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Abstract
Existing flexible docking approaches model the ligand and receptor flexibility either separately or
in a loosely-coupled manner, which captures the conformational changes inefficiently. Here, we
propose a flexible docking approach, MedusaDock, which models both ligand and receptor
flexibility simultaneously with sets of discrete rotamers. We develop an algorithm to build the
ligand rotamer library “on-the-fly” during docking simulations. MedusaDock benchmarks
demonstrate a rapid sampling efficiency and high prediction accuracy in both self-docking (to the
co-crystallized state) and cross-docking (to a state co-crystallized with a different ligand), the
latter of which mimics the virtual-screening procedure in computational drug discovery. We also
perform a virtual-screening test of four flexible kinase targets including cyclin-dependent kinase 2,
vascular endothelial growth factor receptor 2, HIV reverse transcriptase, and HIV protease. We
find significant improvements of virtual-screening enrichments when compared to rigid-receptor
methods. The predictive power of MedusaDock in cross-docking and preliminary virtual-
screening benchmarks highlights the importance to model both ligand and receptor flexibility
simultaneously in computational docking.

Introduction
Specific interactions between small molecules and protein receptors are of crucial
physiological and pharmacological importance. The ability to predict atomic interactions
between ligand and receptor is extremely useful for understanding biological processes and
for rational drug design. The major challenge in computational prediction of protein-ligand
interactions is the large number of degrees of freedom, including protein backbone and side
chain flexibilities, ligand conformational flexibility, and ligand rigid-body motion. Of
particular interest is the receptor flexibility, which is essential to capture the receptor
conformational changes upon ligand binding, i.e., the induced fit effect 1–5. However,
incorporating receptor flexibility is also computationally challenging and has been one of
the foci of recent protein-ligand docking studies 3–10. For example, the generation of an
ensemble of multiple pre-determined conformations has been proposed to model the
receptor flexibility. The receptor conformation ensemble can be obtained experimentally by
x-ray crystallography under different conditions, by NMR spectroscopy 11–14, or
computationally by molecular dynamics simulations6, 15–18, comparative modeling 19 and
normal mode analysis 10, 20. These ensemble approaches also have limitations. For example,
multiple experimental conformations are not available for most proteins. Additionally, the
pre-determined receptor conformational ensemble may not capture receptor conformational
changes upon binding to novel ligands. Such a limitation could be avoided if we model the
flexibility of both ligand and receptor simultaneously.
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Recently, several approaches have been proposed for the simultaneous sampling of the
receptor and ligand flexibility during docking 7–9, 21–23. For example, protein side chain
rotamer libraries, where the continuous protein side chain conformational space is modeled
by a set of discrete states 24, have been used to model protein flexibility during docking 7, 9,
21–23. It has been shown that including receptor side chain rotamers of a few key residues
for docking 9, 22 or several highly probable rotamers of the binding pocking residues 7 can
significantly improve the ability to find near-native poses in cross-docking studies when
compared to the rigid receptor docking. Specifically, Baker and coworkers 8, 23 have
recently developed the RosettaLigand method to extensively sample the receptor side chain
conformations near the binding pocket, and also found that the incorporation of receptor
flexibility increases the probability of finding near-native poses with low energies. In
RosettaLigand, the flexibility of a ligand is modeled by docking with a set of diverse ligand
conformations 8, which can be generated either from other methods 23 or by the recent
extension of RosettaLigand 25. However, during each RosettaLigand docking, the ligand
conformation is pre-determined and the ligand conformational flexibility is sampled with
limited dihedral angle perturbation, the search for the native pose is constrained by the
availability of the native-like ligand conformations in the input ensemble of ligand
conformations or rotamers 26. Therefore, it is important to sample ligand conformations
sufficiently during the flexible ligand and flexible receptor docking.

To simultaneously and efficiently sample the receptor and ligand conformational
flexibilities, we propose to model the ligand conformations with a set of discrete rotamers,
in a similar way to protein side chains. Protein side chain rotamer libraries 24 can be built for
twenty amino acids from high-resolution protein structures. However, there are not enough
experimental data to build such a rotamer library for a large variety of ligands. Additionally,
many small molecule ligands are very flexible, with multiple rotatable bonds, and it is
practically impossible to enumerate all possible conformations. Therefore, instead of using a
pre-determined set of ligand rotamers, we build the ligand rotamer library in a stochastic
manner for each ligand during docking simulations. Using the stochastic rotamer library of
ligands (STROLL), we are able to model the protein side chain 27 and ligand flexibilities in
a unified and simultaneous manner in MedusaDock. We use the recently developed
MedusaScore 28 to guide the docking sampling and to rank the ligand poses. We benchmark
MedusaDock with self- and cross-docking studies on a set of proteins co-crystallized with
different ligands. We find that MedusaDock is able to sample near-native poses in all self-
docking and 95% of cross-docking cases. The near-native poses are top-ranked in 80% of
self-docking and 56% of cross-docking cases, and are ranked within the top ten in 95% of
self-docking and 72% of cross-docking cases, which is among the best reported
performances of flexible-ligand and flexible-receptor docking algorithms. Interestingly,
although the success rate in terms of placing the near-native poses as the best ranked is
reduced for cross-docking as compared to self-docking, we find that the predicted binding
energies — the MedusaScore of the best ranked poses — between cross- and self-docking
are close to each other. Assuming self-docking recapitulates the actual binding, which is
often the case with near-native poses best-ranked, we can approximate the binding energy
with predicted values from cross-docking. This feature makes MedusaDock useful in
virtual-screening (VS), where predicted binding energies from cross-docking are used to
select the true binding ligands from decoys. Indeed, we find that compared to the rigid
docking method MedusaDock significantly improves the virtual-screening enrichment of
cyclin-dependent kinase 2 (CDK2), vascular endothelial growth factor receptor 2 (VEGFr2),
HIV reverse transcriptase (HIVRT), and HIV protease (HIVPR), four kinase targets which
are known to be very flexible 7, 29, 30.

Ding et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2011 September 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
Our docking method is comprised of STROLL generation, clustering of the generated ligand
rotamers for initial coarse-docking, and fine-docking for pose minimization (Methods). In
order to evaluate whether the randomly generated ligand rotamer library sufficiently samples
the conformational space, we test whether the STROLL library contains conformations
similar to the x-ray crystallographic structure (Table 1). For each ligand, we generate 100
sets of STROLL using different random seeds. We align two conformations using the
Kabsch 31 algorithm and compute the kRMSD to determine the similarity between these two
ligand conformations. We find that for all cases we are able to find a significant number of
native-like rotamer (kRMSD<2.0 Å and/or kRMSD<1.0 Å) conformations. Therefore, the
stochastic rotamer library of ligands has sufficient sampling of the ligand conformational
space.

Medusa uses an amino acid rotamer library to model protein side chain conformations 27, 32,
33. In principle, we can model ligand conformational flexibility in the same way as amino
acids using the ligand rotamers of STROLL. However, due to the additional translational
and rotational degrees of freedom of the ligand, which are different from those in protein
side chains, rigid-body minimization is necessary after each ligand rotamer change. If the
number of available ligand rotamers is large, direct modeling of the ligand rotamer change
and the associated rigid-body motion is computationally prohibitive. To increase the ligand
pose sampling efficiency, we propose a two-step docking approach as illustrated in Fig. 1.
Briefly, each docking run starts with the generation of the STROLL, followed by clustering
of the rotamers in STROLL with a kRMSD cutoff of 2.0 Å. For each of the NC cluster
centroids, we perform coarse-docking to search for the best-fit poses within the docking
boundary box. For the NC coarse-docked poses, we sort and group similar poses and choose
the top NF (~10% NC) poses for further fine-docking. The coarse-docking step is designed to
rapidly sample the rigid-body motion of the ligand for a set of representative ligand
conformations. During coarse-docking, the ligand rigid-body motion and receptor side chain
rotamers are iteratively sampled. In fine-docking, both the ligand and receptor side chain
rotamers are sampled simultaneously. At the end of a MedusaDock run, we have NF
minimized poses.

The computational time for the STROLL generation and ligand rotamer clustering is usually
smaller than 1 second CPU time on an Intel 2.33G Hz Xeon processor. Each coarse-docking
run takes ~2 seconds, and each fine-docking run takes ~1 minute. Therefore, for a ligand
with 30 clusters, the computational time for each MedusaDock run is approximately 4–5
minutes.

Self- and cross-docking benchmark
We compile a set of 18 pairs of receptor-ligand structures from literature 8, 10, 34, where
each case has two different receptor conformations co-crystallized with different ligands.
These proteins with their PDB 35 codes are listed in Table 2. For each docking, we perform
100 independent runs of MedusaDock simulations and rank the poses. In principle, the poses
should be ranked according to the total binding energy. However, in some cases a low
binding energy pose can result from unfavorable receptor side chain conformations.
Therefore, it is important to take the energy of the whole system into account when
searching for the near-native ligand pose (Methods).

We perform self-docking simulations, where each ligand is docked to the corresponding co-
crystallized receptor conformation state. To evaluate the predictions, we refer the root-mean-
square deviation of the ligands in the two ligand-receptor poses as RMSD, where only the
receptors are aligned. For all cases, MedusaDock is able to find near-native ligand poses
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with RMSD smaller than 2 Å from the native state. In 28 out of 35 cases, the near-native
poses are top ranked, and in 31 out of 35, the near-native poses are ranked in the top two.
Only in 2 cases the near-native poses are ranked below the top ten. The results are
summarized in Table 2. In Fig. 2, we present two examples where the near-native poses are
correctly predicted as best-ranked, one is PPARγ (PDB code: 2PRG; Fig. 2A,B,C) and the
other is LXR β ligand binding domain (PDB code: 1PQC; Fig. 2D,E,F). For 2PRG, the
MedusaScore alone cannot distinguish the near-native poses from the decoys (Fig. 2B). For
example, the pose with the lowest MedusaScore has an RMSD larger than 10 Å. Using the
ranking energy (Methods), we are able to separate near-native poses from decoys (Fig. 2C).
In the case of 1PQC, the MedusaScore is able to distinguish the near-native pose from the
decoys, although there is one decoy with a MedusaScore very similar to the lowest
MedusaScore (Fig. 2E). By ranking the poses using the ranking energy, the near-native
poses can be unambiguously selected. There are two cases, Estrogen receptor (PDB code:
3ERT) and P38 MAP Kinase (PDB code: 1BMK), where the near-native poses are ranked
below the top 10 (Table 2 and Fig. 2G,H,I). For 3ERT, we find that the best-ranked ligand
pose and the native pose are partially symmetric, with most of the heavy atoms overlapping
(Fig. 2G). In the case of 1BMK, the pose with the higher number of contacts to the receptor
is selected as the best-ranked pose over the native pose (Fig. 2H,I), which is probably due to
the inaccuracy of the force field. Therefore, although MedusaDock includes a large number
of degrees of freedom in the modeling, the ability to find near-native poses for all self-
docking cases and correctly rank the near-native pose as the top one in 80% of cases and top
two in ~90% of cases highlights the docking efficiency and accuracy of MedusaDock.

In cross-docking simulations, the ligand is docked to a receptor conformational state co-
crystallized with a different ligand. For the 18 pairs of ligand-receptors complexes, we dock
each of the ligands to the receptor structure co-crystallized with the other ligand. In all 36
except two cases, LXR β ligand binding domain (1PQC ligand docked to 1PQ6 receptor)
and JNK 3 (1PMN ligand docked to 1PMV receptor), the near-native ligand poses are
sampled by MedusaDock. In the case of 1PMN ligand docked to 1PMV receptor, the
backbone of 1PMV receptor has severe clashes with the native ligand pose of 1PMN (Fig.
3A), which prevents the sampling of the near-native pose. In the case of 1PQC ligand
docked to 1PQ6 receptor, the lowest RMSD pose has a RMSD of only 2.21 Å (Fig. 3B). In
20 out of 36 cases, the near-native poses are identified as the best-ranked poses, 24 out of 36
cases within the fist five, and 26 out of 36 cases within the first ten. The success rate in
terms of ranking the near-native poses as best-ranked is reduced for cross-docking as
compared to self-docking, as is commonly observed with other docking approaches 9, 10, 23.
Due to the stochastic nature of the docking approach, it is usually not straightforward to
compare the ranking of the near-native poses of specific targets between different methods.
For example, there are a few cross-docking cases where the ranking of the near-native poses
are not as good as those by other methods, such as 1FM9 versus 2PRG by RosettaLigand 23

or 1BMK versus 1DI9 by ICM 10. In some other cases such as 1P8D versus 1PQ6,
MedusaDock has better predictions than the others. Overall, the percentages of near-native
poses generated and top-ranked for MedusaDock are 56%(20/36) and 94%(34/36),
respectively. The same percentages for RosettaLigand23 are 50%(10/20) and 90%(18/20),
and for ICM 10 are 57%(16/28) and 89%(25/28). Here, the bracket indicates the number of
cases been studied. Therefore, the performance of cross-docking by MedusaDock is
comparable to or slightly better than the performances of other flexible docking programs.

One important application of a docking program is virtual-screening, where a library of
ligands is docked to the apo- or holo-structure of a target receptor in order to find binding
ligands, a process mimicked by the cross-docking exercise. The key for the success of
virtual-screening is to accurately predict the binding energy for a ligand. Although the
success rate of cross-docking in terms of identifying the near-native poses as best-ranked is
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not as high as that of self-docking, a docking program will still be useful in virtual-screening
if the predicted binding energy of cross-docking — the MedusaScore of the best-ranked
pose — is close to the value of that for self-docking. Here, we assume that the predicted
binding energy of self-docking is sufficiently accurate to approximate the actual binding
affinity 28, as in most cases of self-docking the near-native poses are best-ranked. We plot
the binding energy of cross-docking versus that of self-docking (Fig. 3C) and find that the
two sets of binding energies are very close to each other, with a correlation coefficient of
0.98 and regression slope of 0.99. Why is the predicted binding energy of cross-docking
close to that of self-docking even when the near-native pose is not best-ranked in cross-
docking? Since MedusaScore is a physically-based scoring function, near-native poses in
both cross- and self-docking will feature similar physical interactions, and in turn, similar
MedusaScores. The above question can be answered if the MedusaScore of the best-ranked
pose is close to that of the best-ranked near-native pose. Indeed, we find that the
MedusaScore of the best-ranked poses in cross-docking is similar to that of the
corresponding best-ranked native-like poses (Fig. 3D). For the cases where the best-ranked
pose is near-native, the two values will be the same, but for cases where the near-native
poses are not top-ranked, their energies are also close. Therefore, the benchmark of self- and
cross-docking suggests that MedusaDock might be useful in virtual-screening. Next, we
perform a preliminary virtual-screening test of MedusaDock on a set of flexible kinase
targets, including CDK2, VEGFr2, HIVRT, and HIVPR.

Virtual-screening
We test MedusaDock on a VS benchmark set taken from the Directory of Useful Decoys
(DUD) test set 36. For each target in DUD, there is a set of known binding ligands and
corresponding decoy ligands with similar physiochemical properties, making it challenging
for VS study. Similar to the original study, we measure the performance of VS by
enrichment plot, which shows the percentage of known binders (true positives) recovered as
a function of the percentage of the total library screened. This ratio is the enrichment factor
(EF), which is expected to be 1 if the compounds are ranked randomly, and more than 1 if a
virtual-screening method can rank the compounds so that there are more true binders in the
top-ranking compounds.

Among the 40 DUD targets, we select CDK2, VEGFr2, HIVRT and HIVPR for testing
because they are known to be flexible, which possibly leads to the poor enrichment found in
the original VS experiments using a rigid-receptor docking protocol 36. In the original study,
the EF1 and EF10 (EF at 1% and EF at 10% library screened) are only 8.0 and 2.4 for CDK2,
3.0 and 1.1 for VEGFr2, .4.9 and 2.5 for HIVRT, and 1.7 and 0.7 for HIVPR.

We apply MedusaDock for VS and find significant enrichments for all the four targets (Fig.
4). The EF1 and EF10 obtained from MedusaDock are 14 and 3.6 for CDK2, 31 and 4.2 for
VEGFr2, 7.5 and 3.0 for HIVRT, and 15.1 and 3.2 for HIVPR. All results are significantly
higher than those obtained using Dock3.5 36. We contribute the improvements to the
inclusion of receptor flexibility using MedusaDock. More interestingly, we find that the true
positive rates are high among the top 10 ligands for all the four targets. For VEGFr2, all the
15 top-ranked ligands are known VEGFr2 binding ligands. For the other three targets, there
are seven, six, and three true positives among the top 10 ligands for CDK2, HIVPR, and
HIVRT, respectively. Such a low false positive rate makes MedusaDock appropriate for VS
because, in reality, only a limited number of ligands can be tested experimentally,
constrained by the time and expense of the biological essays.
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Discussion
We adopt a rotameric approach to model the side chain conformational flexibility of
proteins. Due to the large physiochemical space of ligands and also the large number of
degrees of conformational freedom, it is impossible to build an enumerative rotamer library
in the same way as for proteins24. Therefore, we construct a rotamer library of ligands in a
stochastic manner during each MedusaDock simulation. OMEGA by OpenEye Scientific
Software (http://www.eyesopen.com/) is often used to pre-compute the ligand
conformations. Although OMEGA uses a different ligand conformation generating method,
the depth-first algorithm, we find that our simple method feature similar performance in
terms of finding the bioactive rotamers (kRMSD<1 Å) or computational time (~1s for each
ligand) 37. Although the near-native ligand conformations with kRMSD smaller than 2.0 Å
or even 1.0 Å can consistently be sampled by STROLL (Table 2), the native ligand rotamer
will not always be included in the rotamer library due to the stochastic nature of library
generation, which in turn might affect the efficiency of finding and identifying the near-
native binding pose. To test the efficiency and accuracy of MedusaDock, we compare the
self- and cross-docking benchmark results with and without manually including the native
ligand rotamers in STROLL (Fig. 5). As expected, manual inclusion of the native ligand
rotamer allows MedusaDock to sample the near-native poses more efficiently, with more
near-native poses sampled (Fig. 5A). However, we find that the inclusion of the native poses
does not significantly affect the docking prediction accuracy in terms of ranking the near-
native poses (Fig. 5B). This observation suggests that our ligand sampling by STROLL is
sufficient for accurate docking.

To increase the computational efficiency, we devise a two-step docking protocol, including
the initial coarse-docking with representative ligand rotamers followed by fine-docking to
enrich the ligand rotamers and minimize the docking poses. Clustering of the ligand
rotamers in STROLL helps to group similar rotamers together, and coarse-docking using the
corresponding representative conformations helps to avoid the repetitive calculation of rigid-
body motions of similar ligand conformations. Since fine-docking only perturbs translation
and rotation around the input coarse-docked pose, it is crucial for the coarse-docking
procedure to place the ligand in the proximity of the native position and orientation. As
pointed out by previous flexible docking studies 23, 26, one of the challenges of docking is to
fit the ligand simultaneously to multiple deep pockets, i.e., a rugged energy landscape (Fig.
6A). We smooth the energy landscape by turning off the van der Waals repulsion between
the ligand and the receptor side chains (Fig. 6B and 7). Therefore, in the coarse-docking
step, we adopt an iterative rigid-body docking and receptor side chain packing approach
with slowly increasing van der Waals repulsion between the ligand and side chains to
facilitate the search of the rugged energy landscape (Methods). During fine-docking, the
ligand and receptor side chain rotamers are simultaneously modeled in a strongly-coupled
manner. The self- and cross-docking benchmark of MedusaDock suggests that the proposed
docking protocol is quite efficient in the sampling of the near-native poses (Fig. 5C); in
many cases (~80%) the program identifies more than 10 near-native poses from 100 runs of
MedusaDock simulations.

MedusaDock uses MedusaScore to guide docking and to rank the docking poses.
MedusaScore uses a physical-based force field to describe the physical interactions between
the ligand and the receptor. By correctly docking the ligand to the receptor, MedusaDock
can capture the same important binding interactions as in the native pose. For example, the
MedusaScore of poses minimized from the X-ray crystallographic structures is close to that
of the best-ranked self-docking poses, which are mostly near-native (Fig. 5D). Despite the
fact that in many cases the near-native poses are not ranked as the top poses in cross-
docking, the ranks of these near-native poses are quite high, mostly within the top ten.
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Hence, the MedusaScore of the best-ranked pose in cross-docking — the predicted binding
energy — is similar to that of the best-ranked near-native pose, featuring the same binding
interactions as self-docking (Fig. 3). Therefore, the MedusaScore from cross-docking
simulations can be reliably used to estimate the binding energy for virtual-screening, which
has been validated by our preliminary virtual-screening tests. Further test of the application
of MedusaDock in virtual-screen by benchmarking on the whole DUD dataset and by
comparing with other docking programs is required in the future study.

In this work, we do not model the receptor backbone flexibility. As a result, there are two
cases in cross-docking where the program fails to identify the near-native poses due to
severe backbone clashes near the ligand-binding pocket (Table 2 and Fig. 3A). Several
approaches have been used to model protein backbone flexibility, including ensemble
docking with multiple backbone conformations10 and backbone relaxation7, 23.
Interestingly, our method is able to capture the near-native poses of several challenging
cases that other flexible receptor-backbone methods missed, such as thrombin (1dwc, 1dwd
pair; Table 1 in ref.26) and PPARγ (1FM9, 2PRG pair; Table 3 in ref.10). We believe that the
ability of MedusaDock to find near-native poses is a result of the efficient modeling of
ligand conformations and protein side chains using rotameric approaches. However, we
believe that further modeling of the receptor backbone flexibility will help improve the
predictive power 38.

Large-scale virtual-screening requires high computational efficiency, since a large library
with millions of ligands will be docked to a target protein. The docking program can be
highly parallelized since the calculations are independent of each other. Additionally, since
the docking program is able to sample many near-native poses with high efficiency, we can
reduce the total number of MedusaDock runs in a future virtual-screening study. The
preliminary virtual-screening benchmark results for CDK2, VEGFr2, HIVRT, and HIVPR
clearly demonstrate the capabilities of MedusaDock in large-scale virtual-screening, even
for flexible protein targets.

Methods
Ligand conformational flexibility and STROLL generation

We model the conformational flexibility of a small molecule ligand by allowing each
rotatable bond to rotate freely, and the corresponding dihedral angle to adopt preferred
values according to the hybridization of the two atoms forming the bond. For each rotatable
bond, we use the a similar approach as Miller and Baker 8 to define the torsional degree of
freedom. Briefly, if the two atoms are of sp3 hybridization, we assign a three-fold symmetry
to the dihedral angle. If the two atoms are of sp2 hybridization, we assume a two-fold
symmetry. Otherwise, if one atom is of sp2 and the other is of sp3, we will adopt a twelve-
fold symmetry for the dihedral angle. In some cases of sp2-sp2 hybridizations where there
are persistent clashes, we extend the two-fold symmetry to twelvefold. In principle, we are
able to enumerate all possible conformations of the ligand. However, the total number of
rotamers of a ligand can be large. For example, if a ligand has ten rotatable bonds and the
average number of degrees of symmetry is three, the total possible number of rotamers will
be 310=59,049. Sampling the large conformational space of the ligand along with its rigid-
body motion during docking is too computationally expensive. We propose a stochastic
rotamer library of ligands to model the ligand flexibility, where we generate a set of ligand
rotamers by randomly generating non-clashing ligand conformations using a Monte Carlo
based algorithm (Fig. 8). To evaluate whether a ligand conformation has clashes, we
compute the VDW repulsions between atom pairs whose pairwise distances are determined
by at least one rotatable bond. Two atoms are denoted as non-local if their pairwise distance
is determined by more than one rotatable bond and as local if their distance is governed by
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only one rotatable bond. For each local atom pair, we determine the minimal VDW
repulsion energy by enumerating the corresponding dihedral angle. We consider a non-local
atom pair clashing if the VDW repulsion energy is larger than 0.6 kcal/mol, and a local atom
pair clashing if the VDW repulsion energy is at least 2.4 kcal/mol more than its minimum
VDW repulsion energy. A carbon-carbon pair (both local and non-local) is considered
clashing only if their distance is bellow 3 Å. A ligand conformation is determined as
clashing if one or more local or non-local atom pairs are clashing. For ligands with small
degrees of freedom, we enumerate all possible non-clashing conformations. For ligands with
large degrees of freedom, we will stop the rotamer generation once either the maximum
number of rotamers (set to 1000) is generated or the total number of trials (set to 106) is
reached.

A simple clustering algorithm to group similar ligand rotamers in STROLL
We iteratively group similar rotamers in STROLL. Initially, the first rotamer is selected
from STROLL to be the only element of the first cluster and also the cluster representative.
For each newly selected rotamer, we will first decide whether it belongs to any previously
constructed cluster by comparing it with the cluster representative. If the smallest kRMSD is
less than an input cutoff value, we assign the rotamer to the corresponding cluster.
Otherwise, we assign this rotamer to a new cluster as the cluster representative. This
iterative procedure ends once all rotamers are assigned. This clustering algorithm does not
require the kRMSD calculation between all pairs of rotamers in STROLL as does the
commonly used hierarchical clustering methods.

Coarse-docking
During coarse-docking, we perform multiple rounds of Monte Carlo (MC) based rigid-body
docking with varying receptor side chain packing (Fig. 7). During rigid-body docking, the
receptor conformation is fixed and the ligand rigid-body motion is sampled in two stages.
First, the ligand is randomly rotated and translated with the center of mass confined inside a
10 × 10 × 10 Å3 cubic box around the input pocket center. The docking boundary can be
arbitrarily defined. A Metropolis criterion is used to decide whether a new ligand rotamer is
accepted or rejected. We usually perform sampling at a high temperature, such as 10 kcal/
mol•kB, to avoid trapping in local minima of the energy landscape. After 600 MC steps, we
select the lowest energy pose as well as poses with dwell time more than 20 MC steps as the
candidates for the second stage of rigid-body minimization. During the minimization, the
ligand is randomly perturbed by translation and rotation in small steps with Gaussian
distributions. The average length and angle steps are 0.2 Å and 2°, respectively. The
maximum minimization step is 100 and the temperature is 0.25 Kcal/mol•kB. The pose with
the lowest binding energy will be selected for further study.

In order to sample the rugged energy landscape, we devise a three-step coarse-docking
protocol using multiple rounds of rigid-body docking with varying receptor side chain
packing (Fig. 7):

1. We repack the protein side chains in the absence of the ligand 27. We exclude
residues with any atoms 10 Å away from the docking boundary. The side chain
repacking is done by a three-round simulated annealing with temperatures of 10, 3,
and 2 Kcal/mol•kB, respectively. For each round of repacking, the total number of
rotamer trials is twice the number of total available side chain rotamers. Since we
only repack the side chains around the ligand-binding pocket, the packing
converges rapidly. Then, we perform the rigid-body docking to sample the ligand-
binding pocket defined by the receptor backbone. We turn off the van der Waals
(VDW) repulsion between the ligand and the receptor side chains during the large-
scale random translation and rotation in order to smooth the energy landscape (see
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Discussion; Fig. 6). For the minimization step, involving small perturbations of
translation and rotation, we turn on the van der Waals repulsion between the ligand
and the receptor side chain. The pose with lowest binding energy is selected.

2. Next, we perform a new round of MC rigid-body docking by turning on the van der
Waals repulsion between the ligand and the receptor side chains. If the binding
energy identified during this step is lower than that in the previous step, we will
take the identified ligand pose for the next step. Otherwise, the ligand pose from
step 1 will be used.

3. Last, we repack the protein side chains against the identified pose in step 1 and 2.
We only perform one round of side chain repacking with a MC temperature of 2
Kcal/mol•kB. Then, we perform the third round of MC rigid-body docking and
identify the lowest binding energy pose as the result of the coarse-docking.

Fine-docking
The purpose of fine-docking is to sample ligand-receptor conformations in the vicinity of the
input pose and minimize the total binding energy. The fine-docking is composed of the
following two steps:

1. Ligand conformation enrichment. Based on the input ligand rotamer conformation,
we select a subset of rotamers from STROLL with kRMSD smaller than 2.0 Å. If
the number of rotamers is smaller than 200, we will regenerate similar rotamers
with kRMSD < 2.0 Å until either enough rotamers are generated or the maximum
rotamer generation trial is reached. Then, we perform simulated annealing
simulations, where receptor side chains and ligand rotamers are randomly sampled
and 10 rounds of rotamer searches are performed with the initial and final
temperatures of 10.0 and 0.1 kcal/mol•kB, respectively. We do not perform ligand
rigid-body minimization during the ligand rotamer changes. As the simulation
temperature decreases, the ligand rotamer acceptance rate decreases. Once the
ligand rotamer can no longer be changed favorably, we perform MC-based rigid-
body minimization with small rotation and translation perturbations for each round
of rotamer searches.

2. Pose minimization. We minimize the ligand poses by simulated annealing with
protein side-chain packing, ligand sub-rotamer vibration, and rigid-body
minimization. We sample the ligand sub-rotamer search by rotating dihedral angles
within the allowed dihedral angle variation. We use an angle variation of ±15° for
sp3-sp3 bonds and ±10° for the remaining bond types. At the end of the simulated
annealing, a quenching procedure is applied to find the local energy minima.
During the quench, the conjugated gradient method is used for the protein side
chains minimization, and a Monte-Carlo based rigid-body minimization at zero
temperature is used for ligand rigid-body minimization.

Scoring function
We use an extended MedusaScore 28 as the scoring function to dock and rank the ligand
poses. The addition to the original MedusaScore is the inclusion of electrostatic interactions.
We assign integer charges to various charged chemical moieties and use a distance-
dependant dielectric constant, ~r, to model the screening effect. We do not use any distance
cutoff. To model the environmental dependence of the electrostatic interactions, we rescale
the interaction potential by the extent of solvent exclusion (burriness) of the corresponding
residue i, Bi 39. We define the burriness of a residue based on the number of its contacts N,
B=min[N/Nmax, 1]. Here, N is the number of contacts computed based on the Cβ atoms
within a distance cutoff 8.5 Å; Nmax = 14.5 is maximal number of contacts. For two charges
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of the receptors, the coefficient is (Bi+Bj)/2. If the interaction is between the ligand and
receptor, the coefficient is B. By introducing the burriness-dependent factor B, we ensure
that the buried charges will have stronger electrostatic interactions than the solvent exposed
ones.

The exclusion of the van der Waals repulsion between the ligand and receptor in
MedusaScore fits better to the experimental binding affinity measurements28. Therefore, we
include the ligand-receptor VDW repulsion for docking simulations, but we use
MedusaScore without the ligand-receptor VDW repulsion as the binding energy between
ligand and receptor.

Ligand pose ranking
We include the total energy of the ligand-receptor complex in addition to the binding energy
in the ranking of ligand poses, Erank=Ebind+cΘ(Etotal−Ecutoff). Here, the correction function
Θ(x) is equal to x if x>0, and 0 otherwise; Ecutoff is chosen so that the top 5% of poses with
the lowest total energy have no correction to the binding energy; and c is the weighting
coefficient. The cutoff energy is introduced to account for the large fluctuations in total
energy 23. For our benchmark cases, we find that optimal prediction is not sensitive to the
value of the coefficient c. For example, in our test cases, we find that the coefficient c can
range approximately from 0.2 to 4 to give the optimal prediction rate. For simplicity, we set
c=1.

Virtual-screening
We use a ligand-binding crystal structures for DUD. The cognate ligand is removed and its
center is used as the pocket center for restraining the ligand position during docking. For
each molecule, we perform 200 runs of MedusaDock simulations, which generate 712
docking poses on average. We then compute the ranking energy based on the binding energy
and total energy for each pose as described above. Finally, all molecules are ranked
according to their lowest Erank of all docking poses.
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Figure 1. Schema for the MedusaDock protocol
Each docking simulation starts with the generation of the STROLL, followed by the
clustering of ligand rotamers (Methods) with a kRMSD cutoff of 2 Å. The NC cluster
centroids are used as the representative ligand conformations for the initial coarse-docking
(CD), where the ligand is kept rigid and the ligand-binding pocket is rapidly sampled
(Methods). Since only a small number of the ligand rotamers is used and the ligand is kept
rigid during coarse-docking, the near-native pose is not necessarily the lowest energy pose,
but usually among the low-energy poses. We sort the NC poses according to binding
energies. We group similar poses together if the RMSD of two ligand poses is smaller than
their kRMSD plus 2 Å. The grouping of similar poses will reduce the necessary number of
the more expensive calculations of fine-docking. We select the top NF (~10% NC) groups of
lowest energy poses for the next round of fine-docking (FD). For each group of coarse-
docked poses, we perform fine-docking to enrich the ligand rotamers and to minimize the
total energy (Methods). During fine-docking, we add the ligand rotamers within 2.0 Å
kRMSD to the initial centroid rotamer in order to enrich the ligand conformation. For each
of the members in a group, we perform the enrichment step. We only select the lowest
energy poses for further minimization (Method). Therefore, we will have NF poses for each
MedusaDock run.
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Figure 2. Self-docking results
(A) The best-ranked pose for PPARγ (PDB code: 2PRG) is presented, where the native
ligand poses are in gray and the predicted ligand poses are in color. The MedusaScore (B)
and ranking energy (C) are plotted against the corresponding RMSD from the native pose.
The MedusaScore alone cannot distinguish the near-native poses from the decoys. For
example, the pose with the lowest MedusaScore has an RMSD larger than 10 Å. Using the
ranking energy (Methods), we are able to separate near-native poses from decoys. For the
LXR β ligand binding domain (PDB code: 1PQC), the predicted pose (D), the MedusaScore
(E), and the ranking energy (F) are shown. By ranking the poses using the ranking energy,
the near-native poses can be unambiguously selected. (G) The best-ranked pose (colored)
and the native pose (gray) of Estrogen receptor (PDB code: 3ERT) are partially symmetric.
For P38 MAP Kinase (PDB code: 1BMK), the native ligand pose (H) and the predicted best-
ranked pose (I) show distinct interactions between ligand and receptor.
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Figure 3. Cross-docking results
For 1PMN ligand docked to 1PMV receptor, the backbone has severe clashes with the native
pose (A). For 1PQC ligand docked to 1PQ6 receptor (B), the lowest-RMSD pose (colored)
has a RMSD of only 2.2 Å. (C) The MedusaScore of the best-ranked pose (BRP) in
crossing-docking is compared to that of self-docking. (D) In cross-docking, the
MedusaScore of the best-ranked near-native pose (BRNN) is also close to that of the best-
ranked poses.
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Figure 4. Virtual-screening test on a DUD benchmark set of CDK2, VEGFr2, HIVRT, and
HIVPR
The Percentage of recovered known binding ligands is plotted as a function of percentage of
library screened using various VS strategies. For reference, we also plot the enrichment
curves for ideal VS, where all ligands are ranked ahead of decoys, and random VS, where all
molecules are ranked randomly. For VEGFr2, we find all the 15 top-raked ligands are
known VEGFr2 binders (ideal VS performance). For the other targets, there are seven, six,
and three known binders among the top 10 ligands for CDK2, HIVPR, and HIVRT,
respectively.
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Figure 5. Effect of inclusion of the native ligand rotamer in docking calculations
(A) Inclusion of the native rotamer in STROLL increases the number of near-native poses
sampled by MeduasDock. (B) The prediction accuracy in terms of ranking near-native poses
as the top one, top 10, and sampled does not depends on whether the native ligand rotamers
are included. (C) The histogram of the number of near-native poses sampled. (D) The
MedusaScore of the best-ranked poses from self-docking simulations is close to that of the
minimized poses around the input X-ray crystallographic structure.
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Figure 6. The rugged energy landscape of docking
(A) The ligand binding surface (PDB ID: 1UVS) features several deep sub-pockets.
Successful prediction requires simultaneous fitting of the ligand to all sub-pockets. (B) The
schematic energy landscape with and without VDW repulsion between the ligand and
receptor side chains. By turning off the VDW repulsion between ligand and receptor side
chains, the rugged energy landscape is smoothed.
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Figure 7. Flowchart of coarse-docking
During coarse-docking, the ligand is kept fixed, with only rigid-body motion allowed.
Iterative receptor side chain repacking and rigid-body docking are performed to identify the
lowest binding energy pose.
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Figure 8. Flowchart of STROLL generation
The input ligand conformation has ideal bond lengths and angles and only dihedral angles of
rotatable bonds are changed during the procedure. To evaluate whether a ligand
conformation has clashes, we only compute the VDW repulsions between atom pairs whose
pairwise distances are determined by at least one rotatable bond. Two atoms are denoted as
non-local if their pairwise distance is determined by more than one rotatable bond and as
local if their distance is governed by only one rotatable bond. For each local atom pair, we
determine the minimal VDW repulsion energy by enumerating the corresponding dihedral
angle. We consider a non-local atom pair clashing if the VDW repulsion energy is larger
than 0.6 kcal/mol, and a local atom pair clashing if the VDW repulsion energy is at least 2.4
kcal/mol more than its minimum VDW repulsion energy. A carbon-carbon pair (both local
and non-local) is considered clashing if their distance is bellow 3 Å. A ligand conformation
is determined as clashing if one or more atom pairs are clashing. For ligands with small
degrees of freedom, we enumerate all possible non-clashing conformations. For ligands with
large degrees of freedom, we stop the rotamer generation once either the maximum number
of rotamers (set to 1000) is generated or the total number of trials (set to 106) is reached.
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Table 1
Properties of the STROLL library

Ligands are taken from the corresponding PDB files. For each ligand, 100 independent runs of STROLL
generation are performed to compute the statistics. P(1.0 Å) and P(2.0 Å) correspond to the probability of
finding ligand rotamers within 1.0 Å or 2.0 Å kRMSD from the native ligand conformation in the PDB. The
average NC corresponds to the average number of clusters using a kRMSD cutoff of 2 Å. Note that we limit
the maximum number of rotamers to 1000 (Methods).

PDB ID Number of rotamers P(1.0 Å) P(2.0 Å) Average NC

1A4Q 1000 0.023 0.35 8.5

1AQ1 7 0.72 0.71 3.0

1BMK 311 0.18 1.00 2.0

1C1C 540 0.09 0.78 2.4

1CX2 384 0.13 1.00 1.1

1DBJ 1 1.00 1.00 1.0

1DM2 2 0.50 1.00 1.0

1DI9 600 0.09 0.97 2.7

1DWC 1000 0.00 0.05 36.8

1DWD 1000 0.00 0.04 42.2

1ERR 923 0.04 0.45 8.2

1FM9 1000 0.00 0.07 84.1

1KI4 350 0.23 0.92 2.0

1KIM 36 0.42 0.97 2.0

1KSN 1000 0.02 0.24 14.6

1NSC 420 0.23 1.00 1.1

1P8D 27 0.15 0.78 3.0

1PMN 1000 0.12 0.76 3.2

1PMV 1 1.00 1.00 1.0

1PPC 1000 0.00 0.03 56.2

1PPH 1000 0.001 0.09 23.0

1PQ6 1000 0.00 0.03 109.0

1PQC 1000 0.002 0.25 7.6

1Q4L 274 0.06 0.59 5.8

1RTH 10 1.00 1.00 1.0

1STC 4 0.50 0.50 3.0

1XKA 1000 0.003 0.24 17.1

1YDS 420 0.15 0.74 2.6

2DBL 648 0.12 0.97 2.2

2PRG 787 0.004 0.41 13.5

3ERT 1000 0.007 0.50 6.6

3PGH 216 0.24 1.00 1.2

4TIM 53 0.00 1.00 1.0
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PDB ID Number of rotamers P(1.0 Å) P(2.0 Å) Average NC

6TIM 18 0.17 1.00 1.0
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