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Abstract

Uncertainty in logic programming has been widely investigated in the last decades, leading
to multiple extensions of the classical LP paradigm. However, few of these are designed
as extensions of the well-established and powerful CLP scheme for Constraint Logic Pro-
gramming. In a previous work we have proposed the SQCLP (proximity-based qualified
constraint logic programming) scheme as a quite expressive extension of CLP with support
for qualification values and proximity relations as generalizations of uncertainty values and
similarity relations, respectively. In this paper we provide a transformation technique for
transforming SQCLP programs and goals into semantically equivalent CLP programs and
goals, and a practical Prolog-based implementation of some particularly useful instances of
the SQCLP scheme. We also illustrate, by showing some simple—and working—examples,
how the prototype can be effectively used as a tool for solving problems where qualification
values and proximity relations play a key role. Intended use of SQCLP includes flexible
information retrieval applications.

KEYWORDS: Constraint Logic Programming, Program Transformation, Qualification
Domains and Values, Similarity and Proximity Relations, Flexible Information Retrieval.

1 Introduction

Many extensions of LP (logic programming) to deal with uncertain knowledge and

uncertainty have been proposed in the last decades. These extensions have been

proposed from different and somewhat unrelated perspectives, leading to multiple

approaches in the way of using uncertain knowledge and understanding uncertainty.

A recent work by us (Rodŕıguez-Artalejo and Romero-Dı́az 2010a) focuses on

the declarative semantics of a new proposal for an extension of the CLP scheme

supporting qualification values and proximity relations. More specifically, this work

defines a new generic scheme SQCLP (proximity-based qualified constraint logic

programming) whose instances SQCLP(S,D, C) are parameterized by a proximity

∗ This work has been partially supported by the Spanish projects STAMP (TIN2008-06622-C03-
01), PROMETIDOS–CM (S2009TIC-1465) and GPD–UCM (UCM–BSCH–GR58/08-910502).
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relation S, a qualification domain D and a constraint domain C. The current pa-

per is intended as a continuation of (Rodŕıguez-Artalejo and Romero-Dı́az 2010a)

with the aim of providing a semantically correct program transformation technique

that allows us to implement a sound and complete implementation of some use-

ful instances of SQCLP on top of existing CLP systems like SICStus Prolog or

SWI-Prolog. In the introductory section of (Rodŕıguez-Artalejo and Romero-Dı́az

2010a) we have already summarized some related approaches of SQCLP with a

special emphasis on their declarative semantics and their main semantic differences

with SQCLP. In the next paragraphs we present a similar overview but, this time,

putting the emphasis on the goal resolution procedures and system implementation

techniques, when available.

Within the extensions of LP using annotations in program clauses we can find

the seminal proposal of quantitative logic programming by (van Emden 1986) that

inspired later works such as the GAP (generalized annotated programs) framework

by (Kifer and Subrahmanian 1992) and the QLP (qualified logic programming)

scheme by us (Rodŕıguez-Artalejo and Romero-Dı́az 2008). In the proposal of van

Emden, one can find a primitive goal solving procedure based in and/or trees (these

are similar to the alpha-beta trees used in game theory), used to prune the search

space when proving some specific ground atom for some certainty value in the

real interval [0, 1]. In the case of GAP, the goal solving procedure uses constrained

SLD resolution in conjunction with a—costly—computation of so-called reductants

between variants of program clauses. In contrast, QLP goal solving uses a more

efficient resolution procedure called SLD(D) resolution, implemented by means of

real domain constraints, used to compute the qualification value of the head atom

based on the attenuation factor of the program clause and the previously computed

qualification values of the body atoms. Admittedly, the gain in efficiency of SLD(D)

w.r.t. GAP’s goal solving procedure is possible because QLP focuses on a more

specialized class of annotated programs. While in all these three approaches there

are some results of soundness and completeness, the results for the QLP scheme

are the stronger ones (again, thanks to its also more focused scope w.r.t. GAP).

From a different viewpoint, extensions of LP supporting uncertainty can be

roughly classified into two major lines: approaches based in fuzzy logic (Zadeh 1965;

Hájek 1998) and approaches based in similarity relations. Historically, Fuzzy LP

languages were motivated by expert knowledge representation applications. Early

Fuzzy LP languages implementing the resolution principle introduced in (Lee 1972)

include Prolog-Elf (Ishizuka and Kanai 1985), Fril Prolog (Baldwin et al. 1995) and

F-Prolog (Li and Liu 1990). More recent approaches such as the Fuzzy LP lan-

guages in (Vojtáš 2001; Guadarrama et al. 2004) and Multi-Adjoint LP (MALP

for short) in the sense of (Medina et al. 2001a) use clause annotations and a fuzzy

interpretation of the connectives and aggregation operators occurring in program

clauses and goals. The Fuzzy Prolog system proposed in (Guadarrama et al. 2004)

is implemented by means of real constrains on top of a CLP(R) system, using a

syntactic expansion of the source code during the Prolog compilation. A complete

procedural semantics for MALP using reductants has been presented in (Medina
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et al. 2001b). A method for translating a MALP like program into standard Prolog

has been described in (Julián et al. 2009).

The second line of research mentioned in the previous paragraph was motivated

by applications in the field of flexible query answering. Classical LP is extended to

Similarity-based LP (SLP for short), leading to languages which keep the classical

syntax of LP clauses but use a similarity relation over a set of symbols S to allow

“flexible” unification of syntactically different symbols with a certain approximation

degree. Similarity relations over a given set S have been defined in (Zadeh 1971;

Sessa 2002) and related literature as fuzzy relations represented by mappings S : S×
S → [0, 1] which satisfy reflexivity, symmetry and transitivity axioms analogous to

those required for classical equivalence relations. Resolution with flexible unification

can be used as a sound and complete goal solving procedure for SLP languages as

shown e.g. in (Sessa 2002). SLP languages include Likelog (Arcelli and Formato

1999; Arcelli Fontana 2002) and more recently SiLog (Loia et al. 2004), which has

been implemented by means of an extended Prolog interpreter and proposed as a

useful tool for web knowledge discovery.

In the last years, the SLP approach has been extended in various ways. The

SQLP (similarity-based qualified logic programming) scheme proposed in (Caballero

et al. 2008) extended SLP by allowing program clause annotations in QLP style

and generalizing similarity relations to mappings S : S × S → D taking values

in a qualification domain not necessarily identical to the real interval [0, 1]. As

implementation technique for SQLP, (Caballero et al. 2008) proposed a semantically

correct program transformation into QLP, whose goal solving procedure has been

described above. Other related works on transformation-based implementations of

SLP languages include (Sessa 2001; Medina et al. 2004). More recently, the SLP

approach has been generalized to work with proximity relations in the sense of

(Dubois and Prade 1980) represented by mappings S : S × S → [0, 1] which satisfy

reflexivity and symmetry axioms but do not always satisfy transitivity. SLP like

languages using proximity relations include Bousi∼Prolog (Julián-Iranzo and Rubio-

Manzano 2009a) and the SQCLP scheme (Rodŕıguez-Artalejo and Romero-Dı́az

2010a). Two prototype implementations of Bousi∼Prolog are available: a low-level

implementation (Julián-Iranzo and Rubio-Manzano 2009b) based on an adaptation

of the classical WAM (called Similarity WAM) implemented in Java and able to

execute a Prolog program in the context of a similarity relation defined on the first

order alphabet induced by that program; and a high-level implementation (Julián-

Iranzo et al. 2009) done on top of SWI-Prolog by means of a program transformation

from Bousi∼Prolog programs into a so-called Translated BPL code than can be

executed according to the weak SLD resolution principle by a meta-interpreter.

Let us now refer to approaches related to constraint solving and CLP. An anal-

ogy of proximity relations in the context of partial constraint satisfaction can be

found in (Freuder and Wallace 1992), where several metrics are proposed to mea-

sure the proximity between the solution sets of two different constraint satisfaction

problems. Moreover, some extensions of LP supporting uncertain reasoning use

constraint solving as implementation technique, as discussed in the previous para-

graphs. However, we are only aware of three approaches which have been conceived
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as extensions of the classical CLP scheme proposed for the first time in (Jaffar and

Lassez 1987). These three approaches are: (Riezler 1998) that extends the formu-

lation of CLP by (Höhfeld and Smolka 1988) with quantitative LP in the sense of

(van Emden 1986) and adapts van Emden’s idea of and/or trees to obtain a goal

resolution procedure; (Bistarelli et al. 2001) that proposes a semiring-based ap-

proach to CLP, where constraints are solved in a soft way with levels of consistency

represented by values of the semiring, and is implemented with clp(FD,S) for a

particular class of semirings which enable to use local consistency algorithms, as

described in (Georget and Codognet 1998); and the SQCLP scheme proposed in our

previous work (Rodŕıguez-Artalejo and Romero-Dı́az 2010a), which was designed

as a common extension of SQLP and CLP.

As we have already said at the beginning of this introduction, this paper deals

with transformation-based implementations of the SQCLP scheme. Our main re-

sults include: a) a transformation technique for transforming SQCLP programs

into semantically equivalent CLP programs via two specific program transforma-

tions named elimS and elimD; and b) and a practical Prolog-based implementation

which relies on the aforementioned program transformations and supports several

useful SQCLP instances. As far as we know, no previous work has dealt with the

implementation of extended LP languages for uncertain reasoning which are able

to support clause annotations, proximity relations and CLP style programming. In

particular, our previous paper (Caballero et al. 2008) only presented a transforma-

tion analogous to elimS for a programming scheme less expressive than SQCLP,

which supported neither non-transitive proximity relations nor CLP programming.

Moreover, the transformation-based implementation reported in (Caballero et al.

2008) was not implemented in a system.

The reader is assumed to be familiar with the semantic foundations of LP (Lloyd

1987; Apt 1990) and CLP (Jaffar and Lassez 1987; Jaffar et al. 1998). The rest

of the paper is structured as follows: Section 2 presents a brief overview of the

semantics of the SQCLP scheme, focusing on the essential notions needed to un-

derstand the following sections and concluding with an abstract discussion of goal

solving procedures for SQCLP. Section 3 briefly discusses two specializations of

SQCLP, namely QCLP and CLP, which are used as the targets of the program

transformations elimS and elimD, respectively. Section 4 presents these two pro-

gram transformations along with mathematical results which prove their semantic

correctness, relying on the declarative semantics of the SQCLP, QCLP and CLP

schemes. Section 5 presents a Prolog-based prototype system which relies on the

transformations proposed in the previous section and implements several useful SQ-

CLP instances. Finally, Section 6 summarizes conclusions and points to some lines

of planned future research.

2 The Scheme SQCLP and its Declarative Semantics

We present in this section a short overview of the declarative semantics of the SQ-

CLP scheme originally presented in (Rodŕıguez-Artalejo and Romero-Dı́az 2010a),

focusing on the essential notions needed to understand the following sections. In-
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terested readers are referred to (Rodŕıguez-Artalejo and Romero-Dı́az 2010a) and

its extended version (Rodŕıguez-Artalejo and Romero-Dı́az 2010b) for a full-fledged

exposition of SQCLP semantics and a discussion of various extended LP languages

for uncertain reasoning which can be obtained as specializations and instances of

SQCLP. Some technical notions and results from (Rodŕıguez-Artalejo and Romero-

Dı́az 2010b) will be cited along this paper when needed to support mathematical

proofs.

Constraint domains C, sets of constraints Π and their solutions, as well as terms,

atoms and substitutions over a given C are well known notions underlying the CLP

scheme. The reader is referred (Rodŕıguez-Artalejo and Romero-Dı́az 2010b) for a

relational formalization of constraint domains and some examples, including the real

constraint domainR. We assume the following classification of atomic C-constraints:

defined atomic constraints p(tn), where p is a program-defined predicate symbol;

primitive constraints r(tn) where r is a C-specific primitive predicate symbol; and

equations t == s.

We use ConC as a notation for the set of all C-constraints and κ as a notation for

an atomic primitive constraint. Constraints are interpreted by means of C-valuations

η ∈ ValC , which are ground substitutions. The set SolC(Π) of solutions of Π ⊆ ConC
includes all the valuations η such that Πη is true when interpreted in C. Π ⊆ ConC
is called satisfiable if SolC(Π) 6= ∅ and unsatisfiable otherwise. π ∈ ConC is entailed

by Π ⊆ ConC (noted Π |=C π) iff SolC(Π) ⊆ SolC(π).

Qualification domains were first introduced in (Rodŕıguez-Artalejo and Romero-

Dı́az 2008) with the aim of providing elements, called qualification values, which can

be attached to computed answers. They are defined as structures D = 〈D,P,b, t, ◦〉
verifying the following requirements:

1. 〈D,P,b, t〉 is a lattice with extreme points b (called infimum or bottom ele-

ment) and t (called maximum or top element) w.r.t. the partial ordering P
(called qualification ordering). For given elements d, e ∈ D, we write du e for

the greatest lower bound (glb) of d and e, and d t e for the least upper bound

(lub) of d and e. We also write d C e as abbreviation for d P e ∧ d 6= e.

2. ◦ : D ×D → D, called attenuation operation, verifies the following axioms:

(a) ◦ is associative, commutative and monotonic w.r.t. P.

(b) ∀d ∈ D : d ◦ t = d and d ◦ b = b.

(c) ∀d, e ∈ D : d ◦ e P e and even b 6= d ◦ e P e if d, e ∈ D \ {b}.
(d) ∀d, e1, e2 ∈ D : d ◦ (e1 u e2) = (d ◦ e1) u (d ◦ e2).

For any S = {e1, e2, . . . , en} ⊆ D, the glb (also called infimum of S) exists and can

be computed as
d
S = e1 u e2 u · · · u en (which reduces to t in the case n = 0). The

dual claim concerning lubs is also true. As an easy consequence of the axioms, one

gets the identity d ◦
d
S =

d
{d ◦ e | e ∈ S}.

Technical details, explanations and examples can be found in (Rodŕıguez-Artalejo

and Romero-Dı́az 2010b), including: the qualification domain B of classical boolean

values, the qualification domain U of uncertainty values, the qualification domain

W of weight values, and other qualification domains built from these by means of
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the strict cartesian product operation ⊗. The following definition is borrowed from

(Rodŕıguez-Artalejo and Romero-Dı́az 2010a):

Definition 2.1 (Expressing D in C)
A qualification domain D is expressible in a constraint domain C if there is an

injective embedding mapping ı : D \ {b} → C and moreover:

1. There is a C-constraint qVal(X) such that SolC(qVal(X)) is the set of all

η ∈ ValC verifying η(X) ∈ ran(ı).

2. There is a C-constraint qBound(X,Y, Z) encoding “x P y ◦z” in the following

sense: any η ∈ ValC such that η(X) = ι(x), η(Y ) = ι(y) and η(Z) = ι(z)

verifies η ∈ SolC(qBound(X,Y, Z)) iff x P y ◦ z.

In addition, if qVal(X) and qBound(X,Y, Z) can be chosen as existential constraints

of the form ∃X1 . . . ∃Xn(B1 ∧ . . . ∧ Bm)—where Bj (1 ≤ j ≤ m) are atomic—we

say that D is existentially expressible in C.

It can be proved that B, U ,W and and any qualification domain built from these

with the help of ⊗ are existentially expressible in any constraint domain C that

includes the basic values and computational features of R.

Admissible triples 〈S,D, C〉 consist of a constraint domain C, a qualification do-

main D and a proximity relation S : S × S → D—where D is the carrier set of

D and S is the set of all variables, basic values and signature symbols available in

C—satisfying the following properties:

• ∀x ∈ S : S(x, x) = t (reflexivity).

• ∀x, y ∈ S : S(x, y) = S(y, x) (symmetry).

• Some additional technical conditions explained in (Rodŕıguez-Artalejo and

Romero-Dı́az 2010b).

A proximity relation S is called similarity iff it satisfies the additional property

∀x, y, z ∈ S : S(x, z) Q S(x, y) u S(y, z) (transitivity). The scheme SQCLP has

instances SQCLP(S,D, C) where 〈S,D, C〉 is an admissible triple.

A SQCLP(S,D, C)-program is a set P of qualified program rules (also called

qualified clauses) C : A
α←− B1]w1, . . . , Bm]wm, where A is a defined atom, α ∈

D \ {b} is called the attenuation factor of the clause and each Bj]wj (1 ≤ j ≤ m)

is an atom Bj annotated with a so-called threshold value wj ∈ (D \ {b})]{?}. The

intended meaning of C is as follows: if for all 1 ≤ j ≤ m one has Bj]ej (meaning

that Bj holds with qualification value ej) for some ej Q? wj , then A]d (meaning

that A holds with qualification value d) can be inferred for any d ∈ D \ {b} such

that d P α ◦
dm
j=1 ej . By convention, ej Q? wj means ej Q wj if wj 6= ? and is

identically true otherwise. In practice threshold values equal to ‘?’ and attenuation

values equal to t can be omitted.

Figure 1 shows a simple SQCLP(Ss, U ,R)-program Ps which illustrates the ex-

pressivity of the SQCLP scheme to deal with problems involving flexible infor-

mation retrieval. Predicate search can be used to answer queries asking for books

in the library matching some desired language, genre and reader level. Predicate

guessRdrLvl takes advantage of attenuation factors to encode heuristic rules to
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% Book representation: book( ID, Title, Author, Lang, Genre, VocLvl, Pages ).

1 library([ book(1, ‘Tintin’, ‘Hergé’, french, comic, easy, 65),

2 book(2, ‘Dune’, ‘F.P. Herbert’, english, sciFi, medium, 345),

3 book(3, ‘Kritik der reinen Vernunft’, ‘I. Kant’, german, philosophy, difficult, 1011),

4 book(4, ‘Beim Hauten der Zwiebel’, ‘G. Grass’, german, biography, medium, 432) ])

% Auxiliary predicate for computing list membership:

5 member(B, [B| ])

6 member(B, [ |T]) ← member(B, T)

% Predicates for getting the explicit attributes of a given book:

7 getId(book(ID, Title, Author, Lang, Genre, VocLvl, Pages), ID)

8 getTitle(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Title)

9 getAuthor(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Author)

10 getLanguage(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Lang)

11 getGenre(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Genre)

12 getVocLvl(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), VocLvl)

13 getPages(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Pages)

% Function for guessing the reader level of a given book:

14 guessRdrLvl(B, basic) ← getVocLvl(B, easy), getPages(B, N), N < 50

15 guessRdrLvl(B, intermediate)
0.8←−− getVocLvl(B, easy), getPages(B, N), N ≥ 50

16 guessRdrLvl(B, basic)
0.9←−− getGenre(B, children)

17 guessRdrLvl(B, proficiency)
0.9←−− getVocbLvl(B, difficult), getPages(B, N), N ≥ 200

18 guessRdrLvl(B, upper)
0.8←−− getVocLvl(B, difficult), getPages(B, N), N < 200

19 guessRdrLvl(B, intermediate)
0.8←−− getVocLvl(B, medium)

20 guessRdrLvl(B, upper)
0.7←−− getVocLvl(B, medium)

% Function for answering a particular kind of user queries:

21 search(Lang, Genre, Level, Id) ← library(L)#1.0, member(B, L)#1.0,

22 getLanguage(B, Lang), getGenre(B, Genre),

23 guessRdrLvl(B, Level), getId(B, Id)#1.0

% Proximity relation Ss:

24 Ss(sciFi, fantasy) = Ss(fantasy, sciFi) = 0.9

25 Ss(adventure, fantasy) = Ss(fantasy, adventure) = 0.7

26 Ss(essay, philosophy) = Ss(philosophy, essay) = 0.8

27 Ss(essay, biography) = Ss(biography, essay) = 0.7

Fig. 1. SQCLP(Ss, U ,R)-program Ps (Library with books in different languages)

compute reader levels on the basis of vocabulary level and other book features.

The other predicates compute book features in the natural way, and the proximity

relation Ss allows flexibility in any unification (i.e. solving of equality constraints)

arising during the invocation of the program predicates.

The declarative semantics of a given SQCLP(S,D, C)-program P relies on quali-

fied constrained atoms (briefly qc-atoms) of the form A]d ⇐ Π, intended to assert
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that the validity of atom A with qualification degree d ∈ D is entailed by the con-

straint set Π. A qc-atom is called defined, primitive or equational according to the

syntactic form of A; and it is called observable iff d ∈ D \ {b} and Π is satisfiable.

Program interpretations are defined as sets of observable qc-atoms which obey a

natural closure condition. The results proved in (Rodŕıguez-Artalejo and Romero-

Dı́az 2010a) show two equivalent ways to characterize declarative semantics, using a

fix-point approach and a proof-theoretical approach, respectively. For the purposes

of the present paper it suffices to consider the proof theoretical approach, that relies

on a formal inference system called Proximity-based Qualified Constrained Horn

Logic—in symbols, SQCHL(S,D, C)—intended to infer observable qc-atoms from

P and consisting of the three inference rules displayed in Figure 2. Rule SQEA

depends on a relation ≈d,Π between terms that is defined in the following way:

t ≈d,Π s iff there exist two terms t̂ and ŝ such that Π |=C t == t̂, Π |=C s == ŝ and

b 6= d P S(t̂, ŝ). This allows to deduce equations from Π in a flexible way, taking

the proximity relation S into account. The reader is referred to (Rodŕıguez-Artalejo

and Romero-Dı́az 2010b) for more motivating comments on SQCHL(S,D, C) and

some technical properties of the ≈d,Π relation.

SQDA
( (t′i == tiθ)]di ⇐ Π )i=1...n ( Bjθ]ej ⇐ Π )j=1...m

p′(t′n)]d⇐ Π

if (p(tn)
α←− B1]w1, . . . , Bm]wm) ∈ P, θ subst., S(p′, p) = d0 6= b,

ej Q? wj (1 ≤ j ≤ m) and d P
dn
i=0 di u α ◦

dm
j=1 ej .

SQEA
(t == s)]d⇐ Π

if t ≈d,Π s. SQPA
κ]d⇐ Π

if Π |=C κ.

Fig. 2. Proximity-based Qualified Constrained Horn Logic

We will write P S̀,D,C ϕ to indicate that ϕ can be deduced from P in SQCHL(S,
D, C), and P `kS,D,C ϕ in the case that the deduction can be performed with exactly

k SQDA inference steps. As usual in formal inference systems, SQCHL(S,D, C)
proofs can be represented as proof trees whose nodes correspond to qc-atoms, each

node being inferred from its children by means of some SQCHL(S,D, C) infer-

ence step. The following theorem, proved in (Rodŕıguez-Artalejo and Romero-Dı́az

2010b), characterizes least program models in the scheme SQCLP. This result allows

to use SQCHL(S,D, C)-derivability as a logical criterion for proving the semantic

correctness of program transformations, as we will do in Section 4.

Theorem 2.1 (Logical characterization of least program models in SQCHL)

For any SQCLP(S,D, C)-program P, its least model can be characterized as:

MP = {ϕ | ϕ is an observable defined qc-atom and P S̀,D,C ϕ}.

Let us now discuss goals and their solutions. Goals for a given SQCLP(S,D, C)-
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program P have the form

G : A1]W1, . . . , Am]Wm 8W1 Q?β1, . . . , Wm Q?βm

abbreviated as (Ai]Wi, Wi Q? βi)i=1...m. The Ai]Wi are called annotated atoms.

The pairwise different variables Wi ∈ War are called qualification variables; they

are taken from a set War assumed to be disjoint from the set Var of data variables

used in terms. The conditions Wi Q? βi (with βi ∈ (D \ {b}) ] {?}) are called

threshold conditions and their intended meaning (relying on the notations ‘?’ and

‘Q?’) is as already explained when introducing program clauses above. In the sequel,

war(o) will denote the set of all qualification variables occurring in the syntactic

object o. In particular, for a goal G as displayed above, war(G) denotes the set

{Wi | 1 ≤ i ≤ m}. In the case m = 1 the goal is called atomic. The following

definition relies on SQCHL(S,D, C)-derivability to provide a natural declarative

notion of goal solution:

Definition 2.2 (Goal Solutions)

Assume a given SQCLP(S,D, C)-program P and a goal G for P with the syntax

displayed above. Then:

1. A solution for G is any triple 〈σ, µ,Π〉 such that σ is a C-substitution, Wµ ∈
D \ {b} for all W ∈ dom(µ), Π is a satisfiable and finite set of atomic C-
constraints and the following two conditions hold for all i = 1 . . .m: Wiµ =

di Q? βi and P S̀,D,C Aiσ]Wiµ ⇐ Π. The set of all solutions for G w.r.t. P
is noted SolP(G).

2. A solution 〈η, ρ,Π〉 for G is called ground iff Π = ∅ and η ∈ ValC is a variable

valuation such that Aiη is a ground atom for all i = 1 . . .m. The set of all

ground solutions for G w.r.t. P is noted GSolP(G) ⊆ SolP(G).

3. A ground solution 〈η, ρ, ∅〉 ∈ GSolP(G) is subsumed by 〈σ, µ,Π〉 iff there is

some ν ∈ SolC(Π) s.t. η =var(G) σν and Wiρ P Wiµ for i = 1 . . .m.

A possible goal Gs for the library program displayed in Figure 1 is

Gs : search(german, essay, intermediate, ID)#W 8 W ≥ 0.65

and one solution for Gs is 〈{ID 7→ 4}, {W 7→ 0.7}, ∅〉. In this simple case, the

constraint set Π within the solution is empty. Other examples of goal solutions can

be found in (Rodŕıguez-Artalejo and Romero-Dı́az 2010b) and Sections 4 and 5

below.

In practice, users of SQCLP languages will rely on some available goal solving

system for computing goal solutions. The following definition specifies two impor-

tant abstract properties of goal solving systems which will be taken as a reference

for the implementation presented in this paper.

Definition 2.3 (Correct Abstract Goal Solving Systems)

An abstract goal solving system for SQCLP(S,D, C) is any device that takes a

program P and a goal G as input and yields various triples 〈σ, µ,Π〉, called computed

answers, as outputs. Such a goal solving system is called:

1. Sound iff every computed answer is a solution 〈σ, µ,Π〉 ∈ SolP(G).
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2. Weakly complete iff every ground solution 〈η, ρ, ∅〉 ∈ GSolP(G) is subsumed

by some computed answer.

3. Correct iff it is both sound and weakly complete.

Every goal solving system for a SQCLP instance should be sound and ideally also

weakly complete. In principle, goal solving systems with these properties for exten-

sions of the classical LP paradigm can be formalized as extensions of the well-known

SLD-resolution method (Lloyd 1987; Apt 1990). A sound and complete extensions

of SLD-resolution for the CLP scheme can be found e.g. in (Jaffar et al. 1998), and

several extensions of SLD resolution for LP languages aiming at uncertain reasoning

SQCLP scheme have been mentioned in Section 1.

Our aim in this paper is to present an implementation based on a semantically

correct program transformation from SQCLP into CLP, rather than developing a

sound and complete extension of SLD resolution. Nevertheless, both our implemen-

tation and SLD-based approaches for SLP languages in the line of (Sessa 2002)

must share the ability to solve unification problems w.r.t. to a proximity relation

S : S × S → [0, 1] over signature symbols, which is assumed to be transitive in

(Sessa 2002) but not in our setting. The lack of transitivity makes a crucial dif-

ference w.r.t. the behavior of unification algorithms. In the rest of this section we

briefly discuss the problem by means of a simple example.

(Sessa 2002) presents a flexible unification algorithm for solving unification prob-

lems represented as systems of the form S 8α, where S is a set of equations between

terms and α is a certainty degree. A solution of such a system is any substitution θ

which verifies S(sθ, tθ) ≥ α for all equations s == t belonging to S. This notion of

solution is consistent with the declarative semantics of the SQCLP scheme (more

specifically, with Definition 2.2), even in the case that S is a non-transitive proxim-

ity relation. Following a traditional approach, Sessa presents the flexible unification

algorithm as set of transformation rules which convert systems S 8 α into solved

form systems which represent unifiers. The transformations are similar to those

presented in e.g. Section 4.6 of (Baader and Nipkow 1998) for the case of classical

syntactic unification, extended with suitable computations to update α during the

process, taking the given similarity relation S into account. One of the transforma-

tions allows to transform a system of the form X == t, S 8 α into S{X 7→ t} 8 α
(provided that X is not identical to t and does not occur in t, the so-called occurs

check). Unfortunately, this transformation can lose solutions in case that S is not

transitive. Consider for instance the following example:

Example 2.1

Assume constants a, b, c and a non-transitive proximity relation S such that

S(a, b) = S(b, a) = 0.7; S(a, c) = S(c, a) = 0.8; S(b, c) = S(c, b) = 0. Then,

the substitution θ = {X 7→ a} is obviously a solution of the unification problem

X == b, X == c 8 0.7. Nevertheless, the unification algorithm presented in (Sessa

2002) and related papers fails without computing any solution:

X == b, X == c 8 0.7 =⇒ X == c {X 7→ b} 8 0.7 =⇒ fail

The second transformation step leads to fail because X == c {X 7→ b} 8 0.7 is
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the same as b == c 8 0.7 and S(b, c) = 0 < 0.7. Should S satisfy transitivity, then

S(b, c) = S(c, b) ≥ 0.7, and Sessa’s unification algorithm would compute the unifier

σ = {X 7→ b} as follows:

X == b, X == c 8 0.7 =⇒ X == c {X 7→ b} 8 0.7 =⇒ {X 7→ b} 8 0.7

Note that σ is more general than θ in the sense that S(θ, σθ) = S(θ, σ) ≥ 0.7.

Therefore this example does not contradict the completeness of Sessa’s unification

algorithm for the case of (transitive) similarity relations.

Even in the case that S is transitive, we have found examples showing that a

goal solving system based on Sessa’s unification algorithm can fail to compute some

valid solutions for SQCLP(S,D, C)-programs whose clauses use attenuation factors

other than t. The unification algorithm underlaying the implementations presented

in Section 5—based on the program transformations from Section 4—avoids the

problematic transformation step X == t, S 8α =⇒ S{X 7→ t}8α, that might cause

incompleteness; instead, Prolog’s backtracking is used to implement the effect of

a non-deterministic choice between several transformation steps X == c(tn), S 8
α =⇒ X1 == t1, . . . , Xn == tn, Sµ 8 α, where X1, . . . , Xn are fresh variables and

µ = {X 7→ c′(Xn)} for some possible choice of c′ such that S(c, c′) ≥ α.

As an optimization, our prototype system allows the user to use a directive whose

effect is that the system avoids the backtracking search just discussed and imple-

ments just the effect of the transformation X == t, S 8α =⇒ S{X 7→ t} 8α. When

including this directive, the user runs the risk of losing some valid solutions. We

conjecture that no incompleteness occurs in the case of SQCLP(S,D, C)-programs

based on a transitive S and whose clauses do not use attenuation factors other than

t; i.e. SLP programs enriched with constraint solving.

3 The Schemes QCLP & CLP as Specializations of SQCLP

As discussed in the concluding section of (Rodŕıguez-Artalejo and Romero-Dı́az

2010a), several specializations of the SQCLP scheme can be obtained by partial

instantiation of its parameters. In particular, QCLP and CLP can be defined as

schemes with instances:

QCLP(D, C) =def SQCLP(Sid,D, C)
CLP(C) =def SQCLP(Sid,B, C) = QCLP(B, C)

where Sid is the identity proximity relation and B is the qualification domain includ-

ing just the two classical boolean values. As explained in the introduction, QCLP

and CLP are the targets of the two program transformations to be developed in

Section 4. In this brief section we provide an explicit description of the syntax and

semantics of these two schemes, derived from their behavior as specializations of

SQCLP.

3.1 Presentation of the QCLP Scheme

As already explained, the instances of QCLP can be defined by the equation

QCLP(D,C) = SQCLP(Sid,D,C). Due to the admissibility of the parameter triple
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〈Sid,D, C〉, the qualification domain D must be (existentially) expressible in the con-

straint domain C. Technically, the QCLP scheme can be seen as a common extension

of the classical CLP scheme for Constraint Logic Programming (Jaffar and Lassez

1987; Jaffar et al. 1998) and the QLP scheme for Qualified Logic Programming

originally introduced in (Rodŕıguez-Artalejo and Romero-Dı́az 2008). Intuitively,

QCLP programming behaves like SQCLP programming, except that proximity in-

formation other than the identity is not available for proving equalities.

Program clauses and observable qc-atoms in QCLP are defined in the same way

as in SQCLP. The library program Ps in Figure 1 becomes a QCLP(U ,R)-program

P ′s just by replacing Sid for S. Of course, P ′s does not support flexible unification

as it was the case with Ps.
As explained in Section 2, the proof system consisting of the three displayed in

Figure 2 characterizes the declarative semantics of a given SQCLP(S,D, C)-program

P. In the particular case S = Sid, the inference rules specialize to those displayed

in Figure 3, yielding a formal proof system called Qualified Constrained Horn Logic

– in symbols, QCHL(D, C) – which characterizes the declarative semantics of a

given QCLP(D, C)-program P. Note that rule SQEA depends on a relation ≈Π

between terms that is defined to behave the same as the specialization of ≈d,Π to

the case S = Sid. It is easily checked that t ≈Π s does not depend on d and holds

iff Π |=C t == s. Both ≈d,Π and ≈Π allow to use the constraints within Π when

deducing equations. However, c(tn) ≈Π c′(sn) never holds in the case that c and c′

are not syntactically identical.

QDA
( (t′i == tiθ)]di ⇐ Π )i=1...n ( Bjθ]ej ⇐ Π )j=1...m

p(t′n)]d⇐ Π

if (p(tn)
α←− B1]w1, . . . , Bm]wm) ∈ P, θ subst.,

ej Q? wj (1 ≤ j ≤ m) and d P
dn
i=1 di u α ◦

dm
j=1 ej .

QEA
(t == s)]d⇐ Π

if t ≈Π s. QPA
κ]d⇐ Π

if Π |=C κ.

Fig. 3. Qualified Constrained Horn Logic

SQCHL(S,D, C) proof trees and the notations related to them can be naturally

specialized to QCHL(D, C). In particular, we will use the notation P D̀,C ϕ (resp.

P `kD,C ϕ) to indicate that the qc-atom ϕ can be inferred in QCHL(D, C) from

the program P (resp. it can be inferred by using exactly k QDA inference steps).

Theorem 2.1 also specializes to QCHL, yielding the following result:

Theorem 3.1 (Logical characterization of least program models in QCHL)

For any QCLP(D, C)-program P, its least model can be characterized as:

MP = {ϕ | ϕ is an observable defined qc-atom and P D̀,C ϕ}.
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Concerning goals and their solutions, their specialization to the particular case

S = Sid leaves the syntax of goals G unaffected and leads to the following definition,

almost identical to Definition 2.2:

Definition 3.1 (Goal Solutions in QCLP)

Assume a given QCLP(S,D)C-program P and a goal G : ( Ai]Wi,Wi Q?βi )i=1...m.

Then:

1. A solution for G is any triple 〈σ, µ,Π〉 such that σ is a C-substitution, Wµ ∈
D \ {b} for all W ∈ dom(µ), Π is a satisfiable and finite set of atomic C-
constraints, and the following two conditions hold for all i = 1 . . .m: Wiµ =

di Q? βi and P D̀,C Aiσ]Wiµ ⇐ Π. The set of all solutions for G is noted

SolP(G).

2. A solution 〈η, ρ,Π〉 for G is called ground iff Π = ∅ and η ∈ ValC is a variable

valuation such that Aiη is a ground atom for all i = 1 . . .m. The set of all

ground solutions for G is noted GSolP(G) ⊆ SolP(G).

3. A ground solution 〈η, ρ, ∅〉 ∈ GSolP(G) is subsumed by 〈σ, µ,Π〉 iff there is

some ν ∈ SolC(Π) s.t. η =var(G) σν and Wiρ P Wiµ for i = 1 . . .m.

Finally, the notion of correct abstract goal solving system for SQCLP given in

Definition 2.3 specializes to QCLP without any formal change. Therefore, we state

no new definition at this point.

3.2 Presentation of the CLP Scheme

As already explained, the instances of CLP can be defined by the equation CLP(C)
= SQCLP(Sid,B, C), or equivalently, CLP(C) = QCLP(B, C). Due to the fixed choice

D = B, the only qualification value d ∈ D\{b} available for use as attenuation factor

or threshold value is d = t. Therefore, CLP can only include threshold values equal

to ‘?’ and attenuation values equal to the top element t = true of B. As explained

in Section 2, such trivial threshold and attenuation values can be omitted, and CLP

clauses can be written with the simplified syntax A← B1, . . . , Bm.

Since t = true is the only non-trivial qualification value available in CLP, qc-

atoms A]d ⇐ Π are always of the form A]true ⇐ Π and can be written as

A ⇐ Π. Moreover, all the side conditions for the inference rule QDA in Figure

3 become trivial when specialized to the case D = B. Therefore, the specializa-

tion of QCHL(D, C) to the case D = B leads to the formal proof system called

Constrained Horn Logic – in symbols, CHL(C) – consisting of the three inference

rules displayed in Figure 4, which characterizes the declarative semantics of a given

CLP(C)-program P.

QCHL(D, C) proof trees and the notations related to them can be naturally

specialized to CHL(C). In particular, we will use the notation P ϕ̀ (resp. P k̀ ϕ)

to indicate that the qc-atom ϕ can be inferred in CHL(C) from the program P
(resp. it can be inferred by using exactly k DA inference steps). Theorem 3.1 also

specializes to CHL, yielding the following result:
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DA
( (t′i == tiθ)⇐ Π )i=1...n ( Bjθ ⇐ Π )j=1...m

p(t′n)⇐ Π

if (p(tn)← B1, . . . , Bm) ∈ P and θ subst.

EA
(t == s)⇐ Π

if t ≈Π s. PA
κ⇐ Π

if Π |=C κ.

Fig. 4. Constrained Horn Logic

Theorem 3.2 (Logical characterization of least program models in CHL)

For any CLP(C)-program P, its least model can be characterized as:

MP = {ϕ | ϕ is an observable defined qc-atom and P ϕ̀ }.

Concerning goals and their solutions, their specialization to the scheme CLP

leads to the following definition:

Definition 3.2 (Goals and their Solutions in CLP)

Assume a given CLP(C)-program P. Then:

1. Goals for P have the form G : A1, . . . , Am, abbreviated as ( Ai )i=1...m, where

Ai (1 ≤ i ≤ m) are atoms.

2. A solution for a goal G is any pair 〈σ,Π〉 such that σ is a C-substitution, Π is

a satisfiable and finite set of atomic C-constraints, and P C̀ Aiσ ⇐ Π holds

for all i = 1 . . .m. The set of all solutions for G is noted SolP(G).

3. A solution 〈η,Π〉 for G is called ground iff Π = ∅ and η ∈ ValC is a variable

valuation such that Aiη is a ground atom for all i = 1 . . .m. The set of all

ground solutions for G is noted GSolP(G). Obviously, GSolP(G) ⊆ SolP(G).

4. A ground solution 〈η, ∅〉 ∈ GSolP(G) is subsumed by 〈σ,Π〉 iff there is some

ν ∈ SolC(Π) s.t. η =var(G) σν.

The notion of correct abstract goal solving system for SQCFLP given in Definition

2.3 specializes to CLP with only minor formal changes, as follows:

Definition 3.3 (Correct Abstract Goal Solving Systems for CLP)

A goal solving system for CLP(C) is any effective procedure which takes a program

P and a goal G as input and yields various pairs 〈σ,Π〉, called computed answers,

as outputs. Such a goal solving system is called:

1. Sound iff every computed answer is a solution 〈σ,Π〉 ∈ SolP(G).

2. Weakly complete iff every ground solution 〈η, ∅〉 ∈ GSolP(G) is subsumed by

some computed answer.

3. Correct iff it is both sound and weakly complete.

We close this Subsection with a technical lemma that will be useful for proving

some results in Subsection 4.2:
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Lemma 3.1

Assume an existential C-constraint π(Xn) = ∃Y1 . . . ∃Yk(B1 ∧ . . . ∧ Bm) with free

variables Xn and a given CLP(C)-program P including the clause C : p(Xn) ←
B1, . . . , Bm, where p ∈ DPn does not occur at the head of any other clause of P.

Then, for any n-tuple tn of C-terms and any finite and satisfiable Π ⊆ ConC , one

has:

1. P C̀ (p(tn) ⇐ Π) =⇒ Π |=C π(tn), where π(tn) stands for the result of

applying the substitution {Xn 7→ tn} to π(Xn).

2. The opposite implication Π |=C π(tn) =⇒ P C̀ (p(tn) ⇐ Π) holds if tn
is a ground term tuple. Note that for ground tn the constraint entailment

Π |=C π(tn) simply means that π(tn) is true in C.
3. Π |=C π(tn) =⇒ P C̀ (p(tn)⇐ Π) may fail if tn is not a ground term tuple.

Proof

We prove each item separately:

1. Assume P C̀ (p(tn)⇐ Π). Note that C is the only clause for p in P and that each

atom Bj in C’s body is an atomic constraint. Therefore, the CHL(C) proof must

use a DA step based on an instance Cθ of clause C such that Π |=C ti == Xiθ

holds for all 1 ≤ i ≤ n and Π |= Bjθ holds for all 1 ≤ j ≤ m. These conditions and

the syntactic form of π(Xn) obviously imply Π |=C π(tn).

2. Assume now Π |=C π(tn) and tn ground. Then π(tn) is true in C, and due to the

syntactic form of π(Xn), there must be some substitution θ such that Xiθ = ti
(syntactic identity) for all 1 ≤ i ≤ n and Bjθ is ground and true in C for all

1 ≤ j ≤ m. Trivially, Π |=C ti == Xiθ holds for all 1 ≤ i ≤ n and Π |=C Bjθ also

holds for all 1 ≤ j ≤ m. Then, it is obvious that P C̀ (p(tn) ⇐ Π) can be proved

by using a DA step based on the instance Cθ of clause C.

3. We prove that Π |=C π(tn) =⇒ P C̀ (p(tn) ⇐ Π) can fail if tn is not ground

by presenting a counterexample based on the constraint domain R, using the syn-

tax for R-constraints explained in (Rodŕıguez-Artalejo and Romero-Dı́az 2010b).

Consider the existential R-constraint π(X) = ∃Y (op+(Y, Y,X)), and a CLP(R)-

program P including the clause C : p(X)← op+(Y, Y,X) and no other occurrence

of the defined predicate symbol p. Consider also Π = {cp≥(X, 0.0)} and t = X.

Then Π |=R π(X) is obviously true, because any real number x ≥ 0.0 satisfies

∃Y (op+(Y, Y, x)) in R. However, there is no R-term s such that Π |=R op+(s, s,X),

and therefore there is no instance Cθ of clause C that can be used to prove

P C̀ (p(X)⇐ Π) by applying a DA step.

4 Implementation by Program Transformation

The purpose of this section is to introduce a program transformation that trans-

forms SQCLP(S,D, C) programs and goals into semantically equivalent CLP(C)
programs and goals. This transformation is performed as the composition of the

two following specific transformations:
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1. elimS — Eliminates the proximity relation S of arbitrary SQCLP(S,D, C)
programs and goals, producing equivalent QCLP(D, C) programs and goals.

2. elimD — Eliminates the qualification domain D of arbitrary QCLP(D, C)
programs and goals, producing equivalent CLP(C) programs and goals.

Thus, given a SQCLP(S,D, C)-program P—resp. SQCLP(S,D, C)-goal G—, the

composition of the two transformations will produce an equivalent CLP(C)-program

elimD(elimS(P))—resp. CLP(C)-goal elimD(elimS(G))—.

Example 4.1 (Running example: SQCLP(Sr, U⊗W,R)-program Pr)
As a running example for this section, consider the SQCLP(Sr, U⊗W,R)-program

Pr as follows:

R1 famous(sha)
(0.9,1)←−−−−

R2 wrote(sha, kle)
(1,1)←−−−

R3 wrote(sha, hamlet)
(1,1)←−−−

R4 good work(G)
(0.75,3)←−−−−− famous(A)#(0.5,100), authored(A, G)

S1 Sr(wrote, authored) = Sr(authored, wrote) = (0.9,0)

S2 Sr(kle, kli) = Sr(kli, kle) = (0.8,2)

where the constants shakespeare, king lear and king liar have been respectively

replaced, for clarity purposes in the subsequent examples, by sha, kle and kli.

In addition, consider the SQCLP(Sr, U⊗W,R)-goal Gr as follows:

good work(X)#W 8 W Q?(0.5,10)

We will illustrate the two transformation by showing, in subsequent examples,

the program clauses of elimS(Pr) and elimD(elimS(Pr)) and the goals elimS(Gr)

and elimD(elimS(Gr)).

The next two subsections explain each transformation in detail.

4.1 Transforming SQCLP into QCLP

In this subsection we assume that the triple 〈S,D, C〉 is admissible. In the sequel

we say that a defined predicate symbol p ∈ DPn is affected by a SQCLP(S,D, C)-
program P iff S(p, p′) 6= b for some p′ occurring in P. We also say that an atom

A is relevant for P iff some of the three following cases hold: a) A is an equation

t == s; b) A is a primitive atom κ; or c) A is a defined atom p(tn) such that p is

affected by P.

As a first step towards the definition of the first program transformation elimS ,

we define a set EQS of QCLP(D, C) program clauses that emulates the behavior

of equations in SQCLP(S,D, C). The following definition assumes that the binary

predicate symbol ∼ ∈ DP 2 (used in infix notation) and the nullary predicate sym-

bols payλ ∈ DP 0 are not affected by P.
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Definition 4.1

We define EQS as the following QCLP(D, C)-program:

EQS =def { X ∼ Y
t←− (X == Y )]? }⋃

{ u ∼ u′ t←− payλ]? | u, u′ ∈ BC and S(u, u′) = λ 6= b }⋃
{ c(Xn) ∼ c′(Y n)

t←− payλ]?, ( (Xi ∼ Yi)]? )i=1...n | c, c′ ∈ DCn
and S(c, c′) = λ 6= b }⋃
{ payλ

λ←− | for each λ ∈ D \ {b} }.

The following lemma shows the relation between the semantics of equations in

SQCHL(S,D, C) and the behavior of the binary predicate symbol ‘∼’ defined by

EQS in QCHL(D, C).

Lemma 4.1

Consider any two arbitrary terms t and s; EQS defined as in Definition 4.1; and a

satisfiable finite set Π of C-constraints. Then, for every d ∈ D \ {b}:

t ≈d,Π s⇐⇒ EQS D̀,C (t ∼ s)]d⇐ Π .

Proof

We separately prove each implication.

[=⇒] Assume t ≈d,Π s. Then, there are two terms t̂, ŝ such that:

(1) t ≈Π t̂ (2) s ≈Π ŝ (3) t̂ ≈d ŝ

We use structural induction on the form of the term t̂.

• t̂ = Z, Z ∈ Var. From (3) we have ŝ = Z. Then (1) and (2) become t ≈Π Z and

s ≈Π Z, therefore t ≈Π s. Now EQS D̀,C (t ∼ s)]d ⇐ Π can be proved with a

proof tree rooted by a QDA step of the form:

(t == Xθ)]t⇐ Π (s == Y θ)]t⇐ Π (X == Y )θ]t⇐ Π

(t ∼ s)]d⇐ Π

using the clause X ∼ Y
t←− (X == Y )]? ∈ EQS instantiated by the substitution

θ = {X 7→ t, Y 7→ s}. Therefore the three premises can be derived from EQS
with QEA steps since t ≈Π t, s ≈Π s and t ≈Π s, respectively. Checking the side

conditions of all inference steps is straightforward.

• t̂ = u, u ∈ BC . From (3) we have ŝ = u′ for some u′ ∈ BC such that d P λ =

S(u, u′). Then (1) and (2) become t ≈Π u and s ≈Π u′, which allow to build a

proof of EQS D̀,C (t ∼ s)]d ⇐ Π by means of a QDA step using the clause

u ∼ u′ t←− payλ]?.

• t̂ = c, c ∈ DC0. From (3) we have ŝ = c′ for some c′ ∈ DC0 such that d P λ =

S(c, c′). Then (1) and (2) become t ≈Π c and s ≈Π c′, which allow us to build

a proof of EQS D̀,C (t ∼ s)]d ⇐ Π by means of a QDA step using the clause

c ∼ c′ t←− payλ]?.

• t̂ = c(tn), c ∈ DCn with n > 0. In this case, and because of (3), we can assume

ŝ = c′(sn) for some c′ ∈ DCn satisfying d P d0 =def S(c, c′) and d P di =def S(ti, si)
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for i = 1 . . . n. Then EQS D̀,C (t ∼ s)]d⇐ Π with a proof tree rooted by a QDA

step of the form:

(t == c(tn))]t⇐ Π payd0]d0 ⇐ Π

(s == c′(sn))]t⇐ Π ( (ti ∼ si)]di ⇐ Π )i=1...n

(t ∼ s)]d⇐ Π

using the EQS clause C : c(Xn) ∼ c′(Y n)
t←− payd0]?, ((Xi ∼ Yi)]?)i=1...n instanti-

ated by the substitution θ = {X1 7→ t1, Y1 7→ s1, . . . , Xn 7→ tn, Yn 7→ sn}. Note

that C has attenuation factor t and threshold values ? at the body. Therefore, the

side conditions of the QDA step boil down to d P di (1 ≤ i ≤ n) which are true by

assumption. It remains to prove that each premise of the QDA step can be derived

from EQS in QCHL(D, C):

— EQS D̀,C (t == c(tn))]t⇐ Π and EQS D̀,C (s == c′(sn))]t⇐ Π are trivial

consequences of t ≈Π c(tn) and s ≈Π c′(sn), respectively. In both cases, the

QCHL(D,C) proofs consist of one single QEA step.

— EQS D̀,C payd0]d0 ⇐ Π can be proved using the clause payd0
d0←− ∈ EQS in

one single QDA step.

— EQS D̀,C (ti ∼ si)]di ⇐ Π for i = 1 . . . n. For each i, we observe that ti ≈di,Π
si holds because of t̂i = ti, ŝi = si which satisfy ti ≈Π t̂i, si ≈Π ŝi and

t̂i ≈di ŝi. Since t̂i = ti is a subterm of t̂ = c(tn), the inductive hypothesis can

be applied.

[⇐=] Let T be a QCHL(D, C)-proof tree witnessing EQS D̀,C (t ∼ s)]d ⇐ Π. We

prove t ≈d,Π s reasoning by induction on the number n = ‖T‖ of nodes in T that

represent conclusions of QDA inference steps. Note that all the program clauses

belonging to EQS define either the binary predicate symbol ‘∼’ or the nullary

predicates payλ.

Basis (n = 1).

In this case we have for the QDA inference step that there can be used three

possible EQS clauses:

1. The program clause is X ∼ Y
t←− (X == Y )]?. Then the QDA inference

step must be of the form:

(t == t′)]d1 ⇐ Π (s == s′)]d2 ⇐ Π (t′ == s′)]e1 ⇐ Π

(t ∼ s)]d⇐ Π

with d P d1 u d2 u e1. The proof of the three premises must use the QEA

inference rule. Because of the conditions of this inference rule we have

t ≈Π t′, s ≈Π s′ and t′ ≈Π s′. Therefore t ≈Π s is clear. Then t ≈d,Π s

holds by taking t̂ = ŝ = t because, trivially, t ≈Π t̂, s ≈Π ŝ and t̂ ≈d ŝ.
2. The program clause is u ∼ u′ t←− payλ]? with u, u′ ∈ BC such that S(u, u′) =

λ 6= b. The QDA inference step must be of the form:

(t == u)]d1 ⇐ Π (s == u′)]d2 ⇐ Π payλ]e1 ⇐ Π

(t ∼ s)]d⇐ Π
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with d P d1 u d2 u e1. Due to the forms of the QEA inference rule and

the EQS clause payλ
λ←−, we can assume without loss of generality that

d1 = d2 = t and e1 = λ. Therefore d P λ. Moreover, the QCHL(D,C)
proofs of the first two premises must use QEA inferences. Consequently

we have t ≈Π u and s ≈Π u′. These facts and u ≈d u′ imply t ≈d,Π s.

3. The program clause is c ∼ c′ t←− payλ]? with c, c′ ∈ DC0 such that S(c, c′) =

λ 6= b. The QDA inference step must be of the form:

(t == c)]d1 ⇐ Π (s == c′)]d2 ⇐ Π payλ]e1 ⇐ Π

(t ∼ s)]d⇐ Π

with d P d1 u d2 u e1. Due to the forms of the QEA inference rule and

the EQS clause payλ
λ←−, we can assume without loss of generality that

d1 = d2 = t and e1 = λ. Therefore d P λ. Moreover, the QCHL(D,C)
proofs of the first two premises must use QEA inferences. Consequently

we have t ≈Π c and s ≈Π c′. These facts and c ≈d c′ imply t ≈d,Π s.

Inductive step (n > 1).

In this case t and s must be of the form t = c(tn) and s = c′(sn). The EQS
clause used in the QDA inference step at the root must be of the form:

c(Xn) ∼ c′(Y n)
t←− payd0]?, ((Xi ∼ Yi)]?)i=1...n

with S(c, c′) = d0 6= b. The inference step at the root will be:

(t == c(tn))]d1 ⇐ Π payd0]e0 ⇐ Π

(s == c′(sn))]d2 ⇐ Π ( (ti ∼ si)]ei ⇐ Π )i=1...n

(t ∼ s)]d⇐ Π

with d P d1 u d2 u
dn
i=0 ei. Due to the forms of the EQS clause payd0

d0←− and

the QEA inference rule there is no loss of generality in assuming d1 = d2 = t

and e0 = d0, therefore we have d P d0 u
dn
i=1 ei. By the inductive hypothesis

ti ≈ei,Π si (1 ≤ i ≤ n), i.e. there are constructor terms t̂i, ŝi such that ti ≈Π t̂i,

si ≈Π ŝi and t̂i ≈ei ŝi for i = 1 . . . n. Thus, we can build t̂ = c(t̂1, . . . , t̂n) and

ŝ = c′(ŝ1, . . . , ŝn) having t ≈d,Π s because:

• t ≈Π t̂, i.e. c(tn) ≈Π c(t̂n), by decomposition since ti ≈Π t̂i.

• s ≈Π ŝ, i.e. c′(sn) ≈Π c′(ŝn), again by decomposition since si ≈Π ŝi.

• t̂ ≈d ŝ, since d P d0 u
dn
i=1 ei P S(c, c′) u

dn
i=1 S(t̂i, ŝi) = S(t̂, ŝ) .

We are now ready to define elimS acting over programs and goals.

Definition 4.2

Assume a SQCLP(S,D, C)-program P and a SQCLP(S,D, C)-goal G for P whose

atoms are all relevant for P. Then we define:

1. For each atom A, let A∼ be t ∼ s if A : t == s; otherwise let A∼ be A.

2. For each clause C : (p(tn)
α←− B) ∈ P let ĈS be the set of QCLP(D, C) clauses

consisting of:
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— The clause Ĉ : (p̂C(tn)
α←− B∼), where p̂C ∈ DPn is not affected by P

(chosen in a different way for each C) and B∼ is obtained from B by

replacing each atom A occurring in B by A∼.

— A clause p′(Xn)
t←− payλ]?, ((Xi ∼ ti)]?)i=1...n, p̂C(tn)]? for each p′ ∈

DPn such that S(p, p′) = λ 6= b. Here, Xn must be chosen as n pairwise

different variables not occurring in the clause C.

3. elimS(P) is the QCLP(D, C)-program EQS ∪ P̂S where P̂S =def

⋃
C∈P ĈS .

4. elimS(G) is the QCLP(D, C)-goal G∼ obtained from G by replacing each atom

A occurring in G by A∼.

The following example illustrates the transformation elimS .

Example 4.2 (Running example: QCLP(U⊗W, R)-program elimS(Pr))
Consider the SQCLP(Sr, U⊗W,R)-program Pr and the goal Gr for Pr as presented

in Example 4.1. The transformed QCLP(U⊗W,R)-program elimS(Pr) is as follows:

R̂1 f̂amousR1
(sha)

(0.9,1)←−−−−

R1.1 famous(X) ← payt, X∼sha, f̂amousR1
(sha)

R̂2 ŵroteR2
(sha, kle)

(1,1)←−−−

R2.1 wrote(X, Y) ← payt, X∼sha, Y∼kle, ŵroteR2
(sha, kle)

R2.2 authored(X, Y) ← pay(0.9,0), X∼sha, Y∼kle, ŵroteR2
(sha, kle)

R̂3 ŵroteR3
(sha, hamlet)

(1,1)←−−−

R3.1 wrote(X, Y) ← payt, X∼sha, Y∼hamlet, ŵroteR3(sha, hamlet)

R3.2 authored(X, Y) ← pay(0.9,0), X∼sha, Y∼hamlet, ŵroteR3
(sha, hamlet)

R̂4 ĝood workR4
(G)

(0.75,3)←−−−−− famous(A)#(0.5,100), authored(A, G)

R4.1 good work(X) ← payt, X∼G, ĝood workR4
(G)

% Program clauses for ∼: % Program clauses for pay:

X∼Y ← X==Y payt ←

kle∼ kli ← pay(0.8,2) pay(0.9,0)
(0.9,0)←−−−−

[. . .] pay(0.8,2)
(0.8,2)←−−−−

Finally, the goal elimS(Gr) for elimS(Pr) is as follows:

good work(X)#W 8 W Q?(0.5,10)

The next theorem proves the semantic correctness of the program transformation.

Theorem 4.1

Consider a SQCLP(S,D, C)-program P, an atom A relevant for P, a qualification

value d ∈ D \{b} and a satisfiable finite set of C-constraints Π. Then, the following

two statements are equivalent:

1. P S̀,D,C A]d⇐ Π

2. elimS(P) D̀,C A∼]d⇐ Π

where A∼ is understood as in Definition 4.2(1).
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Proof

We separately prove each implication.

[1. ⇒ 2.] (the transformation is complete). Assume that T is a SQCHL(S,D, C)
proof tree witnessing P S̀,D,C A]d ⇐ Π. We want to show the existence of a

QCHL(D, C) proof tree T ′ witnessing elimS(P) D̀,C A∼]d ⇐ Π. We reason by

complete induction on ‖T‖. There are three possible cases according to the syntactic

form of the atom A. In each case we argue how to build the desired proof tree T ′.

— A is a primitive atom κ. In this case A∼ is also κ and T contains only one

SQPA inference node. Because of the inference rules SQPA and QPA, both

P S̀,D,C κ]d⇐ Π and elimS(P) D̀,C κ]d⇐ Π are equivalent to Π |=C κ, therefore

T ′ trivially contains just one QPA inference node.

— A is an equation t == s. In this case A∼ is t ∼ s and T contains just one SQEA

inference node. We know P S̀,D,C (t == s)]d⇐ Π is equivalent to t ≈d,Π s because

of the inference rule SQEA. From this equivalence follows EQS D̀,C (t ∼ s)]d⇐ Π

due to Lemma 4.1 and hence elimS(P) D̀,C (t ∼ s)]d ⇐ Π by construction of

elimS(P). In this case, T ′ will be a proof tree rooted by a QDA inference step.

— A is a defined atom p′(t′n) with p′ ∈ DPn. In this case A∼ is p′(t′n) and the

root inference of T must be a SQDA inference step of the form:

( (t′i == tiθ)]di ⇐ Π )i=1...n ( Bjθ]ej ⇐ Π )j=1...m

p′(t′n)]d⇐ Π
(♣)

with C : (p(tn)
α←− B1]w1, . . . , Bm]wm) ∈ P, θ substitution, S(p′, p) = d0 6= b,

ej Q? wj (1 ≤ j ≤ m), d P di (0 ≤ i ≤ n) and d P α ◦ ej (1 ≤ j ≤ m)—which

means d P α in the case m = 0. We can assume that the first n premises at (♣) are

proved in SQCLP(S,D, C) w.r.t. P by proof trees T1i (1 ≤ i ≤ n) satisfying ‖T1i‖ <
‖T‖ (1 ≤ i ≤ n), and the last m premises at (♣) are proved in SQCLP(S,D, C)
w.r.t. P by proof trees T2j (1 ≤ j ≤ m) satisfying ‖T2j‖ < ‖T‖ (1 ≤ j ≤ m).

By Definition 4.2, we know that the transformed program elimS(P) contains two

clauses of the following form:

Ĉ : p̂C(tn)
α←− B1

∼]w1, . . . , B
m
∼ ]wm

Ĉp′ : p′(Xn)
t←− payd0]?, ( (Xi ∼ ti)]? )i=1...n, p̂C(tn)]?

where Xi (1 ≤ i ≤ n) are fresh variables not occurring in C and Bj∼ (1 ≤ j ≤ m)

is the result of replacing ‘∼’ for ‘==’ if Bj is equation; and Bj itself otherwise.

Given that the n variables Xi do not occur in C, we can assume that σ =def θ
′ ] θ

with θ′ =def {X1 7→ t′1, . . . , Xn 7→ t′n} is a well-defined substitution. We claim

that elimS(P) D̀,C A∼]d ⇐ Π can be proved with a proof tree T ′ rooted by the

QDA inference step (♠.1), which uses the clause Ĉp′ instantiated by σ and having

dn+1 = d.

( (t′i == Xiσ)]t⇐ Π )i=1...n

payd0σ]d0 ⇐ Π

( (Xi ∼ ti)σ]di ⇐ Π )i=1...n

p̂C(tn)σ]dn+1 ⇐ Π

p′(t′n)]d⇐ Π
(♠.1)

( (t′i == Xiθ
′)]t⇐ Π )i=1...n

payd0]d0 ⇐ Π

( (Xiθ
′ ∼ tiθ)]di ⇐ Π )i=1...n

p̂C(tnθ)]dn+1 ⇐ Π

p′(t′n)]d⇐ Π
(♠.2)
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By construction of σ, (♠.1) can be rewritten as (♠.2), and in order to build the

rest of T ′, we show that each premise of (♠.2) admits a proof in QCHL(D, C) w.r.t.

the transformed program elimS(P):

• elimS(P) D̀,C (t′i == Xiθ
′)]t ⇐ Π for i = 1 . . . n. Straightforward using a single

QEA inference step since Xiθ
′ = t′i and t′i ≈Π t′i is trivially true.

• elimS(P) D̀,C payd0]d0 ⇐ Π. Immediate using the clause (payd0
d0←−) ∈ elimS(P)

with a single QDA inference step.

• elimS(P) D̀,C (Xiθ
′ ∼ tiθ)]di ⇐ Π for i = 1 . . . n. From the first n premises of (♣)

we know P S̀,D,C (t′i == tiθ)]di ⇐ Π with a proof tree T1i satisfying ‖T1i‖ < ‖T‖
for i = 1 . . . n. Therefore, for i = 1 . . . n, elimS(P) D̀,C (t′i ∼ tiθ)]di ⇐ Π with some

QCHL(D,C) proof tree T ′1i by inductive hypothesis. Since (Xiθ
′ ∼ tiθ) = (t′i ∼ tiθ)

for i = 1 . . . n, we are done.

• elimS(P) D̀,C p̂C(tnθ)]d ⇐ Π. This is proved by a QCHL(D, C) proof tree with a

QDA inference step node at its root of the following form:

( (tiθ == tiθ)]di ⇐ Π )i=1...n ( Bj∼θ]ej ⇐ Π )j=1...m

p̂C(tnθ)]d⇐ Π
(♥)

which uses the program clause Ĉ instantiated by the substitution θ. Once more, we

have to check that the premises can be derived in QCHL(D, C) from the transformed

program elimS(P) and that the side conditions of (♥) are satisfied:

— The first n premises can be trivially proved using QEA inference steps.

— The last m premises can be proved w.r.t. elimS(P) with some QCHL(D, C)
proof trees T ′2j (1 ≤ j ≤ m) by the inductive hypothesis, since we have

premises ( Bjθ]ej ⇐ Π )j=1...m at (♣) that can be proved in SQCLP(S,D, C)
w.r.t. P with proof trees T2j of size ‖T2j‖ < ‖T‖ (1 ≤ j ≤ m).

— The side conditions—namely: ej Q? wj (1 ≤ j ≤ m), d P di (1 ≤ i ≤ n) and

d P α ◦ ej (1 ≤ j ≤ m)—trivially hold because they are also satisfied by (♣).

Finally, we complete the construction of T ′ by checking that (♠.2) satisfies the

side conditions of the inference rule QDA:

• All threshold values at the body of Ĉp′ are ‘?’, therefore the first group of side

conditions becomes di Q? ? (0 ≤ i ≤ n+ 1), which are trivially true.

• The second side condition reduces to d P t, which is also trivially true.

• The third, and last, side condition is d P t ◦ di (0 ≤ i ≤ n + 1), or equivalently

d P di (0 ≤ i ≤ n+ 1). In fact, d P di (0 ≤ i ≤ n) holds due to the side conditions

in (♣), and d P dn+1 holds because dn+1 = d by construction of (♠.1) and (♠.2).

[2. ⇒ 1.] (the transformation is sound). Assume that T ′ is a QCHL(D, C) proof

tree witnessing elimS(P) D̀,C A∼]d ⇐ Π. We want to show the existence of a

SQCHL(S,D, C) proof tree T witnessing P S̀,D,C A]d⇐ Π. We reason by complete

induction of ‖T ′‖. There are three possible cases according to the syntactic form of

the atom A∼. In each case we argue how to build the desired proof tree T .

— A∼ is a primitive atom κ. In this case A is also κ and T ′ contains only one QPA

inference node. Both elimS(P) D̀,C κ]d⇐ Π and P S̀,D,C κ]d⇐ Π are equivalent
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to Π |=C κ because of the inference rules QPA and SQPA, therefore T trivially

contains just one SQPA inference node.

— A∼ is of the form t ∼ s. In this case A is t == s and T ′ is rooted by a QDA

inference step. From elimS(P) D̀,C (t ∼ s)]d⇐ Π and by construction of elimS(P)

we have EQS D̀,C (t ∼ s)]d ⇐ Π. By Lemma 4.1 we get t ≈d,Π s and, by the

definition of the SQEA inference step, we can build T as a proof tree with only

one SQEA inference node proving P S̀,D,C (t == s)]d⇐ Π.

— A∼ is a defined atom p′(tn) with p′ ∈ DPn and p′ 6= ∼. In this case A = A∼
and the step at the root of T ′ must be a QDA inference step using a clause C ′ ∈
elimS(P) with head predicate p′ and a substitution θ. Because of Definition 4.2 and

the fact that p′ is relevant for P, there must be some clause C : (p(tn)
α←− B) ∈ P

such that S(p, p′) = d0 6= b, and C ′ must be of the form:

C ′ : p′(Xn)
t←− payd0]?, ((Xi ∼ ti)]?)i=1...n, p̂C(tn)]?

where the variables Xn do not occur in C. Thus the QDA inference step at the

root of T ′ must be of the form:

( (t′i == Xiθ)]d1i ⇐ Π )i=1...n

payd0θ]e10 ⇐ Π

( (Xi ∼ ti)θ]e1i ⇐ Π )i=1...n

p̂C(tn)θ]e1(n+1) ⇐ Π

p′(t′n)]d⇐ Π
(♠)

and the proof of the last premise must use the only clause for p̂C introduced in

elimS(P) according to Definition 4.2, i.e.:

Ĉ : p̂C(tn)
α←− B1

∼]w1, . . . , B
m
∼ ]wm .

Therefore, the proof of this premise must be of the form:

( (tiθ == tiθ
′)]d2i ⇐ Π )i=1...n ( Bj∼θ

′]e2j ⇐ Π )j=1...m

p̂C(tn)θ]e1(n+1) ⇐ Π
(♥)

for some substitution θ′ not affecting Xn. We can assume that the last m premises in

(♥) are proved in QCHL(D, C) w.r.t. elimS(P) by proof trees T ′j satisfying ‖T ′j‖ <
‖T ′‖ (1 ≤ j ≤ m). Then we use the substitution θ′ and clause C to build a

SQCHL(S,D, C) proof tree T with a SQDA inference step at the root of the form:

( (t′i == tiθ
′)]e1i ⇐ Π )i=1...n ( Bjθ

′]e2j ⇐ Π )j=1...m

p′(t′n)]d⇐ Π
(♣)

Next we check that the premises of this inference step admit proofs in SQCHL(S,D,
C) and that (♣) satisfies the side conditions of a valid SQDA inference step.

• P S̀,D,C (t′i == tiθ
′)]e1i ⇐ Π for i = 1 . . . n.

— From the premises ((Xi ∼ ti)θ]e1i ⇐ Π)i=1...n of (♠) and by construction of

elimS(P) we know EQS D̀,C (Xi ∼ ti)θ]e1i ⇐ Π (1 ≤ i ≤ n). Therefore by

Lemma 4.1 we have Xiθ ≈e1i,Π tiθ for i = 1 . . . n.

— Consider now the premises ((t′i == Xiθ)]d1i ⇐ Π)i=1...n of (♠). Their proofs
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must rely on QEA inference steps, and therefore t′i ≈Π Xiθ holds for i =

1 . . . n.

— Analogously, from the proofs of the premises ((tiθ == tiθ
′)]d2i ⇐ Π)i=1...n

we have tiθ ≈Π tiθ
′ (or equivalently tiθ

′ ≈Π tiθ) for i = 1 . . . n.

From the previous points we have Xiθ ≈e1i,Π tiθ, t
′
i ≈Π Xiθ and tiθ

′ ≈Π tiθ,

which by Lemma 2.7(1) of (Rodŕıguez-Artalejo and Romero-Dı́az 2010b) imply

t′i ≈e1i,Π tiθ
′ (1 ≤ i ≤ n). Therefore the premises ((t′i == tiθ

′)]e1i ⇐ Π)i=1...n can

be proven in SQCHL(S,D, C) using a SQEA inference step.

• P S̀,D,C Bjθ
′]e2j ⇐ Π for j = 1 . . .m. We know elimS(P) D̀,C B

j
∼θ
′]e2j ⇐ Π with

a proof tree T ′j satisfying ‖T ′j‖ < ‖T ′‖ (1 ≤ j ≤ m) because of (♥). Therefore we

have, by inductive hypothesis, P S̀,D,C Bjθ
′]e2j ⇐ Π for some SQCHL(S,D, C)

proof tree Tj (1 ≤ j ≤ m).

• S(p, p′) = d0 6= b. As seen above.

• e2j Q? wj for j = 1 . . .m. This is a side condition of the QDA step in (♥).

• d P e1i for i = 1 . . . n. Straightforward from the side conditions of (♠), which

include d P t ◦ e1i for (0 ≤ i ≤ n+ 1).

• d P α◦e2j for j = 1 . . .m. This follows from the side conditions of (♠) and (♥), since

we have d P t◦e1i for i = 0 . . . n+1 (in particular d P e1(n+1)) and e1(n+1) P α◦e2j

for j = 1 . . .m.

Finally, the next theorem extends the previous result to goals.

Theorem 4.2

Let G be a goal for a SQCLP(S,D, C)-program P whose atoms are all relevant for

P. Assume P ′ = elimS(P) and G′ = elimS(G). Then, SolP(G) = SolP′(G′).

Proof

According to the definition of goals in Section 2, and Definition 4.2, G and G′ must

be of the form (Ai]Wi,Wi Q?βi)i=1...m and (Ai∼]Wi,Wi Q?βi)i=1...m, respectively.

By Definitions 2.2 and 3.1, both SolP(G) and SolP′(G′) are sets of triples 〈σ, µ,Π〉
where σ is a C-substitution, µ : war(G)→ DD \ {b} (note that war(G) = war(G′))

and Π is a satisfiable finite set of C-constraints. Moreover:

1. 〈σ, µ,Π〉 ∈ SolP(G) iff Wiµ = di Q?βi and P S̀,D,C Aiσ]Wiµ⇐ Π (1 ≤ i ≤ m).

2. 〈σ, µ,Π〉 ∈ SolP′(G′) iff Wiµ = di Q?βi and P ′ D̀,C Ai∼σ]Wiµ⇐ Π (1 ≤ i ≤ m).

Because of Theorem 4.1, conditions (1) and (2) are equivalent.

4.2 Transforming QCLP into CLP

The results presented in this subsection are dependant on the assumption that the

qualification domain D is existentially expressible in the constraint domain C via

an injective mapping ı : DD \ {b} → CC and two existential C-constraints of the

following form:

qVal(X) = ∃U1 . . . ∃Uk(B1 ∧ . . . ∧Bm)

qBound(X,Y, Z) = ∃V1 . . . ∃Vl(C1 ∧ . . . ∧ Cq)
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Our aim is to present semantically correct transformations from QCLP(D, C)
into CLP(C), working both for programs and goals. In order to compute with the

encodings of D values in C, we will use the CLP(C)-program ED consisting of the

following two clauses:

qVal(X) ← B1, . . . , Bm
qBound(X,Y, Z) ← C1, . . . , Cq

where qVal ∈ DP 1 and qBound ∈ DP 3 do not occur in the QCLP(D, C) programs

and goals to be transformed.

The lemma stated below is an immediate consequence of Lemma 3.1 and Defini-

tion 2.1.

Lemma 4.2

For any satisfiable finite set Π of C-constraints one has:

1. For any ground term t ∈ CC :

t ∈ ran(ı) ⇐⇒ qVal(t) true in C ⇐⇒ ED C̀ qVal(t)⇐ Π

2. For any ground terms r = ı(x), s = ı(y), t = ı(z) with x, y, z ∈ DD \ {b}:

x P y ◦ z ⇐⇒ qBound(r, s, t) true in C ⇐⇒ ED C̀ qBound(r, s, t)⇐ Π

The two items above are also valid if ED is replaced by any CLP(C)-program

including the two clauses in ED and having no additional occurrences of qVal and

qBound at the head of clauses.

Now we are ready to define the transformations from QCLP(D, C) into CLP(C).

Definition 4.3

Assume that D is existentially expressible in C, and let qVal(X), qBound(X,Y, Z)

and ED be as explained above. Assume also a QCLP(D, C)-program P and a

QCLP(D, C)-goal G for P without occurrences of the defined predicate symbols

qVal and qBound. Then:

1. P is transformed into the CLP(C)-program elimD(P) consisting of the two

clauses in ED and the transformed CT of each clause C ∈ P, built as specified

in Figure 5. The transformation rules of this figure assume a different choice

of p′ ∈ DPn+1 for each p ∈ DPn.
2. G is transformed into the CLP(C)-goal elimD(G) built as specified in Figure

5. Note that the qualification variables Wn occurring in G become normal

CLP variables in the transformed goal.

The following example illustrates the transformation elimD.

Example 4.3 (Running example: CLP(R)-program elimD(elimS(Pr)))
Consider the QCLP(U⊗W,R)-program elimS(Pr) and the goal elimS(Gr) for the

same program as presented in Example 4.2. The transformed CLP(R)-program

elimD(elimS(Pr)) is as follows:
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Transforming Atoms

TEA (t == s)T = (t == s, ı(t)).

TPA (κ)T = (κ, ı(t)) with κ primitive atom.

TDA (p(tn))T = (p′(tn,W ), W ) with p ∈ DPn and W a fresh CLP variable.

Transforming qc-Atoms

TQCA
AT = (A′, w)

(A]d⇐ Π)T = (A′ ⇐ Π, {qVal(w), qBound(ı(d), ı(t), w)})

Transforming Program Clauses

TPC
( BT

j = (B′
j , w

′
j) )j=1...m

CT = p′(tn,W ) ← qVal(W ),

(
qVal(w′

j), pw
′
j Q? ı(wj)q,

qBound(W, ı(α), w′
j), B

′
j

)
j=1...m

where C : p(tn)
α←− B1]w1, . . . , Bm]wm, W is a fresh CLP variable and

pw′
j Q? ı(wj)q is omitted if wj = ?, i.o.c. abbreviates qBound(ı(wj), ı(t), w

′
j).

Transforming Goals

TG
( BT

j = (B′
j , w

′
j) )j=1...m

elimD(G) =

(
qVal(Wj), pWj Q? ı(βj)q,
qVal(w′

j), qBound(Wj , ı(t), w
′
j), B

′
j

)
j=1...m

where G : (Bj]Wj ,Wj Q? βj)j=1...m and pWj Q? ı(βi)q as in TPC above.

Fig. 5. Transformation rules

R̂1 f̂amousR1(sha, W) ← qVal(W), qBound(W, t, (0.9,1))

R1.1 famous(X, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), f̂amousR1
(sha, W3)

R̂2 ŵroteR2(sha, kle, W) ← qVal(W), qBound(W, t, (1,1))

R2.1 wrote(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, kle, W3),

qVal(W4), qBound(W, t, W4), ŵroteR2
(sha, kle, W4)

R2.2 authored(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), pay(0.9,0)(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, kle, W3),

qVal(W4), qBound(W, t, W4), ŵroteR2
(sha, kle, W4)

R̂3 ŵroteR3(sha, hamlet, W) ← qVal(W), qBound(W, t, (1,1))

R3.1 wrote(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, hamlet, W3),

qVal(W4), qBound(W, t, W4), ŵroteR3
(sha, hamlet, W4)
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R3.2 authored(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), pay(0.9,0)(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, hamlet, W3),

qVal(W4), qBound(W, t, W4), ŵroteR3
(sha, hamlet, W4)

R̂4 ĝood workR4
(X, W) ← qVal(W),

qVal(W1), qBound((0.5,100), t, W1), qBound(W, (0.75,3), W1), famous(Y, W1),

qVal(W2), qBound(W, (0.75,3), W2), authored(Y, X, W2)

R4.1 good work(G, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(G, X, W2),

qVal(W3), qBound(W, t, W3), ĝood workR4
(X, W3)

% Program clauses for ∼:

∼(X, Y, W) ← qVal(W), qVal(t), qBound(W, t, t), X==Y

∼(kle, kli, W) ← qVal(W), qVal(W1), qBound(W, t, W1), pay(0.8,2)(W1)

[. . .]

% Program clauses for pay:

payt(W) ← qVal(W), qBound(W, t, t)

pay(0.9,0)(W) ← qVal(W), qBound(W, t, (0.9,0))

pay(0.8,2)(W) ← qVal(W), qBound(W, t, (0.8,2))

% Program clauses for qVal & qBound:

qVal((X1,X2)) ← X1 > 0, X1 ≤ 1, X2 ≥ 0

qBound((W1,W2), (Y1,Y2), (Z1,Z2)) ← W1 ≤ Y1 × Z1, W2 ≥ Y2 + Z2

Finally, the goal elimD(elimS(Gr)) for elimD(elimS(Pr)) is as follows:

qVal(W), qBound((0.5,10), t, W), qVal(W’), qBound(W, t, W’), good work(X, W’)

Note that, in order to improve the clarity of the program clauses of this example,

the qualification value (1,0)—top value in U⊗W—has been replaced by t.

The next theorem proves the semantic correctness of the program transformation.

Theorem 4.3

Let A be an atom such that qVal and qBound do not occur in A. Assume d ∈ D\{b}
such that (A]d ⇐ Π)T = (A′ ⇐ Π,Ω). Then, the two following statements are

equivalent:

1. P D̀,C A]d⇐ Π

2. elimD(P) C̀ A
′ρ⇐ Π for some ρ ∈ SolC(Ω) such that dom(ρ) = var(Ω).

Proof

We separately prove each implication.

[1. ⇒ 2.] (the transformation is complete). We assume that T is a QCHL(D, C)
proof tree witnessing P D̀,C A]d⇐ Π. We want to show the existence of a CLP(C)
proof tree T ′ witnessing elimD(P) C̀ A

′ρ ⇐ Π for some ρ ∈ SolC(Ω) such that

dom(ρ) = var(Ω). We reason by complete induction on ‖T‖. There are three possible
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cases, according to the the syntactic form of the atom A. In each case we argue

how to build the desired proof tree T ′.

— A is a primitive atom κ. In this case TQCA and TPA compute A′ = κ and

Ω = {qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Now, from P D̀,C κ]d ⇐ Π follows

Π |=C κ due to the QPA inference, and therefore taking ρ = ε we can prove

elimD(P) C̀ κε ⇐ Π with a proof tree T ′ containing only one PA node. More-

over, ε ∈ SolC(Ω) is trivially true because the two constraints belonging to Ω are

obviously true in C.
— A is an equation t == s. In this case TQCA and TEA compute A′ = (t == s)

and Ω = {qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Now, from P D̀,C (t == s)]d ⇐ Π

follows t ≈Π s due to the QEA inference, and therefore taking ρ = ε we can prove

elimD(P) C̀ (t == s)ε ⇐ Π with a proof tree T ′ containing only one EA node.

Moreover, ε ∈ SolC(Ω) is trivially true because the two constraints belonging to Ω

are obviously true in C.
— A is a defined atom p(t′n) with p ∈ DPn. In this case TQCA and TDA compute

A′ = p′(t′n,W ) and Ω = {qVal(W ), qBound(ı(d), ı(t),W )} where W is a fresh CLP

variable. On the other hand, T must be rooted by a QDA step of the form:

( (t′i == tiθ)]di ⇐ Π )i=1...n ( Bjθ]ej ⇐ Π )j=1...m

p(t′n)]d⇐ Π
(♣)

using a clause C : (p(tn)
α←− B1]w1, . . . , Bm]wm) ∈ P instantiated by a substitution

θ and such that the side conditions ej Q? wj (1 ≤ j ≤ m), d P di (1 ≤ i ≤ n) and

d P α ◦ ej (1 ≤ j ≤ m) are fulfilled.

For j = 1 . . .m we can assume BTj = (B′j , w
′
j) and thus (Bjθ]ej ⇐ Π)T = (B′jθ ⇐

Π,Ωj) where Ωj = {qVal(w′j), qBound(ı(ej), ı(t), w
′
j)}. The proof trees Tj of the

last m premises of (♣) will have less than ‖T‖ nodes, and hence the induction

hypothesis can be applied to each (Bjθ]ej ⇐ Π) with 1 ≤ j ≤ m, obtaining

CHL(C) proof trees T ′j proving elimD(P) C̀ B
′
jθρj ⇐ Π for some ρj ∈ SolC(Ωj)

with dom(ρj) = var(Ωj).

Consider ρ = {W 7→ ı(d)} and CT ∈ elimD(P) of the form:

CT : p′(tn,W
′) ← qVal(W ′),

(
qVal(w′j), pw

′
j Q? ı(wj)q,

qBound(W ′, ı(α), w′j), B
′
j

)
j=1...m.

Obviously, ρ ∈ SolC(Ω) and dom(ρ) = var(Ω). To finish the proof we must prove

elimD(P) C̀ A
′ρ ⇐ Π. We claim that this can be done with a CHL(C) proof tree

T ′ whose root inference is a DA step of the form:

( (t′iρ == tiθ
′)⇐ Π )i=1...n

(Wρ == W ′θ′)⇐ Π

qVal(W ′)θ′ ⇐ Π
qVal(w′j)θ

′ ⇐ Π

pw′j Q? ı(wj)qθ′ ⇐ Π

qBound(W ′, ı(α), w′j)θ
′ ⇐ Π

B′jθ
′ ⇐ Π


j=1...m

p′(t′n,W )ρ⇐ Π
(♠)
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using CT instantiated by the substitution θ′ = θ] ρ1 ] · · · ] ρm ]{W ′ 7→ ı(d)}. We

check that the premises of (♠) can be derived from elimD(P) in CHL(C):

• elimD(P) C̀ (t′iρ == tiθ
′) ⇐ Π for i = 1 . . . n. By construction of ρ and θ′, these

are equivalent to prove elimD(P) C̀ (t′i == tiθ)⇐ Π for i = 1 . . . n and these hold

with CHL(C) proof trees of only one EA node because of t′i ≈Π tiθ, which is a

consequence of the first n premises of (♣).

• elimD(P) C̀ (Wρ == W ′θ′)⇐ Π. By construction of ρ and θ′, this is equivalent to

prove elimD(P) C̀ (ı(d) == ı(d))⇐ Π which results trivial.

• elimD(P) C̀ qVal(W
′)θ′ ⇐ Π. By construction of θ′, this is equivalent to prove

elimD(P) C̀ qVal(ı(d))⇐ Π. We trivially have that ı(d) ∈ ran(ı). Then, by Lemma

4.2, this premise holds.

• elimD(P) C̀ qVal(w
′
j)θ
′ ⇐ Π for j = 1 . . .m. By construction of θ′ and Lemma 4.2

we must prove, for any fixed j, that qVal(w′jρj) is true in C. As ρj ∈ SolC(Ωj) we

know ρj ∈ SolC(qVal(w
′
j)), therefore qVal(w′jρj) is trivially true in C.

• elimD(P) C̀ pw
′
j Q? ı(wj)qθ′ ⇐ Π for j = 1 . . .m. We reason for any fixed j.

If wj = ? this results trivial. Otherwise, it amounts to qBound(ı(wj), ı(t), w
′
jρj)

being true in C, by construction of θ′ and Lemma 4.2. As seen before, qVal(w′jρj)

is true in C, therefore w′jρj = ı(e′j) for some e′j ∈ D \ {b}. From the side conditions

of (♣) we have wj P ej . On the other hand, ρj ∈ SolC(Ωj) and, in particular,

ρj ∈ SolC(qBound(ı(ej), ı(t), w
′
j)). This, together with w′jρj = ı(e′j), means ej P e′j ,

which with wj P ej implies wj P e′j , i.e. qBound(ı(wj), ı(t), w
′
jρj) is true in C.

• elimD(P) C̀ qBound(W ′, ı(α), w′j)θ
′ ⇐ Π for j = 1 . . .m. We reason for any fixed j.

By construction of θ′ and Lemma 4.2, we must prove that qBound(ı(d), ı(α), w′jρj)

is true in C. As seen before, qVal(w′jρj) is true in C, therefore w′jρj = ı(e′j) for some

e′j ∈ D\{b}. From the side conditions of (♣) we have d P α◦ej . On the other hand,

ρj ∈ SolC(Ωj) and, in particular, ρj ∈ SolC(qBound(ı(ej), ı(t), w
′
j)). This, together

with w′jρj = ı(e′j), means ej P e′j . Now, d P α ◦ ej and ej P e′j implies d P α ◦ e′j ,
i.e. qBound(ı(d), ı(α), w′jρj) is true in C.
• elimD(P) C̀ B

′
jθ
′ ⇐ Π for j = 1 . . .m. In this case, it is easy to see that B′jθ

′ =

B′jθρj by construction of θ′ and because of the program transformation rules. On

the other hand, proof trees T ′j proving elimD(P) C̀ B
′
jθρj ⇐ Π can be obtained by

inductive hypothesis as seen before.

[2. ⇒ 1.] (the transformation is sound). We assume that T ′ is a a CHL(C) proof

tree witnessing elimD(P) C̀ A
′ρ ⇐ Π for some ρ ∈ SolC(Ω) such that dom(ρ) =

var(Ω). We want to to show the existence of a QCHL(D, C) proof tree T witnessing

P D̀,C A]d⇐ Π. We reason by complete induction on ‖T ′‖. There are three possible

cases according to the the syntactic form of the atom A′. In each case we argue how

to build the desired proof tree T .

— A′ is a primitive atom κ. In this case due to TQCA and TPA we can assume

A = κ and Ω = {qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Note that dom(ρ) = var(Ω) =

∅ implies ρ = ε. Now, from elimD(P) C̀ κε ⇐ Π follows Π |=C κ due to the

PA inference, and therefore we can prove P D̀,C κ]d ⇐ Π with a proof tree T

containing only one QPA node.

— A′ is an equation t == s. In this case due to TQCA and TEA we can assume



30 R. Caballero, M. Rodŕıguez-Artalejo and C. A. Romero-Dı́az

A = (t == s) and Ω = {qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Note that dom(ρ) =

var(Ω) = ∅ implies ρ = ε. Now, from elimD(P) C̀ (t == s)ε ⇐ Π follows t ≈Π s

due to the EA inference, and therefore we can prove P D̀,C (t == s)]d⇐ Π with

a proof tree T containing only one QEA node.

— A′ is a defined atom p′(t′n,W ) with p′ ∈ DPn+1. In this case due to TQCA

and TDA we can assume A = p(t′n) and Ω = {qVal(W ), qBound(ı(d), ı(t),W )}.
On the other hand, T ′ must be rooted by a DA step (♠) using a clause CT ∈
elimD(P) instantiated by a substitution θ′. We can assume that (♠), CT and the

corresponding clause C ∈ P have the form already displayed in [1. ⇒ 2.].

By construction of CT, we can assume BTj = (B′j , w
′
j). Let θ = θ′�var(C) and

ρj = θ′�var(w′j) (1 ≥ j ≥ m). Then, due to the premises qVal(w′j)θ
′ ⇐ Π of (♠)

and Lemma 4.2 we can assume e′j ∈ D \ {b} (1 ≤ j ≤ m) such that w′jρj = ı(e′j).

To finish the proof, we must prove P D̀,C A]d ⇐ Π. We claim that this can

be done with a QCHL(D, C) proof tree T whose root inference is a QDA step of

the form of (♣), as displayed in [1. ⇒ 2.], using clause C instantiated by θ. In the

premises of this inference we choose di = t (1 ≤ i ≤ n) and ej = e′j (1 ≤ j ≤ m).

Next we check that these premises can be derived from P in QCHL(D, C) and that

the side conditions are fulfilled:

• P D̀,C (t′i == tiθ)]di ⇐ Π for i = 1 . . . n. This amounts to t′i ≈Π tiθ which follows

from the first n premises of (♠) given that t′iρ = t′i and tiθ
′ = tiθ.

• P D̀,C Bjθ]ej ⇐ Π for j = 1 . . .m. From BTj = (B′j , w
′
j) and due to rule TQCA, we

have ((Bjθ)]ej ⇐ Π)T = (Bjθ ⇐ Π,Ωj) where Ωj = {qVal(w′j), qBound(ı(ej), ı(t),

w′j)}. From the premises of (♠) and the fact that B′jθ
′ = B′jθρj we know that

elimD(P) C̀ B
′
jθρj ⇐ Π with a CHL(C) proof tree T ′j such that ‖T ′j‖ < ‖T ′‖.

Therefore P D̀,C Bjθ]ej ⇐ Π follows by inductive hypothesis provided that ρj ∈
SolC(Ωj). In fact, due to the form of Ωj , ρj ∈ SolC(Ωj) holds iff w′jρj = ı(e′j) for

some e′j such that ej P e′j , which is the case because of the choice of ej .

• ej Q? wj for j = 1 . . .m. Trivial in the case that wj = ?. Otherwise they are

equivalent to wj P e′j which follow from premises pw′j Q? ı(wj)qθ′ ⇐ Π (i.e.

pw′jρj Q? ı(wj)q⇐ Π) of (♠) and Lemma 4.2.

• d P di for i = 1 . . . n. Trivially hold due to the choice of di = t.

• d P α◦ej for j = 1 . . .m. Note that ρ ∈ SolC(Ω) implies the existence of d′ ∈ D\{b}
such that ı(d′) = Wρ and d P d′. On the other hand, ej = e′j by choice. It

suffices to prove d′ P α ◦ e′j for j = 1 . . .m. Premises of (♠) and Lemma 4.2

imply that qBound(W ′θ′, ı(α), w′jθ
′) is true in C. Moreover, W ′θ′ = Wρ = ı(d′)

because of another premise of (♠) and w′jθ
′ = ı(e′j) as explained above. There-

fore qBound(W ′θ′, ı(α), w′jθ
′) amounts to qBound(ı(d′), ı(α), ı(e′j)) which guaran-

tees d′ P α ◦ e′j (1 ≤ j ≤ m).

The goal transformation correctness is established by the next theorem, which

will rely on the previous result:

Theorem 4.4

Let G be a goal for a QCLP(D, C)-program P such that qVal and qBound do not

occur in G. Let P ′ = elimD(P) and G′ = elimD(G). Assume a C-subtitution σ,
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a mapping µ : war(G) → DD \ {b} and a satisfiable finite set of C-constraints Π.

Then, the following two statements are equivalent:

1. 〈σ, µ,Π〉 ∈ SolP(G).
2. 〈θ,Π〉 ∈ SolP′(G′) for some θ that verifies the following requirements:

(a) θ =var(G) σ,
(b) θ =war(G) µı and
(c) Wθ ∈ ran(ı) for each W ∈ var(G′) \ (var(G) ∪ war(G)).

Proof
As explained in Subsection 3.1 the syntax of goals in QCLP(D, C)-programs is the

same as that of goals for SQCLP(S,D, C)-programs, which is described in Section

2. Therefore G, and G′ due to rule TG, must have the following form:

G : ( Bj]Wj , Wj Q?βj )j=1...m

G′ : ( qVal(Wj), pWj Q? ı(βj)q, qVal(w′j), qBound(Wj , ı(t), w
′
j), B

′
j )j=1...m

with BTj = (B′j , w
′
j) (1 ≤ j ≤ m). Note that, because of rule TQCA, we have

(Bjσ]Wjµ ⇐ Π)T = (B′jσ ⇐ Π,Ωj) with Ωj = {qVal(w′j), qBound(ı(Wjµ), ı(t),

w′j)} for j = 1 . . .m. We now prove each implication.

[1. ⇒ 2.] Let 〈σ, µ,Π〉 ∈ SolP(G). This means, by Definition 3.1, Wjµ Q? βj and

P D̀,C Bjσ]Wjµ⇐ Π for j = 1 . . .m. In these conditions, Theorem 4.3 guarantees

P ′ C̀ B′jσρj ⇐ Π (1 ≤ j ≤ m) for some ρj ∈ SolC(Ωj) such that dom(ρj) = var(Ωj).

It is easy to see that var(G′)\(var(G)∪war(G)) = var(Ω1)]· · ·]var(Ωm). Therefore

it is possible to define a substitution θ verifying θ =var(G) σ, θ =war(G) µı and

θ =dom(ρj) ρj (1 ≤ j ≤ m). Trivially, θ satisfies conditions 2.(a) and 2.(b). It also

satisfies condition 2.(c) because for any j and any variable X such that X ∈ var(Ωj),

we have a constraint qVal(X) ∈ Ωj implying, due to Lemma 4.2, Xρj ∈ ran(ı)

(because ρj ∈ SolC(Ωj)).

In order to prove 〈θ,Π〉 ∈ SolP′(G′) in the sense of Definition 3.2 we check the

following items:

• By construction, θ is a C-substitution.
• By the theorem’s assumptions, Π is a satisfiable and finite set of C-constraints.
• P ′ C̀ Aθ ⇐ Π for every atom A in G′. Because of the form of G′ we have to prove

the following for any fixed j:

— P ′ C̀ qVal(Wj)θ ⇐ Π. By construction of θ and Lemma 4.2, this amounts to

qVal(ı(Wjµ)) being true in C, which is trivial consequence of Wjµ ∈ D \ {b}.
— P ′ C̀ pWj Q? ı(βj)qθ ⇐ Π. If βj = ? this becomes trivial. Otherwise,

Wjθ = ı(Wjµ) by construction of θ, and by Lemma 4.2 it suffices to prove

qBound(ı(βj), ı(t), ı(Wjµ)) is true in C. This follows from Wjµ Q? βj , that is

ensured by 〈σ, µ,Π〉 ∈ SolP(G).
— P ′ C̀ qVal(w′j)θ ⇐ Π. By construction of θ and Lemma 4.2, this amounts to

qVal(w′jρj) being true in C, that is guaranteed by ρj ∈ SolC(Ωj).
— P ′ C̀ qBound(Wj , ı(t), w

′
j)θ ⇐ Π. By construction of θ and Lemma 4.2, this

amounts to qBound(ı(Wjµ), ı(t), w′jρj) being true in C, that is also guaranteed

by ρj ∈ SolC(Ωj).
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— P ′ C̀ B′jθ ⇐ Π. Note that, by construction of θ, B′jθ = B′jσρj . On the other

hand, ρj has been chosen above to verify P ′ C̀ B′jσρj ⇐ Π.

[2. ⇒ 1.] Let 〈θ,Π〉 ∈ SolP′(G′) and assume that θ verifies 2.(a), 2.(b) and 2.(c). In

order to prove 〈σ, µ,Π〉 ∈ SolP(G) in the sense of Definition 3.1 we must prove the

following items:

• By the theorem’s assumptions, σ is a C-substitution, µ : war(G) → DD \ {b} and

Π is a satisfiable finite set of C-constraints.

• Wjµ Q? βj . We reason for any fixed j. If βj = ? this results trivial. Otherwise, we

have P ′ C̀ pWj Q? ı(βj)qθ ⇐ Π which, by condition 2.(b) and Lemma 4.2 amounts

to qBound(ı(βj), ı(t), ı(Wjµ)) is true C, i.e. Wjµ Q βj .

• P D̀,C Bjσ]Wjµ ⇐ Π for j = 1 . . .m. We reason for any fixed j. Let ρj be the

restriction of θ to var(Ωj). Then, P ′ C̀ B′jσρj ⇐ Π follows from 〈θ,Π〉 ∈ SolP′(G′)

and B′jθ = B′jσρj . Therefore, P D̀,C Bjσ]Wjµ ⇐ Π follows from Theorem 5.3

provided that ρj ∈ SolC(Ωj). By Lemma 4.2 and the form of Ωj , ρj ∈ SolC(Ωj)

holds iff P ′ C̀ qVal(w′jρj)⇐ Π and P ′ C̀ qBound(ı(Wjµ), ı(t), w′jρj)⇐ Π, which

is true because 〈θ,Π〉 ∈ SolP′(G′) and construction of ρj .

4.3 Solving SQCLP Goals

In this subsection we show that the transformations from the two previous sub-

sections can be used to define abstract goal solving systems for SQCLP and ar-

guing about their correctness. In the sequel we consider a given SQCLP(S,D, C)-
program P and a goal G for P whose atoms are all relevant for P. We also consider

P ′= elimS(P), G′ = elimS(G), P ′′= elimD(P ′) and G′′ = elimD(G′). Due to the

definition of both elimS and elimD, we can assume:

G : ( Ai]Wi, Wi Q?βi )i=1...m

G′ : ( Ai∼]Wi, Wi Q?βi )i=1...m

G′′ : ( qVal(Wi), pWi Q? ı(βi)q, qVal(w′i), qBound(Wi, ı(t), w
′
i), A

′
i )i=1...m

where ATi = (A′i, w
′
i).

We start by presenting an auxiliary result.

Lemma 4.3

Assume P, G, P ′, G′, P ′′ and G′′ as above. Let 〈σ′,Π〉 ∈ SolP′′(G′′), ν ∈ SolC(Π)

and θ = σ′ν. Then 〈θ,Π〉 ∈ SolP′′(G′′). Moreover, Wθ ∈ ran(ı) for every W ∈
var(G′′) \ var(G).1

Proof

Consider an arbitrary atom A′′ occurring in G′′. Because of 〈σ′,Π〉 ∈ SolP′′(G′′) we

have P C̀ A
′′σ′ ⇐ Π. On the other hand, because of ν ∈ SolC(Π) we have ∅ |=C Πν

and therefore also Π |=C Πν. This and Definition 3.1(4) of (Rodŕıguez-Artalejo and

Romero-Dı́az 2010b) ensure A′′σ′ ⇐ Π <C A′′σ′ν ⇐ Π, i.e. A′′σ′ ⇐ Π <C A′′θ ⇐ Π.

1 Note that war(G) ⊆ var(G′′) \ var(G).
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This fact, P ′′ C̀ A′′σ′ ⇐ Π and the Entailment Property for Programs in CLP(C)
imply P ′′ C̀ A′′θ ⇐ Π. Therefore, 〈θ,Π〉 ∈ SolP′′(G′′).

Consider now any W ∈ var(G′′) \ var(G). By construction of G′′, one of the

atoms occurring in G′′ is qVal(W ). Then, due to 〈σ′Π〉 ∈ SolP′′(G′′) we have

P ′′ C̀ qVal(Wσ′) ⇐ Π. Because of Lemma 3.1(1) this implies Π |=C qVal(Wσ′),

i.e. SolC(Π) ⊆ SolC(qVal(Wσ′)). Since ν ∈ SolC(Π) we get ν ∈ SolC(qVal(Wσ′)),

i.e. Wσ′ν ∈ ran(ı). Since Wσ′ν = Wθ, we are done.

Next, we explain how to define an abstract goal solving system for SQCLP from

a given abstract goal solving system for CLP.

Definition 4.4

Let CLP-AGSS be an abstract goal solving system for CLP(C) (in the sense of

Definition 3.3). Then we define SQCLP-AGSS as an abstract goal solving system

for SQCLP(S,D, C) that works as follows:

1. Given a goal G for the SQCLP(S,D, C)-program P, consider P ′, G′, P ′′ and

G′′ as explained at the beginning of the subsection.

2. For each solution 〈σ′,Π〉 computed by CLP-AGSS for G′′, P ′′ and for any

ν ∈ SolC(Π), SQCLP-AGSS computes 〈σ, µ,Π〉 where θ = σ′ν, σ = θ�var(G)

and µ = θı−1�war(G). Note that µ is well-defined thanks to Lemma 4.3.

The next theorem ensures that SQCLP-AGSS is correct provided that CLP-

AGSS is also correct. The proof relies on the semantic results of the two previous

subsections.

Theorem 4.5

Assume that CLP-AGSS is correct (in the sense of Definition 3.3). Let SQCLP-

AGSS be as in the previous definition. Then SQCLP-AGSS is correct in the sense

of Definition 2.3.

Proof

We separately prove that SQCLP-AGSS is sound and weakly complete.

— SQCLP-AGSS is sound. Let 〈σ, µ,Π〉 be an answer computed by SQCLP-AGSS

for G,P. We must prove that 〈σ, µ,Π〉 ∈ SolP(G). By Definition 4.4 we can assume

〈σ′,Π〉 ∈ SolP′′(G′′) and ν ∈ SolC(Π) such that σ = θ�var(G) and µ = θı−1�war(G)

with θ = σ′ν. Because of Lemma 4.3 we have 〈θ,Π〉 ∈ SolP′′(G′′) and Wθ ∈ ran(ı)

for every W ∈ var(G′′) \ var(G). Note that:

• θ =var(G′) σ. This follows from var(G′) = var(G) and the construction of σ.

• θ =war(G′) µı. This follows from war(G′) = war(G) and θ =war(G) µı, that is obvious

from the construction of µ.

• Wθ ∈ ran(ı) for each W ∈ var(G′′) \ (var(G′) ∪ war(G′)). This is a consequence of

Lemma 4.3 since var(G′′) \ (var(G′) ∪ war(G′)) ⊆ var(G′′) \ var(G′) and var(G′) =

var(G).

From the previous items and Theorem 4.4 we get 〈σ, µ,Π〉 ∈ SolP′(G′), which

trivially implies 〈σ, µ,Π〉 ∈ SolP(G) because of Theorem 4.2.
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— SQCLP-AGSS is weakly complete. Let 〈η, ρ, ∅〉 ∈ GSolP(G) be a ground solution

for G w.r.t. P. We must prove that it is subsumed—in the sense of Definition

2.2(3)—by some answer 〈σ, µ,Π〉 computed by SQCLP-AGSS for G,P.

By Theorem 4.2 we have that 〈η, ρ, ∅〉 is also a ground solution for G′ w.r.t. P ′.
In addition, by Theorem 4.4 〈η′, ∅〉 ∈ SolP′′(G′′) for some η′ such that

• (1) η′ =var(G′) η,

• (2) η′ =war(G′) ρı and hence η′(ı−1) =war(G′) ρ, and

• Wη′ ∈ ran(ı) for each W ∈ var(G′′)\ (var(G′)∪war(G′)) (i.e. w′iη
′ ∈ ran(ı) for each

i = 1 . . .m such that w′i is a variable).

By construction of η′, it is clear that 〈η′, ∅〉 is ground. Now, by the weak com-

pleteness of CLP-AGSS, there is some computed answer 〈σ′,Π〉 subsuming 〈η′, ∅〉,
therefore satisfying

• (3) there is some ν ∈ SolC(Π), and

• (4) η′ =var(G′′) σ
′ν.

Because of Definition 4.4 one can build a SQCLP-AGSS computed answer 〈σ, µ,Π〉
as follows:

• (5) σ = σ′ν�var(G)

• (6) µ = σ′νı−1�war(G)

We now check that 〈σ, µ,Π〉 subsumes 〈η, ρ, ∅〉:

• Wiρ P Wiµ and even Wiρ = Wiµ because:

Wiρ =(2) Wiη
′(ı−1) =(4) Wiσ

′ν(ı−1) =(6) Wiµ .

• ν ∈ SolC(Π) by (3) and, moreover, for any X ∈ var(G):

Xη =(1) Xη
′ =(4) Xσ

′ν =(†) Xσ
′νν =(5) Xσν

therefore η =var(G) σν.

The step (†) is justified because ν ∈ ValC implies ν = νν.

5 A Practical Implementation

This section is devoted to the more practical aspects of the SQCLP programming

scheme and it is developed in three subsections: Subsection 5.1 explains what steps

must be given when implementing a programming scheme like this and why the

theoretic results presented in the previous sections—with special emphasis in those

in Subsection 4.3—become useful for implementation. Subsection 5.2 introduces a

prototype implementation and explains how to write programs and how to solve

goals. Finally, in Subsection 5.3 we study the unavoidable overload introduced in

the system by qualifications and proximity relations when comparing the execution

of programs without any explicit use of such resources.
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5.1 SQCLP over a CLP Prolog System

Assume an available CLP Prolog System, a SQCLP(S,D, C)-program P and a goal

G for P. Our purpose is to implement a goal solving system for SQCLP following

Definition 4.4. We will examine each step in this schema, discussing the necessary

implementation details for putting theory into practice.

The first step is to obtain the transformed programs P ′ = elimS(P) and P ′′ =
elimD(P ′); and the transformed goals G′ = elimS(G) and G′′ = elimD(G′). Accord-

ing to Definition 4.2(3), P ′ = elimS(P) is of the form EQS ∪ P̂S , where EQS is

obtained following Definition 4.1 and P̂S is obtained following Definition 4.2(3,2).

When implementing EQS a first difficulty arises, namely the implementation of

∼ ∈ DP 2, which apparently requires one clause of the form:

u ∼ u′ t←− payλ]?

for each pair u, u′ ∈ BC such that S(u, u′) = λ 6= b, and one clause of the form:

c(Xn) ∼ c′(Y n)
t←− payλ]?, ((Xi ∼ Yi)]?)i=1...n

for each pair c, c′ ∈ DCn such that S(c, c′) = λ 6= b. While this should obviously

require an infinite number of clauses (because DCn is infinite and S(c, c) = t 6= b

for all c ∈ DCn; and also BC is infinite—in general—and S(u, u) = t 6= b for every

u ∈ BC), in practice, it is enough to limit the number of clauses to the finite number

of different basic values u ∈ BC and constructors c ∈ DCn that can be found either

in P, G or S.

A similar difficulty arises when codifying the clauses for predicates payλ ∈ DP 0,

which according to Definition 4.1 there should be a clause of the form:

payλ
λ←−

in EQS for each λ ∈ DD \ {b}. In this case, the solution is also similar because

it suffices to generate enough payλ clauses for the finite λ ∈ DD \ {b} that can

be found occurring either in the clauses of P̂S or in the clauses implementing the

predicate ∼ ∈ DP 2.

The construction of P̂S , following Definition 4.2, presents no particular difficul-

ties. For each clause C : (p(tn)
α←− B) ∈ P we will generate a finite set ĈS of clauses,

because the number of symbols p′ such that S(p, p′) = λ 6= b will be also finite in

practice. Finally, the construction of G′ is merely the straightforward replacement

of all the occurrences of ‘==’ in G by ‘∼’.

The transformation elimD from QCLP(D, C) into CLP(C), is defined in Defi-

nition 4.3. P ′′ = elimD(P ′) is obtained by incorporating the two clauses of the

program ED to the result of applying the transformation rules in Figure 5 to the

QCLP(D, C)-program P ′. Applying the transformation rules is straightforward, but

the codification of constraints qVal(X) and qBound(X,Y, Z) in ED requires some

clarification. In our implementation we have considered the constraint domain R,

as well as any qualification domain that can be built from B, U and W by means

of the strict cartesian product operation ⊗ including, in particular, U⊗W. These

qualification domains are existentially expressible in R, therefore the constraints
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can be implemented by defined predicates as explained in Section 4.2. In particular

in our prototype implementation these predicates are:

% qval( +QDom, ?W ):

qval(b, 1).

qval(u, W) :- {W > 0, W =< 1}.

qval(w, W) :- {W >= 0}.

qval((D1,D2), (W1,W2)) :- qval(D1, W1), qval(D2, W2).

% qbound( +QDom, ?X, ?Y, ?Z ):

qbound(b, 1, 1, 1).

qbound(u, X, Y, Z) :- {X =< Y * Z}.

qbound(w, X, Y, Z) :- {X >= Y + Z}.

qbound((D1,D2), (X1,X2), (Y1,Y2), (Z1,Z2)) :- qbound(D1, X1, Y1, Z1),

qbound(D2, X2, Y2, Z2).

Instead of using different qVal and qBound predicates for each allowable D, our

prototype implementation just uses two predicates qVal and qBound with an extra

first argument, used to encode an identifier of some specific allowable D. This pa-

rameter can take either the value b (for B), u (for U), w (for W) or a pair (D1,D2)

(for D1 ⊗ D2), where each Di can be either b, u, w or another pair representing a

product. For instance ((u,w),w) represents the qualification domain (U⊗W)⊗W.

The compiler ensures that this argument takes the correct value for each trans-

formed program and goal depending on the specific instance of the SQCLP scheme

the program is written for.

After obtaining P ′′ and G′′, the CLP Prolog System is used to solve G′′ w.r.t.

P ′′. This yields computed answers of the form 〈σ′,Π〉. Now, instead of obtaining

particular substitutions θ = σ′ν, σ = θ�var(G) and µ = θı−1�war(G) for any

ν ∈ SolC(Π) as explained in Definition 4.4(2), our prototype implementation limits

itself to display 〈σ′,Π〉 as the computed answer in SQCLP. The reason behind this

behavior is that, in general (and particularly inR), it is impossible to enumerate the

possible solutions ν ∈ SolC(Π). Thus, it results impossible to implement a technique

for obtaining all the possible triples 〈σ, µ,Π〉. Note, however, that for a user it

will not be difficult to distinguish, in the shown computed answers, what variable

bindings correspond to the substitution σ of the triple and what to the substitution

µ, even when the qualification variables are not bound but constrained, which is a

common behavior in the context of CLP programming.

However, for the SQCLP-AGSS of Definition 4.4, it results mandatory to define

the computed answers in terms of ν ∈ SolC(Π), because our SQCLP-semantics relies

on proving instances of G for some specific ground values of the variables in war(G).

5.2 (S)QCLP: A Prototype System for SQCLP Programming

The prototype implementation object of this subsection is publicly available, and

can be found at:

http://gpd.sip.ucm.es/cromdia/qclp
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The system currently requires the user to have installed either SICStus Prolog or

SWI-Prolog, and it has been tested to work under Windows, Linux and MacOSX

platforms. The latest version available at the time of writing this paper is 0.6. If

a latter version is available some things might have changed but in any case the

main aspects of the system should remain the same. Please consult the changelog

provided within the system itself for specific changes between versions.

SQCLP is a very general programming scheme and, as such, it supports different

proximity relations, different qualification domains and different constraint domains

when building specific instances of the scheme for any specific purpose. As it would

result impossible to provide an implementation for every admissible triple (or in-

stance of the scheme), it becomes mandatory to decide in advance what specific

instances will be available for writing programs in (S)QCLP. In essence:

1. In its current state, the only available constraint domain is R. Thus, under

both SICStus Prolog and SWI-Prolog the library clpr will provide all the

available primitives in (S)QCLP programs.

2. The available qualification domains are: ‘b’ for the domain B; ‘u’ for the

domain U ; ‘w’ for the domain W; and any strict cartesian product of those,

as e.g. ‘(u,w)’ for the product domain U⊗W.

3. With respect to proximity relations, the user will have to provide, in addition

to the two symbols and their proximity value, their kind (either predicate or

constructor) and their arity. Both kind and arity must be the same for each

pair of symbols having a proximity value different of b.

Note, however, that when no specific proximity relation S is provided for a given

program, Sid is then assumed. Under this circumstances, an obvious technical op-

timization consists on transforming the original program only with elimD, thus

reducing the overload introduced in this case by elimS . The reason behind this

optimization is that for any given SQCLP(Sid,D, C)-program P, it is also true

that P is a QCLP(D, C)-program, therefore elimD(elimS(P)) must semantically

be equivalent to elimD(P). Nevertheless, elimD(P) behaves more efficiently than

elimD(elimS(P)) due to the reduced number of resulting clauses. Thus, in order to

improve the efficiency, the system will avoid the use of elimS when no proximity

relation is provided by the user.

The final available instances in the (S)QCLP system are: SQCLP(S, b, clpr),

SQCLP(S, u, clpr), SQCLP(S, w, clpr), SQCLP(S, (u, w), clpr), . . . and their coun-

terparts in the QCLP scheme when S = Sid.

5.2.1 Programming in (S)QCLP

Programming in (S)QCLP is straightforward if the user is accustomed to the Prolog

programming style. However, there are three syntactic differences with pure Prolog:

1. Clauses implications are replaced by “<-d-” where d ∈ D \{b}. If d = t, then

the implication can become just “<--”. E.g. “<-0.9-” is a valid implication

in the domains U and W; and “<-(0.9,2)-” is a valid implication in the

domain U⊗W.
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2. Clauses in (S)QCLP are not finished with a dot (.). They are separated by

layout, therefore all clauses in a (S)QCLP program must start in the same

column. Otherwise, the user will have to explicitly separate them by means

of semicolons (;).

3. After every body atom (even constraints) the user can provide a threshold

condition using ‘#’. The notation ‘?’ can also be used instead of some partic-

ular qualification value, but in this case the threshold condition ‘#?’ can be

omitted.

Comments are as in Prolog:

% This is a line comment.

/* This is a multi-line comment, /* and they nest! */. */

and the basic structure of a (S)QCLP program is the following (line numbers are for

reference):

File: Peano.qclp

1 % Directives...

2 # qdom w

3 % Program clauses...

4 % num( ?Num )

5 num(z) <--

6 num(s(X)) <-1- num(X)

In the previous small program, lines 1, 3 and 4 are line comments, line 2 is a

program directive telling the compiler the specific qualification domain the program

is written for, and lines 5 and 6 are program clauses defining the well-known Peano

numbers. As usual, comments can be written anywhere in the program as they

will be completely ignored (remember that a line comment must necessarily end

in a new line character, therefore the very last line of a file cannot contain a line

comment), and directives must be declared before any program clause. There are

three program directives in (S)QCLP:

1. The first one is “#qdom qdom” where qdom is any system available qualification

domain, i.e. b, u, w, (u,w). . . See line 2 in the previous program sample as an

example. This directive is mandatory because the user must tell the compiler

for which particular qualification domain the program is written.

2. The second one is “#prox file” where file is the name of a file (with extension

.prox containing a proximity relation. If the name of the file starts with a

capital letter, or it contains spaces or any special character, file will have to

be quoted with single quotes. For example, assume that with our program

file we have another file called Proximity.prox. Then, we would have to write

“#prox ‘Proximity’” to link the program with such proximity relation. This

directive is optional, and if omitted, the system assumes that the program is

of an instance of the QCLP scheme.

3. The third one is “#optimized unif”. This directive tells the compiler that

the program is intended to be used with the optimized version of the uni-

fication algorithm, what improves the general efficiency of the goal solving
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process. However, as noted at the end of Section 2, this could have the effect

of losing valid answers, although we conjecture that if the proximity relation

is transitive and if the program clauses do not make use of attenuation factors

other that t, this will not happen.

Proximity relations are defined in files of extension .prox with the following form:

File: Work.prox

1 % Predicates: pprox( S1, S2, Arity, Value ).

2 pprox(wrote, authored, 2, (0.9,0)).

3 % Constructors: cprox( S1, S2, Arity, Value ).

4 cprox(king_lear, king_liar, 0, (0.8,2)).

where the file can contain pprox/4 Prolog facts, for defining proximity between

predicate symbols of any arity; or cprox/4 Prolog facts, for defining proximity

between constructor symbols of any arity. The arguments of both pprox/4 and

cprox/4 are: the two symbols, their arity and its proximity value. Note that, al-

though it is not made explicit the qualification domain this proximity relation is

written for, all values in it must be of the same specific qualification domain, and

this qualification domain must be the same declared in every program using the

proximity relation. Otherwise, the solving of equations may produce unexpected

results or even fail.

Reflexive and symmetric closure is inferred by the system, therefore, there is no

need for writing reflexive proximity facts, nor the symmetric variants of proximity

facts already provided. You can notice this in the previous sample file in which

neither reflexive proximity facts, nor the symmetric proximity facts to those at lines

2 and 4 are provided. In the case of being explicitly provided, additional (repeated)

solutions might be computed for the same given goal, although soundness and weak

completeness of the system should still be preserved. Transitivity is neither checked

nor inferred so the user will be responsible for ensuring it if desired.

As the reader would have already guessed, the file Work.prox implements the

proximity relation Sr of Example 4.1 in (S)QCLP. Finally, the program Pr of Ex-

ample 4.1 can be represented in (S)QCLP as follows:

File: Work.qclp

1 # qdom (u,w)

2 # prox ’Work’

3 % famous( ?Author )

4 famous(shakespeare) <-(0.9,1)-

5 % wrote( ?Author, ?Book )

6 wrote(shakespeare, king_lear) <-(1,1)-

7 wrote(shakespeare, hamlet) <-(1,1)-

8 % good_work( ?Work )

9 good_work(X) <-(0.75,3)- famous(Y)#(0.5,100), authored(Y,X)

Note that, at line 1 the qualification domain U⊗W is declared, and at line 2 the

proximity relation at Work.prox is linked to the program. In addition, observe
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that one threshold constraint is imposed for a body atom in the program clause at

line 9, effectively requiring to prove famous(Y) for a qualification value of at least

(0.5,100) to be able to use this program clause.

Finally, we explain how constraints are written in (S)QCLP. As it has already

been said, only R is available, thus both in SICStus Prolog and SWI-Prolog the

library clpr is the responsible for providing the available primitive predicates.

Given that constraints are primitive atoms of the form r(tn) where r ∈ PPn and

ti are terms; primitive atoms share syntax with usual Prolog atoms. At this point,

and having that many of the primitive predicates are syntactically operators (hence

not valid identifiers), the syntax for predicate symbols has been extended to include

operators, therefore predicate symbols like op+ ∈ PP 3, which codifies the operation

+ in a 3-ary predicate, will let us to build constraints of the form +(A,B,C), that

must be understood as in A + B = C or C = A + B. Similarly, predicate symbols

like cp> ∈ PP 2, which codifies the comparison operator > in a binary predicate,

will let us to build constraints of the form >(A,B), that must be understood as in

A > B. Any other primitive predicate such as maximize ∈ PP 1, will let us to build

constraints like maximize(X). Valid primitive predicate symbols include +, -, *, /,

>, >=, =<, <, maximize, minimize, etc.

Threshold constraints can also be provided for primitive atoms in the body of

clauses with the usual notation. Note, however, that due the semantics of SQCLP,

all primitive atoms can be trivially proved with t if they ever succeeds—so threshold

constraints become, in this case, of no use.

The syntax for constraints explained above follows the standard syntax for atoms.

Nonetheless, the system also allows to write these constraints in a more natural in-

fix notation. More precisely, +(A,B,C) can be also written in the infix form A+B=C

or C=A+B, and >(X,Y) in the infix form X>Y; and similarly for other op and cp con-

straints. When using infix notation, threshold conditions can be set by (optionally)

enclosing the primitive atom between parentheses, therefore becoming (A+B=C)#t,

(C=A+B)#t or (X>Y)#t (or any other valid qualification value or ‘?’). Using paren-

theses is recommended to avoid understanding that the threshold condition is set

only for the last term in the constraint, which would not be the case. Note that

even in infix notation, operators cannot be nested, that is, terms A, B, C, X and Y

cannot have operators as main symbols (neither in prefix nor in infix notation), so

the infix notation is just a syntactic sugar of its corresponding prefix notation.

As a final example for constraints, one could write the predicate double/2 in

(S)QCLP, for computing the double of any given number, with just the clause

double(N,D) <-- *(N,2,D), or double(N,D) <-- N*2=D for a clause with a more

natural syntax.

5.2.2 The interpreter for (S)QCLP

The interpreter for (S)QCLP has been implemented on top of both SICStus Prolog

and SWI-Prolog. To load it, one must first load her desired (and supported) Prolog

system and then load the main file of the interpreter—i.e. qclp.pl—, that will

be located in the main (S)QCLP folder among other folders. Once loaded, one will
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see the welcome message and will be ready to compile and load programs, and to

execute goals.

WELCOME TO (S)QCLP 0.6

(S)QCLP is free software and comes with absolutely no warranty.

Support & Updates: http://gpd.sip.ucm.es/cromdia/qclp.

Type ’:help.’ for help.

yes

| ?-

From the interpreter for (S)QCLP one can, in addition to making use of any stan-

dard Prolog goals, use the specific (S)QCLP commands required for both interacting

with the (S)QCLP system, and for compiling/loading SQCLP programs. All these

commands take the form:

:command.

if they do not require arguments, or:

:command(Arg1, ..., Argn).

if they do; where each argument Argi must be a prolog atom unless stated otherwise.

The most useful commands are:

• :cd(Folder).

Changes the working directory to Folder. Folder can be an absolute or relative

path.

• :compile(Program).

Compiles the (S)QCLP program ‘Program.qclp’ producing the equivalent Pro-

log program in the file ‘Program.pl’.

• :load(Program).

Loads the already compiled (S)QCLP program ‘Program.qclp’ (note that the

file ‘Program.pl’ must exist for the program to correctly load).

• :run(Program).

Compiles the (S)QCLP program ‘Program.qclp’ and loads it afterwards. This

command is equivalent to executing: :compile(Program), :load(Program).

For illustration purposes, we will assume that you have the files Work.prox and

Work.qclp (both as seen before) in the folder ∼/examples. Under these circum-

stances, after loading your preferred Prolog system and the interpreter for (S)QCLP,

one would only have to change the working directory to that where the files are

located:

| ?- :cd(’∼/examples’).

and run the program:

| ?- :run(’Work’).

If no errors are encountered, one should see the output:
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| ?- :run(’Work’).

<Work> Compiling...

<Work> QDom: ’u,w’.

<Work> Prox: ’Work’.

<Work> Translating to QCLP...

<Work> Translating to CLP...

<Work> Generating code...

<Work> Done.

<Work> Loaded.

yes

and now everything is ready to execute goals for the program loaded.

5.2.3 Executing SQCLP-Goals

Recall that goals have the form A1]W1, . . . , Am]Wm 8W1 Q? β1, . . . , Wm Q?βm
which in actual (S)QCLP syntax becomes:

| ?- A1#W1, ..., Am#Wm :: W1 >= B1, ..., Wm >= Bm.

Note the following:

1. Goals must end in a dot (.).

2. The symbol ‘8’ is replaced by ‘::’.

3. The symbol ‘Q?’ is replaced by ‘>=’ (and this is independent of the qualifica-

tion domain in use, so that it may mean ≤ in W).

4. Conditions of the form W Q? ? must be omitted, therefore A1]W1, A2]W2 8
W1 Q? ?,W2 Q? β2 becomes “A1#W1, A2#W2 :: W2 >= B2.”, and A]W 8
W Q? ? becomes just “A#W.”.

Assuming now that we have loaded the program Work.qclp as explained before,

we can execute the goal good work(king liar)]W 8W Q? (0.5, 100):

| ?- good_work(king_liar)#W::W>=(0.5,10).

W = (0.6,5.0) ?

yes

5.2.4 Examples

To finish this subsection, we are now showing some additional goal executions using

the interpreter for (S)QCLP and the programs displayed along the paper.

Peano. Consider the program Peano.qclp as displayed at the beginning of Sub-

section 5.2.1. Qualifications in this program are intended as a cost measure for

obtaining a given number in the Peano representation, assuming that each use of

the clause at line 6 requires to pay at least 1. In essence, threshold conditions will

impose an upper bound over the maximum number obtainable in goals containing

the atom num(X). Therefore if we ask for numbers up to a cost of 3 we get the

following answers:
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Goal ?- num(X)#W::W>=3.

Sol1 W = 0.0, X = z ? ;

Sol2 W = 1.0, X = s(z) ? ;

Sol3 W = 2.0, X = s(s(z)) ? ;

Sol4 W = 3.0, X = s(s(s(z))) ? ;

no

Work. Consider now the program Work.qclp and the proximity relation Work.prox,

both as displayed in Subsection 5.2.1 above. In this program, qualifications behave

as the conjunction of the certainty degree of the user confidence about some par-

ticular atom, and a measure of the minimum cost to pay for proving such atom. In

these circumstances, we could ask—just for illustration purposes—for famous au-

thors with a minimum certainty degree—for them being actually famous—of 0.5,

and with a proof cost of no more than 30 (think of an upper bound for possi-

ble searches in different databases). Such a goal would have, in this very limited

example, only the following solution:

Goal ?- famous(X)#W::W>=(0.5,30).

Sol1 W = (0.9,1.0), X = shakespeare ? ;

no

meaning that we can have a confidence of shakespeare being famous of 0.9, and

that we can prove it with a cost of 1.

Now, in a similar fashion we could try to obtain different works that can be

considered as good works by using the last clause in the example. Limiting the

search to those works that can be considered good with a qualification value better

or equal to (0.5,100) produce the following result:

Goal ?- good_work(X)#W::W>=(0.5,100).

Sol1 W = (0.675,4.0), X = king_lear ? ;

Sol2 W = (0.6,5.0), X = king_liar ? ;

no

It is important to remark here that the qualification value obtained for a particular

computed answer is not guaranteed to be the best possible one; rather, different

computed answers may compute different qualification values which can be observed

by the user. This is easy to see if we try to solve a more particular goal:

Goal ?- good_work(king_liar)#W::W>=(0.675,4.0).

Sol1 W = (0.675,4.0) ? ;

no

That is, not only good work(king liar) can be proved for for W = (0.6,5.0)

as shown in Sol2 above, but also with W = (0.675,4.0), which results a better

qualification value (i.e. greater certainty degree and lower proof cost).

Library. Finally, consider the program Ps and the proximity relation Ss, both as

displayed in Figure 1 of Section 2. As it has been said when this example was

introduced, the predicate guessRdrLvl takes advantage of attenuation factors to
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encode heuristic rules to compute reader levels on the basis of vocabulary level and

other book features. As an illustration of use, consider the following goal:

Goal ?- guessRdrLvl(book(2, ’Dune’, ’F. P. Herbert’, english, sciFi,

medium, 345), Level)#W.

Sol1 W = 0.8, Level = intermediate ? ;

· · ·
Sol6 W = 0.7, Level = upper ?

yes

Here we ask for possible ways of classifying the second book in the library according

to reader levels. We obtain as valid solutions, among others, intermediate with

a certainty factor of 0.8; and upper with a certainty factor of 0.7. These valid

solutions show that the predicate guessRdrLvl tries with different levels for any

certain book based on the heuristic implemented by the qualified clauses.

To conclude, consider now the goal proposed in Section 2 for this program. For

such goal we obtain:

Goal ?- search(german, essay, intermediate, ID)#W::W>=0.65.

Sol1 W = 0.8, ID = 4 ?

yes

What tells us that the forth book in the library is written in German, it can be

considered to be an essay, and it is targeted for an intermediate reader level. All

this with a certainty degree of at least 0.8.

5.3 Efficiency

The minimum—and unavoidable—overload introduced by qualifications and prox-

imity relations in the transformed programs manifests itself in the case of (S)QCLP

programs which use the identity proximity relation and have t as the attenuation

factor of all their clauses. In order to measure this overload we have made some ex-

periments using some program samples, taken from the SICStus Prolog Benchmark

that can be found in:

http://www.sics.se/isl/sicstuswww/site/performance.html

and we have compared the time it took to repeatedly execute a significant number

of times each program in both (S)QCLP and SICStus Prolog making use of a slightly

modified (to ensure a correct behavior in both systems) version of the harness also

provided in the same site.

From all the programs available in the aforementioned site, we selected the fol-

lowing four:

• naivrev: naive implementation of the predicate that reverses the contents of

a list.

• deriv: program for symbolic derivation.

• qsort: implementation of the well-known sorting algorithm Quicksort.

• query: obtaining the population density of different countries.
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No other program could be used because they included impure features such as cuts

which are not currently supported by our system. In order to adapt these Prolog

programs to our setting the following modifications were required:

1. All the program clause are assumed to have t as attenuation factor. After

including these attenuation factors, we obtain as results QCLP programs.

More specifically we obtain two QCLP programs for each initial Prolog pro-

gram, one using the qualification domain B (because this domain uses trivial

constraints), and another using the qualification domain U (which uses R-

constraints).
2. We define an empty proximity relation, allowing us to obtain two additional

SQCLP-programs.
3. By means of the program directive “#optimized unif” defined in Subsection

5.2.1, each SQCLP program can be also executed in this optimized mode.

Therefore each original Prolog Program produces six (S)QCLP programs, de-

noted as Q(b), Q(u), PQ(b), PQ(u), SQ(b) and SQ(u) in Table 1.

Additionally some minor modifications to the program samples have been in-

troduced for compatibility reasons, i.e. additions using the predicate is/2 were

replaced, both in the Prolog version of the benchmark and in the multiple (S)QCLP

versions, by clpr constraints. In any case, all the program samples used for this

benchmarks in this subsection can be found in the folder benchmarks/ of the

(S)QCLP distribution.

Finally, we proceeded to solve the same goals for every version of the benchmark

programs, both in SICStus Prolog and in (S)QCLP. The benchmark results can be

found in Table 1. All the experiments were performed in a computer with a Intel(R)

Core(TM)2 Duo CPU at 2.19GHz and with 3.5 GB RAM.

Table 1. Time overload factor with respect to Prolog

Program Q(b)a Q(u)b PQ(b)c PQ(u)d SQ(b)e SQ(u)f

naivrev 1.80 10.71 4289.79 4415.11 56.22 65.75
deriv 1.94 10.60 331.45 469.67 29.63 39.32
qsort 1.05 1.11 135.59 136.98 2.51 2.83
query 1.02 1.12 7.17 7.13 3.80 3.88

a QCLP(B,R) version (i.e. the program does not have the #prox directive).
b QCLP(U ,R) version (i.e. the program does not have the #prox directive).
c SQCLP(Sid,B,R) version.
d SQCLP(Sid,U ,R) version.
e SQCLP(Sid,B,R) version with directive #optimized unif.
f SQCLP(Sid,U ,R) version with directive #optimized unif.

The results in the table indicate the slowdown factor obtained for each version

of each program. For instance, the first column indicates that the time required for

evaluating the goal corresponding to the sample program naivrev in QCLP(B,R)

is about 1.80 times the required time for the evaluation of the same goal in Prolog.

Next we discuss the results:
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• Influence of the qualification domain. In general the difference between the

slowdown factors obtained for the two considered qualification domains is not

large. However, in the case of QCLP-programs naivrev and deriv the difference

increases notably. This is due to the different ratios of the B-constraints w.r.t.

the program and U-constraints w.r.t. the program. It must be noticed that the

transformed programs are the same in both cases, but for the implementation

of qval and qbound constraints, which is more complex for U as one can see

in Section 5.1. In the case of naivrev and deriv this makes a big difference

because the number of computation steps directly required by the programs

is much smaller than in the other cases. Thus the slowdown factor becomes

noticeable for the qualification domain U in computations that requires a

large number of steps.

• Influence of the proximity relation. The introduction of a proximity relation,

even of empty, is very significative. This is due to the introduction of the pred-

icate ∼, which replaces Prolog unification. The situation even worsens when

the computation introduces large constructor terms, as in the case of naivrev

which deals with Prolog lists. The efficient Prolog unification is replaced by

an explicit term decomposition.

• Influence of the optimized unification. As explained at the end of Section 2

this optimization can lead to the loss of solutions in general. However, this

is not the case for the chosen examples. As seen in the table, the use of the

program directive #optimized unif causes a clear increase in the efficiency

of goal solving for these examples.

6 Conclusions

In our recent work (Rodŕıguez-Artalejo and Romero-Dı́az 2010a) we extended the

classical CLP scheme to a new programming scheme SQCLP whose instances

SQCLP(S,D, C) were parameterized by a proximity relation S, a qualification do-

main D and a constraint domain C. This new scheme offered extra facilities for

dealing with expert knowledge representation and flexible query answering. In this

paper we have contributed to the aforementioned scheme providing, in a more prac-

tical sense, both a semantically correct transformation technique, in two steps, for

transforming SQCLP programs and goals intro equivalent CLP programs and goals;

and a prototype implementation on top CLP(R) systems like SICStus Prolog and

SWI-Prolog of some particularly interesting instances of the scheme.

The two-step transformation technique presented in Section 4 has provided us

with the needed theoretical results for effectively showing how proximity relations

can be reduced to qualifications and clause annotations by means of the trans-

formation elimS ; and how qualifications and clause annotations can be reduced to

classical CLP programming by means of the transformation elimD. These two trans-

formations altogether, ultimately enables the use of the classical mechanism of SLD

resolution to obtain computed answers for SQCLP goals w.r.t SQCLP programs,

via their equivalent CLP programs and goals and the computed answers obtained

from them by any capable CLP goal solving procedure.
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The prototype implementation presented in Section 5 has finally allowed us to

execute all the examples showed in this paper—and in previous ones—, and a se-

ries of benchmarks for measuring the overload actually introduced by proximity

relations—or by similarity relations—and by clause annotations and qualifications.

While we are aware that the prototype implementation presented in this paper has

to be considered a research application (and as such, we have to admit that it can-

not be used for industrial applications), we think that it can contribute to the field

as a quite complete implementation of an extension of the CLP(R) scheme with

proximity relations and qualifications. Some related implementation techniques and

systems have been cited in the introduction. However, as far as we know, no other

implementation in this field has ever provided support for proximity (and similar-

ity) relations, qualifications via clause annotations and CLP(R) style programming.

Moreover, our results in Section 4 on the semantic correctness of our implementa-

tion technique are in our opinion another contribution of this paper which has no

counterpart in related approaches.

In the future, and taking advantage of the prototype system we have already

developed, we plan to investigate possible applications which can profit from prox-

imity relations and qualifications, such as in the area of flexible query answering.

In particular, we plan to investigate application related to flexible answering of

queries to XML documents, in the line of (Campi et al. 2009) and other related

papers. As support for practical applications, we also plan to increase the repertoire

of constraint and qualification domains which can be used in the (S)QCLP proto-

type, adding the constraint domain FD and the qualification domain Wd defined

in Section 2.2.3 of (Rodŕıguez-Artalejo and Romero-Dı́az 2010b). On a more theo-

retical line, other possible lines of future work include: a) extension of the SLD(D)

resolution procedure presented in (Rodŕıguez-Artalejo and Romero-Dı́az 2008) to

a SQCLP goal solving procedure able to work with constraints and a proximity

relation; b) investigation of the conjecture stated at the end of Section 2; and c)

extension of the QCFLP (qualified constraint functional logic programming) scheme

in (Caballero et al. 2009) to work with a proximity relation and higher-order func-

tions, as well as the implementation of the resulting scheme in the CFLP(C)-system

Toy (Arenas et al. 2007).
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Guadarrama, S., Muñoz, S., and Vaucheret, C. 2004. Fuzzy prolog: A new approach
using soft constraint propagation. Fuzzy Sets and Systems 144, 1, 127–150.
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