ⊆ cl(Bs(i,m)) ⊆ Bm,

for all i ∈ dom(x) and m ∈ ω with xi ∈ Bm.

As is shown in (Spreen 1998, Lemma 3.3), every constructive metric space is effectively

T3.

Theorem 7.2. Let T ′ be effectively T3, x
′ be computable as well as co-computable,

and x have a limit algorithm. Then every effective map F : T → T ′ is strongly effectively

sequentially continuous.

Proof. Let s ∈ P (2) and f ∈ P (1), respectively, witness that T is effectively T3 and F is

effective. Since x′ is computable, it follows as in the proof of Theorem 7.1 that F−1(B′
n)

is completely enumerable, uniformly in n. Let this be witnessed by Wv(n) with v ∈ R(1).

As x′ is also co-computable, it follows in a similar way that there is a function w ∈ R(2)

so that Ww(i,n) witnesses that F
−1(ext(B′

s(f(i),n))) is completely enumerable, uniformly

in i, n. Again v, w uniformly depend on the Gödel number of f . Let, finally, li ∈ P (1)

witness that x has limit algorithm and let t ∈ R(1) with range(t) ⊆ dom(x) so that

(xt(a))a is a sequence in Seq converging to some point y ∈ T .

In the construction of the sequence with index b we are going to describe, for certain

sequence elements xt(a) we will search whether we find F (xt(a)) ∈ B′
n or F (xt(a)) ∈

ext(B′
s(f(li(b)),n)). Possibly both is the case, then we give preference to what we find first.

The definitions of the functions that we introduce next are parts of a large mutual

recursion. Let

k̄1(b̄, n, a) = µc : ϕv(n)(t(ū(b̄, n, a)))↓c, k̄2(b̄, n, a) = µc : ϕw(li(b̄),n)(t(ū(b̄, n, a)))↓c,

and

k̄(b̄, n, a) =



































k̄1(b̄, n, a) if ϕv(n)(t(ū(b̄, n, a))) terminates in at most the same

number of steps as ϕw(li(b̄),n)(t(ū(b̄, n, a))),

k̄2(b̄, n, a) if ϕw(li(b̄),n)(t(ū(b̄, n, a))) terminates in less steps than

ϕv(n)(t(ū(b̄, n, a))),

undefined otherwise.



Dieter Spreen 22

Moreover, set ḡ(b̄, n) = µc : ϕv(n)(li(b̄))↓c and define ū ∈ P (3) by

ū(b̄, n, 0) = 0,

ū(b̄, n, a+ 1) =



































ū(b̄, n, a) + 1 if ϕv(n)(li(b̄))↑a+1, or ϕv(n)(li(b̄))↓a+1, k̄(b̄, n, a)↓,

k̄1(b̄, n, a)↓ and k̄(b̄, n, a) = k̄1(b̄, n, a),

ū(b̄, n, a) if ϕv(n)(li(b̄))↓a+1, k̄(b̄, n, a)↓, k̄2(b̄, n, a)↓

and k̄(b̄, n, a) = k̄2(b̄, n, a),

undefined otherwise.

Finally, let h ∈ R(2) with

ϕh(b̄,n)(a) = t(ū(b̄, n, a)).

By the recursion theorem there is then some function b ∈ R(1) with ϕb(n) = ϕh(b(n),n).

Set

k1(n, a) = k̄1(b(n), n, a), k2(n, a) = k̄2(b(n), n, a), k(n, a) = k̄(b(n), n, a),

g(n) = ḡ(b(n), n) and u(n, a) = ū(b(n), n, a).

Then it follows as in the proof of Theorem 7.1 that g(n) is defined for all n ∈ ω

with F (y) ∈ B′
n. Thus, F (xli(b(n))) ∈ B′

n, i.e., x
′
f(li(b(n))) ∈ B′

n, from which we obtain

with the effective T3 property that x′
f(li(b(n))) ∈ B′

s(f(li(b(n))),n). In addition, we have

for a ≥ g(n) that either F (xt(u(n,a))) ∈ B′
n, or F (xt(u(n,a))) ∈ T ′ \ B′

n, in which case

F (xt(u(n,a))) ∈ ext(Bs(f(li(b(n))),n)). Therefore, at least one of k1(n, a) and k2(n, a) must

be defined, i.e., k(n, a) is always defined. By induction on a it follows that u(n, a) is

always defined as well.

Assume that for some n, ā ∈ ω with F (y) ∈ B′
n and ā ≥ g(n), k2(n, ā) is defined and

k(n, ā) = k2(n, ā), and let ā be minimal with this property. Then not the first but the

second case in the definition of u(n, a) comes into action. And once this case is active, it

will remain active for ever, implying

ϕb(n)(a) =

{

t(a) if a < ā,

t(ā) otherwise.

With Property 3 of Seq it follows that (xϕb(n)(a))a is in Seq. Furthermore, the sequence is

eventually constant. Because of Condition 5.1(3) we therefore have that xli(b(n)) = xt(ā).

Note that F (xli(b(n))) = x′
f(li(b(n))) and x′

f(li(b(n))) ∈ B′
s(f(li(b(n))),n), as we have already

seen. On the other hand, as k2(n, ā) is defined, we obtain that t(ā) ∈ Ww(li(b(n)),n), i.e.,

F (xt(ā)) ∈ ext(B′
s(f(li(b(n))),n)), a contradiction.

It follows for all n ∈ ω with F (y) ∈ B′
n and a ≥ g(n) that k(n, a) is defined, but

k(n, a) 6= k2(n, a). Therefore, k(n, a) = k1(n, a), which implies that k1(n, a) is defined,

u(n, a) = a and hence F (xt(a)) ∈ B′
n. This shows that the sequence (F (xt(a)))a converges

computably to F (y). In other words, F is strongly effectively sequentially continuous.

The two theorems in this section cover a large variety of cases. Unfortunately, however,

we were not able to pursue our programme in full generality, i.e., to derive a theorem

stating the effective sequential continuity of effective operators that would include all
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interesting cases, as we did in the continuous case. However, the present situation is

also more complicated. In the continuous case we have one decision to make whether

to follow a given sequence or to deviate. Now, we have to deal with infinitely many

such decisions and the strategies how to make the decisions were quite different in the

cases we considered. It is even not clear to us whether effective operators are effectively

sequentially continuous in general, or whether an additional condition is needed.

Proposition 7.1. There is a constructive metric space M, a constructive domain Q,

and a map F : M → Q which is effective, but not sequentially continuous.

Proof. The following construction is a modification of an example given by Fried-

berg (1958). Let M be Baire space and Q Sierpinski space {⊥, 0} with ⊥ ⊑ 0, β0 = ⊥,

and βn+1 = 0. Moreover, set

h(i) =















1 if [(∀a ≤ i)ϕi(a) = 0] ∨ (∃c)[ϕi(c) 6= 0 ∧ (∀a < c)ϕi(a) = 0 ∧

(∃j < c)(∀b ≤ c)ϕi(b) = ϕj(b)],

undefined otherwise.

Then h ∈ P (1). As it is readily verified, for all ϕi, ϕj ∈ R(1) with ϕi = ϕj one has that

h(i) = h(j). Let x be an admissible indexing of Q. Then there is a function d ∈ R(1) such

that for all i ∈ ω for which β(Wi) is directed, xd(i) is the least upper bound of β(Wi).

Let q ∈ R(1) with Wq(i) = {0, h(i)}, and set t = d ◦ q. We define the effective mapping

F : R(1) → Q by F (ϕi) = xt(i). Then F (ϕi) = 0, if the first condition in the definition of

h holds; otherwise, F (ϕi) = ⊥.

Now, for m ∈ ω, let km = max{ϕi(m+ 1) + 1 | i ≤ m ∧ ϕi ∈ R(1) } and define

gm(a) =

{

0 if a 6= m+ 1,

km otherwise.

Then gm ∈ R(1), for every m ∈ ω. Moreover, (gm)m is a regular Cauchy sequence that

converges computably to λn.0. Since for any Gödel number j of gm we have that j > m

and as gm(m+1) 6= 0, it follows from the definition of F that F (gm) = ⊥, for all m ∈ ω.

On the other hand, F (λn.0) = 0. Thus, F cannot be sequentially continuous.

However, this leaves still open the question whether effective operators are (strongly)

effectively sequentially continuous in general. To decide this question negatively, one

would need a computable sequence (gm)m in the construction.

Remark added in proof. After this paper was written, M. Hoyrup (2015) answered the

above question negatively: In general, effective operators are not effectively sequentially

continuous. Let F : M → Q be as in Proposition 7.1 and for m ∈ ω, set gm(a) = 1, if

a = m + 1, and gm(a) = 0, otherwise. Then (gm)m is a computable regular Cauchy

sequence computably converging to λn.0, but (F (gm))m does not converge to F (λn.0).

Assume to the contrary that 0 ∈ Limm F (gm). Then there is a set { jm | m ∈ ω } of

Gödel numbers with finite complement so that ϕjm(a) = gm(a), for a ≤ m + 1. This is

impossible as each ϕjm has infinitely many Gödel numbers.



Dieter Spreen 24

Acknowledgement

The author is grateful to the anonymous referees for their careful reading of the manu-

script and the useful comments.

References

Amadio, R. M. and Curien, P.-L. (1998) Domains and Lambda-Calculi. Cambridge University

Press, Cambridge.

Blanck, J. (1997) Domain representability of metric spaces. Annals of Pure and Applied Logic

83 (3), 225–247.
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