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Abstract

Information extraction from chemistry literature is vital for constructing up-to-date

reaction databases for data-driven chemistry. Complete extraction requires combining

information across text, tables, and figures, whereas prior work has mainly investigated

extracting reactions from single modalities. In this paper, we present OpenChemIE to

address this complex challenge and enable the extraction of reaction data at the doc-

ument level. OpenChemIE approaches the problem in two steps: extracting relevant

information from individual modalities and then integrating the results to obtain a

final list of reactions. For the first step, we employ specialized neural models that each

address a specific task for chemistry information extraction, such as parsing molecules
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or reactions from text or figures. We then integrate the information from these mod-

ules using chemistry-informed algorithms, allowing for the extraction of fine-grained

reaction data from reaction condition and substrate scope investigations. Our machine

learning models attain state-of-the-art performance when evaluated individually, and

we meticulously annotate a challenging dataset of reaction schemes with R-groups to

evaluate our pipeline as a whole, achieving an F1 score of 69.5%. Additionally, the

reaction extraction results of OpenChemIE attain an accuracy score of 64.3% when

directly compared against the Reaxys chemical database. We provide OpenChemIE

freely to the public as an open-source package, as well as through a web interface.

Introduction

Reaction data curated from scientific literature is commonly used to train models for chem-

informatics. Today, this data is collected and maintained by experts in databases such as

Reaxys.1 However, this manual extraction comes with prohibitive cost and delayed updates.

Moreover, increasingly nuanced machine learning models for reaction development require

more fine-grained and comprehensive data, pertaining to reaction conditions, substrate scope,

and other screening processes in synthetic chemistry.2–5 Existing automated techniques can

only partially address this task, focusing on specific subproblems, such as reaction parsing

from individual diagrams or text passages.6–9 In this paper, we present OpenChemIE, a

system that extracts reaction data from chemical literature at the document level.

This extraction task is difficult because large swathes of reaction data are realized in

multiple modalities, often requiring chemical reasoning to fully determine relevant molecular

structures. Figure 1 illustrates two challenges. First, the molecular structures are not entirely

depicted in the figure, as they contain R-groups. The abbreviated structures can be identified

by directly parsing phenol for R2 in entry 1 of the accompanying table, or by comparing the

differences in the molecular graphs of 1 and 1u in entry 21. Second, the system must

align additional reaction metadata with the correct structures. In Figure 1 the highlighted
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Based on the above observations, the following plausible
mechanisms for palladium-catalyzed intramolecular cyclization
reactions (Scheme 3) are proposed. PdI2 is initially reduced to
Pd(0) by a ligand, and both routes 1 and 2 are catalyzed by
Pd(0) via the following steps: (a) The Pd(0)-catalyzed
transformation of 1,6-enyne carbonates generates allenylpalla-
dium intermediate A or C, which is readily attacked by an olefin
nucleophile to form intermediate B or D.11 I3

− may have a
strong spatial interaction with the palladium catalyst and
induces more hindered catalysts to form five-membered ring B,
which selectively favors six-membered ring formation D. The
stability of the formation of intermediates D and B determines
the regioselective insertion of olefin into the C−Pd bond in the
allenylpalladium intermediate to form five- or six-membered
rings. (b) The β-hydrogen elimination3h of intermediate D or B
would give six-membered heterocyclic allenes 2 or five-
membered heterocyclic allenes 3.

■ CONCLUSION
In summary, Pd-catalyzed divergent cyclizations of 1,6-enyne
carbonates were developed. The cyclizations provide a versatile
cascade reaction for the synthesis of heterocyclic allenes. The
method can be combined with Suzuki coupling to prepare
highly functionalized 3-vinylidene-1-tosylpyrrolidines in a one-
pot manner.

■ EXPERIMENTAL SECTION
Typical Procedure for the Preparation of Enyne Carbonates

1a−1u. Method A.12 To a stirred solution of the appropriate
terminal alkyne A (1.2 equiv) in THF (1.0 M) was added ethyl
magnesium bromide (1.0 M in THF, 1.1 equiv) at room
temperature. The resulting solution was stirred at 50 °C for 1 h.
Then B (1.0 equiv) in THF (0.35 M) was added slowly by
syringe to the resulting solution at room temperature and
stirred for 3 h. The reaction mixture was quenched by addition
of saturated aqueous ammonium chloride (40 mL) and
extracted with ethyl ether (2 × 40 mL). The combined organic
layers were washed with brine, dried over Na2SO4, and
concentrated under reduced pressure. The crude material was
purified by flash column chromatography to obtain the pure
propargylic alcohols C in quantitative yield.

To a mixture of propargylic alcohol C (2.37 mmol) and pydrine (19
mmol) in methylene chloride (30 mL) was added methyl
chloroformate (7.11 mmol) at 0 °C. The reaction mixture was stirred
at 0 °C for 2.5 h. The reaction mixture was quenched by addition of
saturated aqueous ammonium chloride and extracted with ethyl ether.
The combined organic layers were washed with water and brine and
dried over Na2SO4, and the solvent was removed under reduced
pressure. The concentrate was purified by flash column chromatog-
raphy to obtain the desired propargylic esters 1.

Method B.13 To a solution of A (22 mmol) in THF (100 mL) was
added n-BuLi (2.2 M in hexane, 10.9 mL, 24 mmol) at −20 °C, and
the mixture was stirred at the same temperature for 5 min. To this
solution was added ketone or aldehyde (20 mmol) in a dropwise
manner, and the mixture was then stirred at −20 °C for 30 min. To
this solution was slowly added methyl chloroformate (3.9 mL, 50

Table 2. PdI2-Catalyzed Synthesis of 3-Vinylidene-1-
tosylpyridines 2 and Pd(dba)2-Catalyzed Synthesis of 3-
Vinylidene-1-tosylpyrrolidines 3 from 1,6-Enyne Carbonates
1

aCondition A: The reaction was carried out by using 1 (0.2 mmol),
PdI2 (10 mol %), P(2-furyl)3 (40 mol %), Et3N (2 equiv), and TBHP
(2 equiv) in DMF (2 mL) at 85 °C under an argon atmosphere.
bCondition B: The reaction was carried out by using 1 (0.2 mmol),
Pd(dba)2 (10 mol %), P(2-furyl)3 (10 mol %), and KOAc (2 equiv) in
DMF (2 mL) at 85 °C under an argon atmosphere. cDecomposed.
dNo gain.

Scheme 2. One-Pot Cyclization/Suzuki Coupling of 1,6-Enyne 1a with Aryl Boronic Acids 4
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Figure 1: Example of a multimodal reaction description drawn from Zhao et al..10 The reac-
tion template is displayed in a figure, but information regarding R-groups is only contained
in the highlighted sections of the table. Moreover, detailed reaction conditions are described
in the table and accompanying footnotes.

molecule is only referred to by the label 1 in the footnote text, which contains detailed

reaction conditions. In other cases, conditions may also be defined in a figure or table, or

the reaction itself may be described in text.
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To address these challenges, OpenChemIE provides a streamlined computational pipeline,

which analyzes individual modalities and combines the extracted information together to

recover implicitly defined reactions. Building on our prior research in reaction extraction,7

molecular optical recognition,11 and reaction diagram parsing,6 we design additional modules

that enable OpenChemIE to fuse information at three different levels. First, we train a

machine learning model to associate molecules depicted in diagrams with their text labels,

performing a multimodal coreference resolution. Second, OpenChemIE aligns reactions with

reaction conditions and other data presented in tables, annotated in figures, or discussed in

texts by utilizing the coreference information. Lastly, OpenChemIE recognizes R-groups in a

diagram by comparing molecules with the same label, and substitutes them with additional

substructures listed in substrate scope tables and figures, yielding complete substrate data.

We evaluate the performance of each individual machine learning module as well as

the system as a whole. To evaluate the overall performance of OpenChemIE, we manually

curated a dataset of 1007 reactions described in 78 substrate scope figures involving R-groups

across five different organic chemistry journals. The extraction task requires all reaction

components to be correctly predicted and R-groups to be resolved. OpenChemIE achieves

an F1 score of 69.5% on this dataset, and we performed a meticulous evaluation to analyze

the error contributions of the different modules of the pipeline, identifying areas where the

system could be further enhanced in future work. Furthermore, in an end-to-end evaluation

of OpenChemIE on extracting reaction data from journal articles, we attain an accuracy

of 64.3% when comparing against existing extractions in Reaxys. Notably, our models for

reaction diagram parsing, molecule detection, and coreference resolution all perform robustly

under evaluation on independent benchmarks, and our R-group resolution algorithm only

contributes to a small amount of mistakes. The majority of errors were due to mistakes in

molecule recognition or optical character recognition.

OpenChemIE is available on a public web portal (https://mit.openchemie.info) as

an easily accessible demonstration of key forms of analysis that we incorporate. The full

4
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pipeline and its individual methods for analysis are provided in a Python package (https:

//github.com/CrystalEye42/OpenChemIE) that is suitable for larger-scale information ex-

traction. Our Python package allows for comprehensive extractions of molecules and reac-

tions from PDF files, as well as from only text and images. The toolkit is fully open-source

to facilitate future development in this area.

Related Work

Extracting From Figures This task includes molecule recognition and reaction extrac-

tion. Molecule recognition involves translating molecular images into SMILES strings. Initial

approaches employed rule-based methods for determining the structures of molecules, utiliz-

ing a suite of algorithms and heuristics to detect individual components such as bonds and

atoms.12,13 Later works instead leveraged CNN-based encoder-decoder architectures from

deep learning to perform this segmentation, allowing for robust recognition across diverse

styles.11,14–18 Recent research has also enabled the extraction of reaction schemes from fig-

ures, in which the reactants, products, conditions, and yield for each reaction are identified.

These works approached the segmentation either by using a series of heuristics and image

filters19 or by applying data-driven models for object detection and sequence generation.6,20

Several works have additionally developed systems for automatic extraction from figures

of real-world documents. These include ReactionDataExtractor19 and its 2.0 version,20 which

involve parsing reaction schemes, and also include MolMiner21 and DECIMER.ai,22 which

focus on molecule recognition. ChemSchematicResolver8 is another molecule recognition

system that additionally resolves R-groups defined in text labels. However, achieving a

robust figure-based extraction system remains challenging due to the wide variation of styles

and possible complexities for molecules and reaction schemes.

Extracting From Text This task consists of identifying chemical entities and their roles,

as well as parsing described reactions. Several studies for the former have centered on dataset
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Free Radical Cascade Carbochloromethylations of Activated Alkenes
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ABSTRACT: Free radical carbochloromethylations of ortho-
cyanoarylacrylamides and N-(arylsulfonyl)acrylamides have been
developed by employing simple alkyl chlorides as the chloromethyl
source. The transformations are characterized by wide functional
group compatibility and utilizing readily available reagents, thus
providing efficient methods for constructing polychloromethyl-
substituted quinoline-2,4-diones and α-aryl-β-polychloromethy-
lated amides.

■ INTRODUCTION
Polychloromethyl units widely exist in many biologically active
molecules and natural products and play an indispensable role
(Figure 1).1,2 Such units are also important in organic synthesis

because of their versatile transformations. It is known that
polychlorinated hydrocarbons can be converted into aldehyde,
ketone, carboxylic acid, ester, alkene, etc.3 As a result, a vast
array of methods have been developed for the introduction of a
polychloromethyl group into organic molecules,4−8 and among
them, introducing the polychloromethyl group by direct C−H
bond cleavage of simple alkyl chlorides has drawn much
attention due to the high atom economy and utilization of
readily available polychloromethylating reagents.5−8 For
example, transition-metal-mediated, visible-light-mediated,
and metal-free carbochloromethylations of N-arylacrylamides
and N-allyl anilines were achieved to produce polychloro-
substituted oxindoles and indolines.6 Three-component
intermolecular peroxychloromethylation and azidochlorome-
thylation of olefins and polychloroalkylations of imine have
also been developed.7 Recently, Li and co-workers reported
visible-light-promoted cascade cyclization of N-(o-
ethynylaryl)acrylamides with CH2Cl2 for constructing
CHCl2-containing N-polyheterocycles.8 Despite these advan-
ces, developing new polychloromethylation reactions to
construct valuable molecules from simple alkyl chlorides is
still desired.

Quinoline-2,4-diones are the core structure of many natural
products, pharmaceuticals, and agrochemicals.9 Additionally,
they are also important precursors for synthesizing natural
products and novel molecules.10 Over past decades, radical
cascade cyclization has become one of the most powerful
methods for preparing heterocycles due to the high step- and
atom-efficiency.11 In view of the importance of quinoline-2,4-
diones, a new strategy, radical cascade cyclizations of ortho-
cyanoarylacrylamides, has been developed by our and other
groups for accessing such heterocycles.12 For example, utilizing
sodium trifluoromethanesulfonate as a trifluoromethyl source,
we disclosed a radical trifluoromethylation/cyclization of ortho-
cyanoarylacrylamides to form trifluoromethyl-containing qui-
noline-2,4-diones.12a Other transformations involving phos-
phonylation,12b carbonylation,12c nitration,12d methylation,12e

sulfonation,12a,f sulfuration,12g and difluoromethylation12h were
also achieved. However, direct C−H functionalization/
cyclization of ortho-cyanoarylacrylamides for constructing
functionalized quinoline-2,4-diones remained underexplored.
Herein, we demonstrate a free radical carbochloromethylation
of ortho-cyanoarylacrylamides involving C−H functionalization
of simple alkyl chlorides to synthesize polychloromethyl-
substituted quinoline-2,4-diones. In addition, carbochlorome-
thylation of N-(arylsulfonyl)acrylamides through a chlorome-
thylation/aryl migration/desulfonylation process was achieved
for the construction of α-aryl-β-polychloromethylated amides
with a quaternary stereocenter (Scheme 1).

Received: December 13, 2021
Published: March 2, 2022

Figure 1. Representative compounds with polychloro groups.
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Tables 
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  R1 = ( R1 , P1 , C1 )

  R2 = ( R2 , P2 , C2 )


… 
  Rn = ( Rn , Pn , Cn )  

Input Output

reactants

( )
products conditions

Figure 2: OpenChemIE addresses the problem of extracting a list of reactions, containing
chemical structures for reactants and products, as well as reaction conditions from a PDF
document segmented into figures, text, and tables.

curation.23,24 For both chemical entity identification and reaction extraction, proposed solu-

tions include parsers that employ a series of regular expressions and classifiers to detect key

terms.25,26 A deep-learning solution for extracting reactions instead formulates the problem

as a sequence labeling task and utilizes a fine-tuned transformer encoder architecture.

A few works have created systems that extract from PDF files of documents instead of

from plain text, presenting additional engineering challenges. These include ChemDataEx-

tractor9 and PDFDataExtractor,27 which identify chemical entities and their associated

properties. While these can extract important information available in text, they do not

process relevant information from figures that would augment the data. Text-based descrip-

tions of reactions and molecules are often underspecified, generally referring to these entities

using families of compounds or by labels defined in figures. Resolving these mentions to

obtain specific molecular structures is vital. In contrast to both these and the figure-based

extraction systems, OpenChemIE aims for a more versatile, unified system. The advantage

of OpenChemIE is our usage of specialized chemistry-informed algorithms to integrate ex-

tractions from multiple modalities, namely text, tables, and figures, thus overcoming the

single modality barrier and enabling more comprehensive extractions.
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Problem Formulation

As seen in Figure 2, OpenChemIE addresses the task of extracting detailed chemical reactions

at the document level. We consider the input journal article to be a triple of (Figures, Texts,

Tables), which can be automatically segmented with existing PDF parsing tools. We seek

to extract the reactions described in the paper by identifying machine-readable structures

for their reactants and products, as well as other metadata. The expected output is a list of

reactions {R1,R2, . . . ,Rn}, where each reaction Ri is a triple (Ri, Pi, Ci). Ri is the set of

reactants and Pi is the set of products, each consisting of one or more molecules expressed as

SMILES strings. Ci is the set of metadata associated with the reaction, including detailed

conditions and yield information, and may be empty if no such information is parsed from the

paper. We do not capture information contained in other plots, such as reaction coordinate

diagrams or spectral data.

The information extraction task is thus expressed as a function

f : (Figures, Texts, Tables) → {R1,R2, . . . ,Rn} (1)

Crucially, OpenChemIE establishes relationships between its three inputs to inform its out-

put, such that f(Figures, Text, Tables) contains more data than f(Figures) ∪ f(Texts) ∪

f(Tables), the result of individually extracting from each modality.

OpenChemIE Overview

In the following section, we present an overview of OpenChemIE, a dedicated toolkit designed

to extract full reaction data from chemistry papers. A summary of our system can be found

in Figure 3. Initially, OpenChemIE receives the document which has been segmented into

figures, text, and tables for use in the downstream steps of our pipeline (implementation

details are provided in the Supporting Information). For each modality, we have developed
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Aniline 1 was alkylated with ethyl 
bromoacetate, and the resulting product 2 
was immediately subjected to acid chloride 
3 and pyridine giving rise to aniline 4. Ester 
saponification of 4 followed by activation 
with EDCI and coupling with aniline 5 
resulted in amenamevir (I).

hydrazones with α,β-unsaturated thioesters has been devel-
oped recently in our laboratory (Scheme 1b). Herein, we
disclose our research output.

■ RESULTS AND DISCUSSION
To test the feasibility of the desired transformation, the
reaction between α-bromo-N-benzoyl-hydrazone 1a and α,β-
unsaturated thioester 2a was conducted in dichloromethane
(DCM) with Na2CO3 as a base at room temperature (Table 1,
entry 1). Fortunately, 1,3,4-thiadiazine derivative 3a could be
afforded in 59% isolated yield. Subsequently, other series bases,
including Cs2CO3, NaHCO3, K3PO4, DIPEA, DABCO, and
DBU, were tested (Table 1, entries 2−7, respectively). It was
found that the type of base had a remarkable influence on the
conversion efficiency of the chemical reaction. In the presence
of K3PO4, the reaction could furnish the desired product 3a in
the best isolated yield (Table 1, entry 4). After the selection of
K3PO4 as the optimal base, various organic solvents were also
examined (entries 8−11). The solvent investigation revealed
that toluene was superior to others (Table 1, entry 11 vs
entries 4 and 8−10). As a result, a combination of K3PO4 (1.20
equiv) and toluene (0.1 M for 2a) at room temperature for 16
h was selected as the optimal condition for the desired
transformation. The structure of 3a was unambiguously
confirmed by X-ray diffraction analysis.13

After the optimal reaction had been identified, the scope of
the developed protocol was explored by employing a range of
α-bromo hydrazones (Scheme 2). Initially, the study focused
on examining effect of the protecting group on the nitrogen
atom. It was found that the transformation was highly efficient
and compatible for series of electron-withdrawing groups on

the nitrogen atom, including benzoyl, tert-butoxycarbonyl,
benzyloxycarbonyl, and acetyl, to furnish products 3a−d,
respectively, in 89−99% yields. Then, the groups at the para
position of the benzene ring (R2) were investigated, and the
results indicated that the reactions were compatible with
different types of substituents, affording desired adducts 3e−h
in excellent yields (92−98%). The reactions also tolerated the
m-methyl- and bromo-substituted α-bromo hydrazones to
afford the desired 1,3,4-thiadiazine derivatives 3i and 3j in 96%
and 94% yields, respectively. Similarly, the reaction with 1k as
a participant took place smoothly to afford the corresponding
product 3k in 95% yield. Upon incorporation of two chlorine
atoms on the phenyl group, the reaction showed a high level of
efficiency in the construction of 1,3,4-thiadiazine (99% yield)
(Scheme 2, 3l). Even when the substrate scope was expanded
to 2-furyl- and 2-naphthyl-substituted α-bromo hydrazones,
good yields could be achieved (Scheme 2, 3m and 3n). 1-
Tetralone-derived α-bromo hydrazine 1o was also used in the
developed protocol, and product 3o was obtained in excellent
yield (95%). However, when the alkyl-substituted hydrazone
substrates (R1 = Et and n-Bu, and R2 = Bz) were investigated
via reaction with 2a under the standard conditions, the
reactions became messy and no major product could be
obtained.
Next, we explored the substrate scope of various α,β-

unsaturated thioesters 2 via reaction with α-bromo-N-benzoyl-
hydrazone 1a under the optimal reaction conditions.
Thioesters 2b−d bearing electron-donating and -withdrawing
groups at the para position of the benzene ring could be
successfully applied to the developed transformation, forming
the corresponding products in good to excellent yields (87−
95%) (Scheme 3, 3p−r). Similarly, the protocol was still
compatible with α,β-unsaturated thioesters 2e−g incorporating
a substituent at the ortho or meta position, to furnish products
3s−u, respectively, in 88−90% yields. When α,β-unsaturated
thioesters 2h and 2i possessing aromatic heterocyclic
substituents were employed, the reaction proceeded smoothly,
affording products in 92% and 96% yields, respectively
(Scheme 3, 3v and 3w). To expand the range of application
of the developing transformation, O-ethyl benzothioate (2j)

Scheme 1. Aza-Diels−Alder Reactions of α-Halogeno
Hydrazones with Dienophiles

Table 1. Screening of Optimal Reaction Conditionsa

entry base solvent yield (%)b

1 Na2CO3 DCM 59
2 Cs2CO3 DCM 74
3 NaHCO3 DCM trace
4 K3PO4 DCM 87
5 DIPEA DCM 44
6 DABCO DCM nd
7 DBU DCM 10
8 K3PO4 DCE 31
9 K3PO4 MeCN 84
10 K3PO4 THF 35
11 K3PO4 toluene 99

aUnless otherwise noted, reactions were carried out with 1a (0.12
mmol), 2a (0.10 mmol), and a base (1.20 equiv) in 1.0 mL of a
solvent at room temperature for 16 h. bThe yields refer to the isolated
yields.
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Molecule Detection 
(MolDetect)
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Reaction Condition 
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Reaction Diagram Parsing  
(RxnScribe, Qian et al. 2023)

Text-Figure Coreference 
(MolCoref)

Named Entity Recognition  
(ChemNER)
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(ChemRxnExtractor, Guo et 

al. 2022)
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(MolScribe, Qian et al. 2022)

Complete 
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Tables

Figure 3: Overview of OpenChemIE, which receives segmented figures, texts,and tables
for processing. The results from individual neural models for each modality are combined
through reaction condition alignment and R-group resolution in OpenChemIE to yield a
final list of reactions.

specialized machine learning models capable of effectively parsing molecules and reactions,

as well as inferring relationships between text and diagrams. To further expand the scope of

information captured by OpenChemIE, we implement two general procedures that fuse the

outputs of individual models to produce a more complete reaction list. A description of the

individual components of OpenChemIE follows.

• Figure Analysis. Analysis of chemistry figures requires strong visual understanding,

ranging from high-level comprehension of reaction schemes and relations between en-

tities to low-level recognition of molecules. To address this multifaceted challenge, we

provide four models for figure/scheme analysis. The first of these models is designed

for detecting sub-images of molecules within figures (molecule detection, MolDetect)

and providing the relevant bounding box. Another model is for resolving the coref-

erence between detected molecules in the figure and labels in the text (text-figure

coreference, MolCoref). Additionally, OpenChemIE utilizes our previous research for
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parsing reaction schemes and relevant condition information (reaction diagram parsing,

RxnScribe)6 and translating molecular images into their chemical structures (molecule

recognition, MolScribe).11

• Text Analysis. Extracting from chemistry texts involves identifying mentions of

molecules and chemical reactions. To this end, we provide two models to address

both of these subtasks. The first one is a model for extracting chemical entities from

texts (named entity recognition, ChemNER). The second model, from our previous re-

search, identifies chemical reactions and their reaction conditions (reaction extraction,

ChemRxnExtractor).7

• Multimodal Integration. We implement two additional procedures that integrate

information across our single modality models. R-group resolution is the process of

identifying and substituting R-group structures into reaction templates, which allows

for a more complete extraction of reactions. This process utilizes parsed data from

tables as well as molecule information from figure analysis models. Reaction condi-

tion alignment enhances text-based reaction descriptions with molecular structures

identified in relevant diagrams. These multimodal integration components enable

OpenChemIE to serve as an end-to-end pipeline for reaction extraction.

In the subsequent sections, we will elaborate on the technical details of each module

comprising OpenChemIE.

Figure Analysis

Figures in chemistry literature contain essential molecular structures and reactions, as well

as relational information to text in or surrounding the diagram. In particular, the new

methods we develop focus on this latter aspect, which enable the success of our downstream

multimodal integration modules. As in Figure 4, OpenChemIE addresses four facets of figure

analysis, which we detail in this section.
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Molecule 
Detection

Text-Figure 
Coreference

Reaction Diagram 
Parsing

reactant

condition

product

CC1=CC=CC(C)=C1N(CC(OCC)=O)
C(C(CC2)CCS2(=O)=O)=O

Molecule 
Recognition

sub-image

MolDet

MolCoref

RxnScribe

MolScribe

Figure 4: OpenChemIE provides four models for analyzing figures in chemistry literature,
including molecule detection, text-figure coreference, reaction diagram parsing, and molecule
recognition.

Molecule Detection In chemistry literature, a single figure often contains multiple molecules.

The task of molecule detection is to segment the figure into sub-images of molecules such

that we can later recognize the structure of each individual molecule. Molecule detection

shares similarities with the extensively studied object detection task in computer vision,28,29

which focuses on identifying sub-images of objects within natural photographs.

In OpenChemIE, we provide MolDetect, a molecule detection model formulated with

sequence generation. Inspired by the Pix2Seq29 model designed for object detection, MolDe-

tect identifies molecular sub-images by predicting their bounding boxes as a sequence. Given

a figure, a molecule entity whose bounding box has top-left coordinates (x1, y1) and bottom-

right coordinates (x2, y2) is represented as five discrete tokens,

Molecule := x1 y1 x2 y2 [Mol] (2)

where [Mol] is a special token indicating the detection of a molecule. MolDetect sequentially

10



generates all the molecule entities within the figure,

MolDetectOutput := (Molecule)∗ (3)

where (·)∗ means zero or more occurrences.

MolDetect is implemented as an encoder-decoder architecture. The figure is encoded

using a convolutional neural network to obtain hidden representations. Then, the decoder

is a Transformer which generates the output sequence as defined in Equations (2) and (3).

Text-Figure Coreference It is common practice in chemistry literature to assign unique

identifiers to the molecules depicted in a figure and subsequently refer to them by their

respective identifiers in the accompanying text. To establish a clear link between the infor-

mation in the text and the figure, we have developed MolCoref, a model that pairs molecules

with their respective identifiers in the figure. An example prediction from MolCoref can be

found in Figure 5, which depicts the molecules and identifiers being successfully detected

and the corresponding links established.

MolCoref also employs a sequence generation approach to resolve the coreference between

identifiers and molecular structures. Specifically, its output format is defined as

MolCorefOutput := (Molecule [Identifier]?)∗

Molecule := x1 y1 x2 y2 [Mol]

Identifier := x1 y1 x2 y2 [Idt]

(4)

where [·]? means optional. Both the Molecule and Identifier are represented using five tokens,

consisting of four coordinates and a final token to differentiate them. When a Molecule is

paired with an Identifier in the figure, the model generates the Molecule first, followed by

the corresponding Identifier. Otherwise, the model generates only the Molecule without the

Identifier. Based on MolCoref’s output, we use a molecular recognition model to parse the
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Identifier Molecule
6a Cc1cc(C2(C)OC(=O)c3ccccc32)cc(C)c1O

6b COc1cc(O)c(C2(C)OC(=O)c3ccccc32)c(OC)c1

6c CC1(c2cc(Br)c(O)c(Br)c2)OC(=O)c2ccccc21

6d CC1(c2c(O)cc(Br)cc2Br)OC(=O)c2ccccc21

6e CC1(c2ccc3ccccc3c2O)OC(=O)c2ccccc21

6f CC1(c2c(O)ccc3ccccc23)OC(=O)c2ccccc21

6g CC1(c2ccccc2)OC(=O)c2ccccc21

6h Cc1ccc(C2(C)OC(=O)c3ccccc32)cc1


Step 1: MolCoref

Step 2: MolScribe & OCR

Figure 5: Illustration of extracting molecules and identifier coreferences from a figure. First,
MolCoref determines entity bounding boxes and their correspondence. Then, the molecules
are recognized by MolScribe.

chemical structures and an optical character recognition (OCR) model to parse the text

strings.

Compared to the previous approach8 that relies on heuristic rules for aligning molecules

with their identifiers, MolCoref integrates the detection of molecule bounding boxes and

the resolution of text-figure coreference into a single model. This simplifies the process and

mitigates the risk of error propagation. Furthermore, as our experiments will demonstrate,

our data-driven model yields more accurate and reliable predictions.
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Step 1: RxnScribe Step 2: MolScribe & OCR

Reactant C=C(C)C(=O)N(c1ccccc1C#N)S(=O)(=O)c1ccccc1

Condition
CHCI3

Mn(OAc) 2H20 (2.0 equiv)

PhB(OH)z (2.0 equiv) 90 %C

Product
CC1(CC(Cl)(Cl)Cl)C(=O)c2ccccc2N(S(=O)(=O)c2ccccc2)C1=O

C[C@@](CC(Cl)(Cl)Cl)(C(=O)Nc1ccccc1C#N)c1ccccc1

Reactant C=C(C)C(=O)N(c1ccccc1)S(=O)(=O)c1ccccc1

Condition
CHCl3 

Fez(SO4)3 (50 mol%)

DTBP (4.0 equiv) 120 %C

Product C[C@@](CC(Cl)(Cl)Cl)(C(=O)Nc1ccccc1)c1ccccc1

https://doi.org/10.1021/acs.joc.1c03024
Figure 6: Illustration of extracting reactions from a figure. First, RxnScribe parses the two
reactions in the figure. Then, the molecules and text are recognized by MolScribe and OCR
models respectively.

Reaction Diagram Parsing Reaction schemes are often defined graphically within figures

and in a wide range of styles, requiring a sophisticated level of visual understanding to

correctly extract. To this end, OpenChemIE incorporates RxnScribe,6 a model previously

designed for the extraction of reaction schemes from figures. Figure 6 demonstrates the

extraction process on a figure with two reactions. In it, RxnScribe predicts the structure of

both reactions correctly, with reactants, conditions, and products highlighted in red, green,

and blue boxes, respectively.

Molecule Recognition Molecule recognition is the task of translating an image of a

molecule into its corresponding chemical structure, typically represented as a SMILES string

in a computer-readable format. OpenChemIE includes MolScribe,11 a model we developed

earlier for molecule recognition. Our previous modules for text-figure coreference and re-

action diagram parsing only extract the high-level structure of diagrams. To fully extract

the reaction or molecular information, we further crop the bounding boxes and pass the

individual subdiagrams to downstream modules. As shown in Figure 5, we use MolScribe
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ChemRxnExtractor

ChemNER

Figure 7: Illustration of extracting chemical entities and reactions from text. The passages
are drawn from Liu et al..31

and EasyOCR,30 an off-the-shelf optical character recognition tool, to translate the content

in each bounding box to paired SMILES strings and text labels. Similarly, in Figure 6, we

use the same tools to extract the molecular structures of products and reactants, as well as

text descriptions of accompanying reaction conditions.

Text Analysis

As seen in Figure 7, OpenChemIE contains two powerful natural language processing models

which excel at extracting chemical entities and reactions from the text in chemistry litera-

ture.able to extract chemical entities and reactions from text. The machine learning models

are named ChemNER and ChenRxnExtractor respectively.

Named Entity Recognition Our first model is dedicated to the task of extracting chem-

ical entities from a given text excerpt. In scientific literature, chemical entities can take on

diverse forms, including molecular formulas (e.g., NaOH), IUPAC systematic names (e.g.,

1,3,4-oxadiazole), abbreviations (e.g., GABA), or database identifiers (e.g., CID16020046).

For successful extraction, it is essential to locate these mentions in the text and accurately

determine their specific forms.
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In OpenChemIE, we provide a model named ChemNER, which is trained on the publicly

available CHEMDNER corpus.23 This corpus comprises a collection of PubMed abstracts

with expert-annotated chemical entity mentions. Our model adopts a sequence tagging

approach using the BIO format. We fine-tune a language model that has been pre-trained

on biomedical literature,32 further enhancing the model’s performance and domain-specific

understanding. In Figure 7, ChemNER detects all three chemical entities and correctly

makes the distinction that “cyanamide” refers to a specific compound whereas the other

chemical mentions refer to general families of compounds.

Reaction Extraction Reaction extraction is a structured prediction task that involves

identifying the reactions presented in the text. OpenChemIE includes ChemRxnExtractor,7

a model previously developed for text-based reaction extraction. Figure 7 displays a pro-

cessed reaction description where the product is represented by the identifier “4a”, with

additional information about reaction conditions and yield also highlighted. However, the

chemical structures of the extracted reactant “1a” and product “4a” are omitted in the text,

highlighting the importance of our models for coreference resolution and molecule recognition

in diagrams.

Multimodal Integration

Complete reaction schemes, which require full structural information of reactants and prod-

ucts as well as complex descriptions of reaction conditions, are often specified across multiple

paragraphs, tables, and figures. Understanding the connections between these modalities is

challenging, as demonstrated in Figure 1, and has not been significantly explored by previous

works. OpenChemIE begins to address the general task of multimodal integration by divid-

ing the problem into two main challenges. For one, detailed reaction condition and yield data

must be properly aligned with machine readable molecular structures of the reactions they

refer to. Furthermore, many diagrams are underspecified, and the R-groups they contain
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Expanded Reaction List

Reaction Condition Alignment

Reactants Products Base Solvent Yield

K2CO3 THF 85%

K2CO3 THF 92%

DCM 83%

reactants product

…

acs.joc.2c00176

…

Figure 8: Reaction Condition Alignment. We augment incomplete reaction descriptions in
text with resolved molecule identifier pairs and parse additional reaction condition tables.
Example adapted from Liu et al..31

must be inferred from a separate molecule in the diagram or a completely different table

altogether. In the following sections, we describe how we integrate our individual model

results together for multimodal understanding.

Reaction Condition Alignment In OpenChemIE, we provide methods to align the re-

action data contained in figures with the information from text and tables, obtaining more

complete reaction descriptions.

One type of reaction condition alignment we address is the task of integrating information

from condition screening tables with their corresponding reactions displayed in figures, such

as in Figure 8. For this, we created a parser to extract the table headers and columns. We

use a dictionary-based classifier to categorize each column based on its header, such as being

for temperature, solvent, yield, or other common types of metadata. Each row in the table

corresponds to a complete configuration of reaction conditions, which we add to the set of

reaction conditions for the relevant reaction.
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Expanded Reaction List

Reactants Products

reactants product

…

productreactants

From diagrams:

From tables:

Me =

tBu =

Ar =

R-group substitution

R-group identification

Figure 9: R-Group Resolution. R-groups are first identified from diagrams and tables and
then substituted into the appropriate reactant molecule templates. Example adapted from
Zhang et al.33

Reactions and their details are often described within the accompanying text as well.

However, the reactants and products in this modality are often distinguished by their unique

identifier, with the structural information of the molecules defined separately in figures.

With only the identifier, these text-based reactions would be incomplete due to the missing

of molecular structures. To address this issue, we align the molecular structure information

from figures with their identifiers in text. From our figure analysis module, we first obtain a

mapping between the identifiers and their structures using MolCoref. Whenever an identifier

is encountered during the text-based reaction extraction stage, we substitute the identifiers

with their SMILES representation. This integration along with our table-figure integration

allows for the unification of information across three modalities to extract significantly more

complete reaction data.

R-Group Resolution Previous work from ChemSchematicResolver8 has been done to

parse simple definitions of R-groups that are explicitly expressed as text chemical formulae

within figures (e.g., “R=Me”) and perform the corresponding substitutions. In addition to

this case, OpenChemIE seeks to comprehend other forms of substrate scope, namely the
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cases where products are depicted as different molecular structures or where a table separate

from the reaction scheme defines the R-groups, which require further reasoning to determine

the resolved molecular structures.

We address the two most common modes of presentation for substrate scope, which are

shown in Figure 9. In the first case, the reaction template is displayed graphically and the

R-groups are defined as text in an associated table or label. For this, we parse the R-group

information from the text formula and use MolScribe11 to predict the graph structures of

the template molecules. We then directly substitute the chemical formulas of the R-groups

into their placeholders in the graphs. These structures are then expanded and converted to

SMILES strings by MolScribe’s postprocessing methods.

In the second case, in addition to a reaction template, there is a set of possible products

defined in the diagram with which one must infer the structures of the R-groups and the re-

actants. To approach this, we first leverage MolCoref to identify the labels of all molecules in

the figure and match the label prefixes to associate the specific products with their template

molecule. Given the reaction template and the specific product, we use a subgraph isomor-

phism algorithm implemented in RDKit34 to identify the atom mapping between the two

molecular structures. The unmapped atoms in the specific product are molecular fragments

that correspond to the substructures of the R-groups. We substitute the identified R-group

fragments into the reactant templates in order to obtain the full molecular structures of the

entire reaction.

With the two integration steps presented above, we obtain a reaction list with complete

molecule structures and conditions. In the experiments, we evaluate the performance of the

pipeline.
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Experiments

One of the central challenges in developing a reaction extractor is a lack of high-quality

benchmark datasets with corresponding evaluation metrics. To this end, we created our

own dataset consisting of reactions and diagrams from chemistry literature, with manually

produced annotations. In addition, we compared the system output against reactions in the

Reaxys database. While our annotation scheme and extraction scope are not fully aligned

with that of Reaxys (e.g., Reaxys does not include reactions with low or no yield), this

challenging evaluation provides another measure of the system performance. We conduct a

meticulous error analysis for both evaluation settings and further discuss the performance

of individual modules in OpenChemIE.

Evaluation With Annotated Data We evaluate OpenChemIE on a newly annotated

reaction extraction dataset. This dataset contains 1007 reactions collected from 78 figures

from recent issues of five chemistry journals: Journal of Organic Chemistry, Organic Letters,

Angewandte Chemie International Edition, European Journal of Organic Chemistry, and

Asian Journal of Organic Chemistry. The figures in this dataset are substrate scope diagrams.

Using ChemDraw, we annotated SMILES strings for every reaction by inferring the structure

of reactants from the structures of the template product and table of full products. A set

of example annotations for this dataset is displayed in Figure 10. For each substrate scope

diagram, we first annotate the reaction template (R,P ), where R and P are the sets of

SMILES strings for the reactants and products respectively, which may contain R-groups.

Then, we annotate the substrate scope {(Ri, Pi)}, where Ri is a set of reactants whose

R-groups have been substituted based on Pi.

For this dataset, we evaluate the model’s predictions using exact match, i.e., a predicted

reaction (R̂, P̂ ) is considered correct only if all the molecular structures of its reactants and

products match those in a ground truth reaction. We compute the precision, recall, and F1 to

assess the model’s performance. Here, the precision measures what fraction of the model’s
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Table 1: Performance of OpenChemIE for extracting reactions from substrate scope dia-
grams, as well as the individual performance of each module in OpenChemIE.

Module Evaluation Score*

OpenChemIE 79.1 / 62.0 / 69.5

Evaluation of individual models
- Molecule Detection (MolDetect) 86.0
- Coreference Resolution (MolCoref) 91.4 / 88.9 / 90.1
- Reaction Diagram Parsing (RxnScribe) 91.9 / 90.1 / 91.0
- Molecule Recognition (MolScribe) 71.9
- Named Entity Recognition (ChemNER) 87.1 / 88.1 / 87.6
- Reaction Extraction (ChemRxnExtractor) 79.3 / 78.1 / 78.7

* Precision/Recall/F1 by default. For molecule detection, we
use Average Precision.35 For molecular recognition, we use
accuracy.

R1 = C#Cc1ccccc1C(=O)O, 

Cc1cccc(C)c1O P1 = Cc1cc(C2(C)OC(=O)c3ccccc32)cc(C)c1O

R2 = C#Cc1ccccc1C(=O)O, 

COc1cc(O)cc(OC)c1 P2 = COc1cc(O)c(C2(C)OC(=O)c3ccccc32)c(OC)c1

R3 = C#Cc1ccccc1C(=O)O, 

Oc1c(Br)cccc1Br P3 = CC1(c2cc(Br)c(O)c(Br)c2)OC(=O)c2ccccc21

R3 = C#Cc1ccccc1C(=O)O, 

Oc1cc(Br)cc(Br)c1 P4 = CC1(c2c(O)cc(Br)cc2Br)OC(=O)c2ccccc21

R = C#Cc1ccccc1(=O)O, ArH P = ArC1(C)OC(=O)c2ccccc21

Input Annotation

Figure 10: Illustration of annotation process, where we parse the SMILES strings of the
template reaction (R,P ) and provide each detailed reaction (Ri, Pi).

predictions is correct, the recall measures what fraction of the ground truth reactions is

correctly predicted, and F1 score is the harmonic mean of precision and recall. As seen in

Table 1, OpenChemIE achieves a precision of 79.1%, recall of 62.0% and F1 score of 69.5 %

on this task.

Each individual module in OpenChemIE is also evaluated on an independent benchmark

to measure its performance in isolation of the entire system. Table 1 shows state-of-the-art

performances of all six individual machine learning models on their respective benchmarks.

In particular, MolCoref achieves an 90.1% F1 score on a dataset of 1696 diagrams metic-
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Table 2: Reaction extraction results on journal articles compared against Reaxys.

Correct Total Predictions Accuracy

OpenChemIE 257 400 64.3%
ReactionDataExtractor 2.0 9 102 8.8%

ulously annotated with molecule-identifier information. As detailed in our past research,

RxnScribe achieves a strong 91.0% F1 score on identifying single line reaction diagrams, and

MolScribe has an accuracy of 71.9% on realistic molecular structures drawn from past ACS

publications. We discuss additional evaluation details and error contribution rates to the

next section.

Evaluation With Reaxys We evaluate the performance of OpenChemIE by comparing

the extractions against those in Reaxys. Reaxys is a large commercial database of reactions

that is periodically updated by chemical experts who manually extract the data from journal

articles.

We construct the dataset for this task by collecting 19 journal articles containing 155

figures from recent issues of The Journal of Organic Chemistry and Organic Letters that

contained reaction condition and substrate scope screening tables. These journal articles

were each converted into a triple of figures, texts, and tables for input to OpenChemIE

with a set of off-the-shelf PDF-parsing tools corresponding to each modality.27,36,37 Due

to errors in diagram parsing frequently yielding inaccurate borders, we manually adjusted

diagram segmentations for this dataset. Existing reaction extractions in Reaxys provided the

groundtruth annotations. For each article, the groundtruth thus contains a list {(Ri, Pi)}

where Ri and Pi are sets of SMILES strings for the reactants and products respectively.

We use a soft match to evaluate the accuracy of our pipeline’s predictions. First, molecu-

lar structures are considered to be equivalent if they are tautomers to each other since some

compounds rearrange to specific isomers in solution. Second, a predicted reaction (R̂, P̂ ) is

considered correct if Reaxys contains an entry (R,P ) such that R̂ is a subset of R and P̂ is a
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subset of P . We choose to use this evaluation metric because of ambiguities that arise during

the annotation process, for example, whether certain compounds are considered reactants or

reagents specified in the set of conditions instead.

As seen in table 2 OpenChemIE extracts 400 reactions from this dataset, of which 257

have a soft match in the Reaxys database, for an accuracy of 64.3%. Since ReactionDataEx-

tractor 2.020 does not extract from texts or tables, we only provide the segmented diagrams

for each journal article to ReactionDataExtractor 2.0. It achieves an accuracy of 8.8% with

102 total predictions in this evaluation setting. Besides reactions described in texts or ta-

bles, ReactionDataExtractor was also unable to resolve reactions whose depictions involved

R-groups, which comprised the majority of reactions extracted by OpenChemIE. Moreover,

we applied the same evaluation to the fully automatic version of OpenChemIE provided

through our code package and web portal. In this setting, OpenChemIE achieved an accu-

racy of 46.0% on 359 total predictions. The decrease in accuracy can mainly be attributed to

inaccurate diagram segmentations during the PDF parsing process, since the automatic tool

LayoutParser was not trained specifically on chemistry literature. Additional implementa-

tion details can be found in the Supporting Information.

Analysis and Discussion We analyze the error contribution of individual components

in OpenChemIE. Since the majority of reactions extracted in the previous evaluations are

described in substrate scope diagrams, we focus our analysis towards the performance on the

task of extracting from this setting. Figure 11 displays the error contribution of each module

in the R-group resolution process. The full evaluation scores of each model are displayed in

Table 1.

Figure 12 illustrates examples of successful predictions and common errors by OpenChemIE.

In Example (1), OpenChemIE is able to correctly identify the reaction template, determine

the molecular bounding boxes, and resolve all of the coreferences correctly. The overall

pipeline is able to extract all four reactions depicted in the substrate scope diagram cor-
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Reaction Diagram Parsing
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Figure 11: Error contribution of each relevant module to the R-group Resolution process

rectly, which can be attributed to the strong performance of MolCoref and RxnScribe in the

initial stage. We provide evaluation results of MolDetect and MolCoref in Table 3 and also

compare the models against ChemSchematicResolver.8 MolDetect and MolCoref leverage the

simple sequential learning framework to achieve strong performance in both tasks, whereas

errors propagate throughout ChemSchematicResolver’s rule-based pipeline. Per Figure 11,

MolCoref ultimately caused 15% of incorrect predictions. This outsized error contribution

was primarily due to diagrams in which one molecule had multiple labels, a presentation

style not seen in the training dataset. On the other hand, RxnScribe achieves an F1 score

of 91% for parsing single line reaction diagrams, which make up the majority of reaction

templates in substrate scope diagrams, and contributed to 0% of overall errors. Our prior

work6 provides a more detailed quantitative evaluation of RxnScribe on extracting reactions

from diagrams of various styles.

Our R-group resolution algorithm also performs robustly and is generally able to correctly

identify the R-groups from each product and perform the corresponding substitutions in the

reactant template when the input is free of errors. However, there were a small number

of cases where the algorithm returned an incorrect prediction. For example, some product

23



Reactant predictions Reactant predictions

label: “39”

label: “3u”

MolScribe Error 

R-Group Resolution Algorithm 
Swaps Assignment of R1 and R2

OCR Error

Correct Reaction Template

Example (3) Input: 

label: “6b”

Correct Reaction Template

label: “3a”

Product

Reactant

Molecule

Identifier

: correct final 
prediction

: incorrect

RxnScribe Output

MolCoref Output

R Group Resolution 
Algorithm Output

label: “4aba”

Reactant predictions:

Incorrect Reaction Template 
Causes Final Prediction Error 
Despite Correct Substitution

MolCoref Errors

label: “6a”

label: “6c”

label: “6d”

MolScribe Error Resulting In Incorrect Reaction Template

+ +

+

+

Example (1) Input: 

1aba:

2aba:

3aba:

1d:

2d:

1a:

2a:

label: “3d”

Example (2) Input: 

Reactant predictions

Reactant predictions

Reactant predictions

Reactant predictions

5a:

5b:
5c:

5d:

Ar = 

Ar = Ar = 

Ar = 

R4 = 

R1 = 

R2 = 
R1 = 

R2 = 

Figure 12: Examples of predictions and common errors of OpenChemIE on substrate scope
diagrams.
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Table 3: Evaluation of chemical diagram entity detection and coreference performance (scores
are in %).

Detection Coreference
Average Precision Precision Recall F1

ChemSchematicResolver 28.8 83.8 31.7 46.0
MolDetect 86.0 – – –
MolCoref 82.9 91.4 88.9 90.1

templates are completely symmetric but contain two different R-groups. Since the R-group

resolution algorithm does not take into account information about the layout or color of the

original diagram, it is unable to differentiate between the two correctly extracted R-group

fragments. In other diagrams where errors occurred, specific presentation choices violated

assumptions made in the design of the algorithm. Some authors switched the chirality of

certain atoms between the template and product, and others included products where not

every R-group in the original template had a substituent. A more detailed discussion of

specific errors can be found in the Supporting Information.

In contrast, over half of the errors in the OpenChemIE pipeline occurred during molecule

recognition. In Figure 12, example (2) displays a MolScribe error occurring on a MolCoref

prediction, where a molecule with label 3u is parsed incorrectly. Example (3) displays an

instance where there is a MolScribe error in the original reaction template. From this, we

observe that there are two reasons for MolScribe’s outsized error contribution. First, if there

is a single MolScribe error in the original reaction template, the extraction results for the

entire diagram will be incorrect. This scenario contributed 41.6% of all errors. Second,

MolScribe only achieves a 71.9% accuracy on molecules from ACS publications, which are

often drawn in diverse styles.11 Furthermore, the tool we employed for optical character

recognition of molecule labels, EasyOCR, was another large source of error. Many labels

were parsed incorrectly. In example (2), the label “3g” was mistakenly parsed as “39”,

which meant that the product was not processed by the downstream algorithm, as it was

not associated with the product with label “3”.
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Table 4: Evaluation of chemical entity named entity recognition by entity type (scores are
in %).

Percentage Precision Recall F1

ABBREVIATION 16.5% 85.9 84.5 85.2
FAMILY 13.0% 76.5 85.4 80.7
FORMULA 14.0% 86.3 84.8 85.6
IDENTIFIER 2.4% 92.2 78.1 84.5
MULTIPLE 0.7% 68.7 74.4 71.5
SYSTEMATIC 22.9% 89.8 88.6 89.2
TRIVIAL 30.5% 91.5 93.5 92.5

Overall 100% 87.1 88.1 87.6

We further analyze the two text-based extraction models in OpenChemIE, namely Chem-

NER and ChemRxnExtractor. ChemNER is trained based on the BioBERT-large32 check-

point using the CHEMDNER dataset.23 The dataset annotates mentions of chemical entities

in seven types. Whereas past work does not make distinctions based on entity type during

the evaluation, we evaluate the entity-level precision, recall and F1 scores on each type and

also report the micro-averaged overall performance in Table 4. The model achieves an F1

score of 87.57 % on the entire test set, with stronger performance on the two most common

classes, SYSTEMATIC and TRIVIAL. Complete evaluation results for ChemRxnExtractor

can be found in previous work.7

OpenChemIE Interfaces

OpenChemIE is accessible through two interfaces: (1) a comprehensive Python package

that integrates all our models and utility functions, and (2) a user-friendly Web portal that

simplifies the toolkit’s usage, making it accessible to a wider audience, even those without

programming knowledge.

Python Package We provide an open-source Python package (https://github.com/

CrystalEye42/OpenChemIE) that integrates all our models and utility functions, including
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the PDF parser and the models for text, figure, and table analysis. We further implement

methods that take a PDF document as input and effortlessly execute the information ex-

traction pipeline, returning the extracted molecule and reaction data in a structured format.

To ensure smooth usage, we provide detailed installation instructions and example use cases,

enabling chemists with basic programming skills to efficiently process literature data using

the toolkit.

Web Portal We have developed a user-friendly web portal (https://mit.openchemie.

info) that streamlines the PDF upload process, automatically executes extraction models,

and conveniently displays the results. Users can upload a PDF document of a chemistry

paper, which will be processed on our backend server using the OpenChemIE toolkit. The

extraction results will be visualized on the portal. As in Figure 13, predicted molecule

structures are displayed in a web-based Ketcher editor, enabling the user to edit the model’s

predictions if desired. Due to computational constraints, our public portal can process a

maximum of five pages from each paper. However, users can freely download and deploy the

web portal on their own machines, granting access to all functionalities.

Conclusion

In this paper we present OpenChemIE, a comprehensive system for information extraction

from chemistry literature at the document level. OpenChemIE addresses the need for the in-

tegration of information across multiple modalities in order to provide complete extractions

of molecules and reactions. We approach the general challenge of chemistry information

extraction by incorporating chemistry-informed algorithms to integrate the results from in-

dividual modalities to obtain the final outputs. This approach allows for the extraction of

previously unresolvable information, such as substrate scope investigations, and is a notable

step toward achieving multimodal analysis of chemistry literature.

OpenChemIE has made remarkable progress toward its objective of extracting reaction
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Figure 13: Illustration of the web interface for extracting molecular structures from PDF
files. The uploaded PDF document is from Wu et al..38

data comprehensively from chemical literature, although some challenges remain to be ad-

dressed. For instance, there is room for enhancing the performance of machine learning

models on diverse literature data: MolScribe might be further developed to more precisely

capture less common representations of molecular structures, including Markush structures;

the PDF parsing tool may benefit from adjustments to better cater to chemical documents.

Additionally, while our system is adept at parsing multiple multimodal relationships, en-

hancing its ability to understand the complex interdependencies between different modalities

in chemical documents represents an exciting area for future development. The emergent

abilities of large language models hold promise for providing a more integrated end-to-end

solution for chemical information extraction, suggesting an optimistic pathway forward.
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Data and Software Availability

The OpenChemIE toolkit is publicly available:

• Source code: https://github.com/CrystalEye42/OpenChemIE

• Web interface: https://mit.openchemie.info

. Individual machine learning models in OpenChemIE can be found at the following links:

• MolScribe: https://github.com/thomas0809/MolScribe

• RxnScribe: https://github.com/thomas0809/RxnScribe

• MolDetect/MolCoref: https://github.com/Ozymandias314/MolDetect

• ChemNER: https://github.com/Ozymandias314/ChemIENER

• ChemRxnExtractor: https://github.com/jiangfeng1124/ChemRxnExtractor

The datasets for our molecule detection, molecule coreference resolution, and R-group reso-

lution processes are constructed from journal articles shared between the American Chemical

Society (ACS) and MIT under a private access agreement.

• The annotated images for the molecule coreference and detection task, as well as

their train/validation/test splits can be downloaded at https://huggingface.co/

datasets/Ozymandias314/MolCorefData.

• The diagrams and annotations for the R-group resolution dataset, as well as data for

the comparison against Reaxys are located at https://huggingface.co/datasets/

Ozymandias314/OpenChemIEData for download.
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Supporting Information Available

Detailed evaluation results for our new models (ChemNER, MolDetect, and MolCoref) and

the overall OpenChemIE pipeline, a description of the data annotation process, and imple-

mentation details for our PDF Parser are available in the supporting information.
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