Scattered Data Fitting by Direct Extension of
Local Polynomials to Bivariate Splines

Oleg Davydov Y and Frank Zeilfelder ?

Abstract. We present a new scattered data fitting method, where local ap-

proximating polynomials are directly extended to smooth (C1 or 02) splines on
a uniform triangulation A (the four directional mesh). The method is based
on designing appropriate minimal determining sets consisting of whole triangles
of domain points for a uniformly distributed subset of A. This construction
allows to use discrete polynomial least squares approximations to the local por-
tions of the data directly as parts of the approximating spline. The remaining
Bernstein-Bézier coefficients are efficiently computed by extension, i.e. using the
smoothness conditions. To obtain high quality local polynomial approximations
even for difficult point constellations (e.g. with voids, clusters, tracks), we adap-
tively choose the polynomial degrees by controlling the smallest singular value
of the local collocation matrices. The computational complexity of the method
grows linearly with the number of data points, which facilitates its application
to large data sets. Numerical tests involving standard benchmarks as well as
real world scattered data sets illustrate the approximation power of the method,
its efficiency and ability to produce surfaces of high visual quality, to deal with
noisy data, and to be used for surface compression.

§1. Introduction

Let 2 = {&1Y., C Q be a finite set of arbitrarily distributed points in a domain
Q ¢ R?, with a real number z; assigned to each &;, ¢ = 1,...,N. The scattered
data fitting problem is to find a (smooth) function s defined on Q that approximates
these data, i.e. s(§;) = z;, i = 1,..., N. The quality of the approximation s is not
only measured in terms of the errors |s(&;) — z;| at the data points. It is also
expected that s does not exhibit artificial oscillations, and, if the data come from
a function f defined on Q, i.e., z; = f(&), i = 1,..., N, then s approximates f
well everywhere on €2, as far as the information contained in the data allows this.
If f is smooth in Q or in a subdomain of it, it is natural to require that s does
not have artificial discontinuities, ridges or other visual artifacts there, which is
accomplished by imposing C? or, better, C? smoothness.

The scattered data fitting problem arises in numerous applied fields, for in-
stance, in Geosciences, Medical Imaging, surface (re)construction in Computer
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Aided Geometric Design, Reverse Engineering, and Data Mining. The typical real
world data sets are large (1,000,000 points or more) and therefore require fast and
efficient fitting algorithms, i.e. algorithms which are ideally of linear complexity
O(N) and provide high approximation power. Sometimes the approximation ob-
tained from a large unevenly distributed data set has to be transmitted or stored
for later use. In this case it becomes important that the number of its defining
parameters is as small as possible, in particular much smaller than the number
of parameters needed to store the data points (data compression or data reduc-
tion). Moreover, a scattered data method should perform well for noisy data since
the data sets arising in applications are usually contaminated with measurement
errors. Another important requirement is that the form of the approximation s
provided by a scattered data method should allow efficient processing, for example
fast visualization of the surface. In particular, it is desirable that s can be eval-
uated at any M points with linear complexity O(M). These and other aspects of
scattered data fitting are discussed in the vast literature on the subject, see the
surveys in [19,20,34,36,53,57].

The purpose of this paper is to present a new stable and efficient method for
scattered data fitting capable of dealing with large and possibly noisy data sets with
highly varying local density, with voids, clusters and tracks, leading to high quality
artifact-free piecewise polynomial surfaces in triangle Bernstein-Bézier form.

By using a uniform four-directional mesh A covering €2, see Fig. 1, we consider
either the space Si(A) of C! piecewise cubics or certain subspaces of S3(A), i.e. C2
splines of degree six. The basic idea of the method is to design for these spaces new
minimal determining sets (MDS) with special features, see Fig. 3 and 5. Roughly
speaking, these MDS consist of all domain points belonging to certain triangles that
form a uniformly distributed subset 7 of A. (The triangles in 7 are completely
filled with black circles in Fig. 3 and 5.) As in the two-stage methods [58], we first
determine polynomial approximations to the local portions of the data surrounding
each triangle T' € 7. Note that we do not follow the approach of selecting a few
points nearest to a center, as e.g. in [17]. Instead, we consider all points inside a
circle covering T'. (If the number of points in such a circle is accidentally very high,
we perform a grid type local data thinning to save costs.) The local approximations
are computed as least squares polynomials in Bernstein-Bézier form with respect
to the corresponding triangles. The resulting approximating spline s is obtained
in a second stage using the smoothness conditions. Thus, the second stage in our
approach amounts to an efficient and numerically stable procedure of extending
the local polynomial approximations which are already pieces of the spline. In
particular, we do not need to evaluate the dual basis functionals (e.g. function or
derivative values at prescribed points) for the local polynomials, in contrast to the
methods based on smooth finite elements.

Another key observation is that the degrees of local polynomial approximations
have to be adjusted to the varying amounts of information contained in the local
portions of data. Indeed, not only the local density of the data may vary, but also
the local data may have hidden redundancies because of unfortunate distribution of
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points near some low order argebraic curves. As shown in [9], the norm of the least
squares operator, and, as a consequence, the approximation power of corresponding
local polynomial is directly affected by the minimal singular value (opin) of the
local collocation matrix. Since reducing the degree of a polynomial increases the
chance of a better conditioned collocation matrix, we use an automatic procedure
to choose reasonable degrees: Computing the minimal singular value, we compare
it with a prescribed tolerance and either accept the approximation if o, is not
too small, or repeatedly reduce the degree. The fast and reliable computation of
Omin for O(N) small local collocation matrices is done by using well-established
algorithms of numerical linear algebra. As a result, we obtain in our numerical
examples surfaces of high approximation and visual quality without a need for the
improvement of the shape by large scale optimization with respect to the degrees
of freedom of the spline.

We show that our MDS leads to stable local bases for the spline spaces. The
theoretical approximation order achievable with these bases is determined by the
maximal degree ¢ of polynomial reproduction, where ¢ = 3 for the C! bases, and
g = 5 or ¢ = 6 for the two types of C? bases used below. The actual approximation
order of the scattered data fitting method depends on the approximation power
of the local polynomial approximations that in turn depends on the availability
of sufficient information in each local subregion. Numerical tests of Section 6.2
show almost optimal approximation order of the method for random data. Note
that the (local) approximation order is theoretically optimal in the subregions of
sufficiently high data density, see Remark 5.4. In addition, motivated by symmetry
considerations, we introduce averaged approximation operators that have the same
theoretical approximation behaviour as their non-averaged counterparts, but have
shown a better performance in our numerical tests.

The paper is organized as follows. In Section 2, we begin with some prelimi-
naries on the spline spaces and Bernstein-Bézier techniques. Then, we describe our
MDS, the approximation operators, and the adaptive algorithm of local discrete
least squares approximation. The proofs of the properties of the MDS are given in
Section 3. In Sections 4 and 5 we present the results on stable local bases and the
approximation properties of the splines. Section 6 contains numerical examples.
Here, we begin with some remarks on computational aspects. Then, we give tests
on the approximation order, shape recovery, compression and denoising for some
well known test functions. Finally, we present the tests with real world data, in-
cluding a well known benchmark glacier data, a terrain data set with highly varying
densities, and a raw multibeam echosounder data set of about 630, 000 points with
noise and outliers. The tests confirm the efficiency of the method and its ability
to produce surfaces of high approximation and visual quality from virtually every
type of scattered data.

§2. Data Fitting Method

We give some preliminaries on spline spaces and describe the data fitting method.
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Fig. 1. The four directional mesh covering domain €.

2.1. Spline Spaces

We start by briefly recalling well known notations related to the Bernstein-Bézier
techniques for bivariate polynomial splines on triangulations (more details can be
found e.g. in [1,5-7,14,15,31]).

Let T := (u,v,w) C R? be a triangle. Given an integer d, let ijk, i+j+k=d,
be the Bernstein polynomials of degree d associated with 7. It is well known that
for every polynomial p € P, there is a unique Bernstein-Bézier representation

p= Y cijiBl (2.1)
i+jth=d

We call the coefficients in the right hand side of (2.1) the BB-coefficients. Each
BB-coefficient c;;j, is associated with the domain point

niTjk = (iu + jv + kw)/d.
We denote the set of all domain points by
Da = {nz;k i+ i+ k=d}. (2.2)

Given a triangulation A covering a domain Q C IR?, we denote by Sj(A) the
space of all C" piecewise polynomials with respect to A,

SH(A) :={s € C"(Q) : s|r € Py for all triangles T € A, T N Q # 0},

where P, is the space of bivariate polynomials of total degree d. It is well known
that there is a one—one correspondence between the elements s of the spline space
SY(A) and the sequences of coefficients ¢, = ¢,(s), n € Dg A, with

Dd,A = U Dd,T- (23)



Here, for each T' € A\, and each n = 'r);-";.k € TNDy A, cy(s) is the coefficient ¢;;i in
the representation (2.1) for p = s|7.

Let S be a linear subspace of S3(A). A set M C Dy A is called a determining
set for S if setting the coefficients of s € S associated with the domain points in
M to zero implies that all coefficients of s corresponding to domain points in Dg A
are zero. M is called a minimal determining set (MDS) for S if no proper subset
M’ C M is a determining set. Obviously, a determining set M is an MDS for S if
and only if # M = dim S. (Throughout this paper, we denote the cardinality of a
finite set M by #M.)

Of particular interest are the (BB-) smoothness conditions that allow us to
express the smoothness of a spline in the form of some linear equations involving
its BB-coefficients. Suppose s is a spline in SY(A), and let T' := (v1,va,v3) and
T := (v4, v3,v2) be a pair of adjoining triangles in A sharing the edge e = (v, v3).
Let c;j, and &, be the BB-coefficients of s|r and s|z, respectively. Then s is C”
continuous across the edge e if and only if

T

Eq,m—q,d—m = Z Ci,j+d—m,k+m—qBr?jk(v4)7 (24)
i+j+k=q

for m =gq,...,d, and ¢ = 1,...,r, where ijk, 14+ 7+ k = q, are the Bernstein
polynomials of degree ¢ with respect to the triangle T' (cf. [5,16]).

Given Q C R?, we consider a uniform triangulation A, called the four direc-
tional mesh, which covers €2, see Fig. 1. For the sake of simplicity we give the details
only for the square domain € = [0, 1]%. Using n + 1 vertical and horizontal lines we
cover Q with n? squares

SR i m— i1
Qi,j:[z ,l}x[n ]’n s ], ,5=1,...,n,
n 'n n n
and subdivide each of them into four subtriangles Ti[,kj], k=1,...,4, by inserting

the two diagonals. (The triangles are numbered counterclockwise, starting from the
leftmost subtriangle of @; ;.) In addition, throughout the theoretical part of the
paper we assume that n > 2 is even.

In this paper we treat the cases r = 1 and r» = 2 which are the most interesting
for practical applications. Our approximation method is based on special MDS for
the spaces Sa(A\) and S2(A) described below in Sections 2.2 and 2.3, respectively.
We define our approximation operators in Section 2.4 and give the details of the
adaptive algorithm for computing local least squares polynomial approximations in
Section 2.5.

Remark 2.1. Note that the spaces Si(A) and S2(A) on the four directional mesh
as well as more general quadrangulations with diagonals have been studied in a num-
ber of papers, see e.g. [6,18,25-30,32,33,35,42-47,55]. However, our approximation
schemes are different from those known in the literature.
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Fig. 3. The MDS M for the ct spline space.

2.2. MDS for C! Splines

By using upper and lower bounds on the dimension of the spline spaces [59], we get
dim S3(A) = 5n? + 8n + 3. (2.5)

Because of the uniformity of the triangulation, the domain points exhibit a special
uniform structure. See Fig. 3, where the domain points of D = D3 A are shown as
dots. Therefore, it will be convenient to use a special numeration of domain points.
We set for 2,5 =1,...,n,

n—j 14

— 1
o n +_); ogm,£§6,m+€even},
n 6n° n 6n

DNQij= {UE?’E] = <

and c see Fig. 2).

7‘e M
["; ]::c,,, ifn=mn,

i

.4
’j (
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We want to show that the set M of points marked by black dots in Fig. 3 is

an MDS for S3(A). To describe it rigorously, we notice that the major part of M
consists of 5n2 points in

~ 1

M=pn |J 1. (2.6)

i+j even

In addition, O(n) points are located near the boundary. More precisely, M is the
union of M with the sets

{"7[0 6] [1,5] [2,6] [3, 5]}

7,1 ’7711 77711 77711 L even,

0,0] 1,1 2,0 3,1 . .
{’r]z[n 7777!71,]7777!71,]777@[”]}7 7/23, ?/Odd,
{7751,33 }7 J even,

00 0,2 1,1 2,2
{ngn ,ngn],ngn],ngn]}

(51 531 (58] 60 f62] (64 lesh g

n,J ’nnJ ’nnaj ’nnaj ’n’nJ ’n’nJ 7nn,_7 and

{,,7[51 [6,0] [62]}

n,n ’nnn’nnn

We will closely analyze below this particular MDS M, although the results are
valid for any MDS for 81(A) containing M. Such a MDS may only differ from M
by O(n) points on the boundary triangles.

Theorem 2.2. The set M is a minimal determining set for S1(/\).

The proof of this theorem will be given in Section 3.

2.3. MDS for C? Splines
Again by [59] we have
dim SZ(A) = 19n? + 24n + 6. (2.7)

As before, the dots in Fig. 5 indicate the set D = Dg Ao of domain points of the
spline space. We set for 4,5 =1,...,n,
1—1 m n—j 4

L 0<mb< 12 ¢ }
- on’ n +12n) 0<m,£<12, m—+ /£ even,

DNQ;; = {771[7? A (

[ m, ] P 3 — [m,ﬁ] 3
and ¢; ;7 1= ¢y if p=n; ;77 (see Fig. 4).
Let, furthermore, M* be the set of points marked by black dots in Fig. 5. We

set

v 1
M=on |J 1l (2.8)
i+7 even
o [6 12] [9 3] [9 9] [12 6]
Nl T U {,'77,,_7 777@73 7771 J 7771 J 7,'77,,_7 }7
1437 €VeNn
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and

[4,8] | [6.6], [8.4] | [88
= U 05l s S nlt
i+7 Odd

It is easy to see that #M = 14n? and #N; = #N> = 5n2/2. To obtain M*,
we add O(n) points near the boundary as in Fig. 5, such that M* is the union of
M UN; UN; with the sets

0,12] [1,11] [2,10] [2,12] [3,9] [3,11] [4,10] [4,12] [5,11] [6,10] [9,9 .
{771[1 ]77h[1 ]a77£1 ]a77@[1 ],77£1]7m[1 ]7771[1 ]7771[1 ]7771[1 ]7771[1 ]am[l]}a 1 even,

{7]@ n nz[lnl]ﬂ 771[2710], T’flt:z'n,z]’ 771[ n ]7 77'1:3”3]7 77'54”0]7 ,'77|;4n2]7 ,'77|; n ]7 771|56n0]7 771|56n2]’ 77'1:971,3]}’

1> 3, ¢ odd,

2,6 3,3 .
{2, 8 g3 o even

0,2 0,4 1,5 2,2 2,4 6,2 9,3
{mn ,nﬁn],nﬁn],ngn],ngn]m%n]mgn],ngn]mﬁn],nﬁn],nﬁn]},

[10,2] [10,4] [10,6] [10,8] [10,10] [11,1] [11,3] [11,5] [11,7] [11,9]

{"n,y Mg g g Mg g g 5T 5T 5T g
[11,11] [12,0] [12,2] [12,4] [12,6] [12,8] [12,10] [12,12]} odd
,j Mg Mg g g g g g r 7044,

{nnﬂ }, j>3, jodd, and

{nEr 2, o mft ot gl 8 sl 2.0l pli% 2] pli2aly,

As in the C! case, there exists modifications of the MDS M* for S2(A) which

contain M U N 1 UN5. Such constructions differ only in the choice of points at the
boundary, and the results remain valid.

Theorem 2.3. The set M* is a minimal determining set for SZ(A\).
The proof of this theorem will be given in Section 3.

Since we are interested in a MDS such that its major part only consists of points

completely filling the triangles T[ ] , 2+ j even, we remove the undesirable degrees
of freedom (represented by pomts in N7 U Nz) by considering suitable subspaces
of §2(A). This can be done by imposing certain super-smoothness and/or degree
reduction conditions. We suggest two subspaces of this type, SS3(A) and RS2(A),
as described below.

Let SS2(A) be the space of all splines s € S2(A) with BB-coefficients cg?’g] =

Aot
Cig

(i)

(s), which satisfy the following C3 super-smoothness conditions:

8[012]— [06]1+12 [010] 6[ ]_|_ [0,6] ¢ i,j > 2,

1,] ’LJ I
(3,3] _ [6 0] (2 ] [1 5] [0,6]

8cj - =cij 12 ;" —6c "+

8% = o7 19028 e [1 T 0l (2.9)
[6,6] _ [9,9] [5,5] [4 4] 3,3]

8cij  =ciy +12¢ ;7 =67 +cij,

8c£?3’~6] = CE?]T?’] + 12c£317] - 60&?8] + CE’]TQ]



for all 4, j with ¢ + j even,

86Eono]1 — [06]+12 Eonz]1 6 [04]1+ Eoneﬂp i>3. iodd,

8c[13~ J12] _ [n1§ 6]1 1126 [12 10] _ ¢ [12,8] I C[12‘,6], >3 jodd,

Sc [1’2ng]1 c[12 6] -|—12c[12 26 7[%1?14]1 + £L12n,i]1’

and
(i)

86[47134] _ [.7,.1] 1 192¢ [315] _ 6c£256] n 67[1137'7]’
8¢ [4’1]8] _ [7 ,11] + 120[ T 6e [2 ,6] +c£1]5],
Sc [?'36] _ [ ]+12 [ ] 60£4j4]+c[?33] (2.10)
8¢ [?’334] _ [11 7] + 126[ 31 _ 6e [6 2] +c£5]1],
3¢ ESJS] _ [11 514 196 [ 9] GCE?j10]+c£?jll],

for all 7,7 with 2 4+ j odd.

Note that s € SS2(A) is not necessarily C® at any point. Individual Bernstein-
Bézier conditions of higher smoothness were used earlier in [2,3,33] to define spline
subspaces with desirable properties.

Another possibility to remove N1 U N3 from the MDS is to reduce by one the
polynomial degree of s|. for certain edges e of A. Let RSZ(A) be the space of
all splines s € S2(A\) satisfying (2.10) and the following conditions which are an
alternative to (2.9):

6,121 _ i( [0 12 _ g, [2 12] 1 15¢ [4 ,12] 1 15¢ [s 12] _ ,110,12] Le [12, 12])

Cij 20 0] 0.3

C£?39] _ 210 (c[e 6l _ 6o [7 7 150[8 81 1 15¢ [10 10] 66Eljl A [12 12])’

[132 6 210 (0[12 0 _ e [12 2 | 156 [12 14 15¢ [12 8] 6025’10] n CE;’12]), (2.11)
2l 210( 0 6l + 15c4 4 1510 — 6l 4 120,

o0 = 210( 00 el 4 1540 4 1550 — el D0 4 (1),

for all 4, j with i+7 even. It is easy to see that (2.11) is equivalent to the requirement
that s|. is a polynomial of degree five for every edge e of the triangles T, z[ J], k =
2,3,4, 1+ j even, which is not an edge of Ti[’lj].

Note that

Ps C SS2(A),  Ps CRSI(D),  Psg RSZ(A). (2.12)
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Therefore, RS2(/\) has a reduced approximation power O(h®) in contrast to the
full approximation power O(h”) of SS2(A), see Section 5.

We set M = M*\ (N7 UN3). As in the case of C! splines (see Section 2.1)
the set M consists of the union of the points from M in (2.8) and the O(n) points
included in M™* on the boundary.

Theorem 2.4. The set M is a minimal determining set for both SS§2(A) and
RS2(A). In particular,

dim SSZ(A) = dimRS3(A) = 14n? + 24n + 6.

The proof of this theorem will be given in Section 3.

Remark 2.5. The above constructions are related to the investigations on Hermite
and Lagrange interpolation with bivariate splines [10-13,41-52] which also employ
the idea of decomposing the underlying triangulation and choosing different point
constellations depending on the type of a triangle. Our MDS for C! splines is
similar to the one suggested in [44] in the setting of so-called checkerboard triangu-
lations. An essential difference is however that our MDS (away from the boundary)
splits into groups completely filling certain triangles and leaving no extra degrees
of freedom, thus facilitating the use of local polynomial approximations directly in
Bernstein-Bézier form (see Section 2.4 and 2.5, below). If needed, this MDS may
be transformed into a local Lagrange interpolation scheme, where the points of M
build the main part of the interpolation set. Moreover, we observe that, assuming
that the boundary of the domain is treated appropriately, the above MDS in the
C? case can also be easily transformed into a local Lagrange interpolation scheme
for S2(A), SSZ(A) or RSZ(A), respectively. This is possible due to the choice of
points in the MDS, where certain triangles are completely filled, since in general
there are no such simple one-to-one relation between the Bernstein-Bézier coeffi-
cients and (local) Lagrange interpolation points for smooth splines (cf. [46,49,52]).
Other interpolation methods for bivariate splines use function and derivative values
of the same form for every triangle or quadrilateral: these are the classical macro
element methods [8,18,54,55] and their recent extensions [2,3,24-30,33]. For appli-
cations of interpolation by bivariate splines to scattered data fitting, we refer the
interested reader to the examples given in [37,45,51,52]. Further information on
interpolation by bivariate splines can be found in the survey [49] and the references
therein.

2.4. Approximation Operators

It is well-known (cf. [14]) that each element n of an MDS Mg for a bivariate
spline space S C 89(A) gives rise to a basis function B, for S, where the spline
B,, is defined by setting all BB-coefficients in Mg to zero, except for ¢,(B,) = 1,
and computing the remaining coefficients c¢(B,), & € Dga \ Mg, by using the
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smoothness conditions that define S. Obviously, every spline s € S can be written

s = Z cn(s)By.

neMs

For constructing useful approximation operators for spline spaces & based on an
MDS Mg, in many cases it is important that the splines By, n € Mg, have local
support. We recall that given a vertex v of A, star(v) = star!(v) is the union of
triangles sharing v, and star®(v), £ > 2, is defined recursively as the union of the
stars of the vertices in star®~!(v). A spline s € S is called £-locally supported if
there exists a vertex v of A such that

supp s := {z € Q : 5(z) # 0} C start(v).

In Section 4 we show that the basis splines B, for S3(A), SZ(A), SSZ(A) and
RS2(A) corresponding to the MDS described in the previous subsections are 3-
locally supported.

Let S be one of the spaces Si(A), SS2(A) or RSZ2(A), and M the respective

MDS. We let M be the set defined in Section 2.2 and 2.3, respectively, set
{T[1 : 1+ j even},

and split the set M\M into disjoint subsets of points 7 lying on the same boundary

triangle T € A\ 7. By adding these boundary triangles to 7, we obtain a set of
triangles in A denoted by 7. Let

Mp:=MnNT, TeT.

For each T € T, let pr be a suitable polynomial approximation of a given function
f in a small subdomain Q7 covering T'. We define the approximation operator )

by
Qf=>_ Y cylpr)By. (2.13)

TeT neMr

Since f is assumed to be known only at a discrete set of scattered points in

[1]

={,:i=1,...,N} CQ,
we determine pp, T € T, as polynomials whose values
pT(f), fEET Z:EHQT,

approximate the corresponding values of f in Z¢. This is done by applying the
adaptive least squares algorithm described below in Section 2.5.
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Fig. 6. Eight patterns of the set T.

Since there is some arbitrariness in the choice of the subset 7 of A related to
the position of the coordinate system, we also consider the average

8
Qv f = > Qg (214)

1=1

of the eight operators Q[1, i = 1,...,8, of type (2.13) corresponding to the eight
possible patterns of the set T shown in Fig. 6. Note that the computation of
Q*f € 8§ involves local polynomial approximations pr defined for all T € A
since the eight sets 71 corresponding to QU, i = 1,...,8, completely cover A.
According to our tests (see the numerical examples in Section 6) the operator Q** f
usually gives better results than @Qf at the expense of (about eight times) higher
computational costs.
The approximation power of the above operators is studied in Section 5.

Remark 2.6. Although it is not obvious how to generalize our MDS to general
quadrangulations (cf. [45,46]), the C! scheme extends in a straight forward manner
to the “deformed” four directional meshes, i.e. triangulations obtained by adding
both diagonals to every quadrilateral of a strictly convex quadrangulation whose
interior vertices are of degree four. (This is the particular case of checkerboard
triangulations considered in detail in [44].) The averaged operator can also be
defined for these triangulations.

2.5. Adaptive Local Discrete Least Squares Polynomials

Let d = 3 in the C! case and d = 6 in the C? case. For convenience, we assume that
the data z; are the values of a function f: Q@ — R, i.e. z; = f(&),i=1,...,N. As
pointed out in Section 2.4, we determine a local approximation polynomial p; € Py
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for each triangle T € T, by using the data values f(§), £ € Er = ENQp, in a
suitable subdomain Qr C Q surrounding 7. This is done by computing the (BB-)
coefficients cfjf of pr in the Bernstein-Bézier form

Z d,T d
t+j+k=d

where ijk, 1+ 7+ k = d, are the Bernstein polynomials of degree d associated with
T, as a solution of the discrete least squares problem: determine c;j; such that the

Z( Z Cz’jszdjk(g)_f(f))z

(BT itj+k=d

is minimized. As the most reliable method for solving this problem, we use the

singular value decomposition of the (#Z7) x (%1?) matrix
My = [BE(€))itjth=d,ecar- (2.16)

Thus, the coefficient vector (cfjif)HjJrk:d is computed as the product of the pseu-

doinverse MIT of My with the vector (f(€))eez, (cf. [4]). However, we accept
the resulting polynomial py as a reliable approximation of the local data only if
the matrix My 7 has full rank and the reciprocal of its minimal singular value o4 T
does not exceed a tolerance value k,

oy < K. (2.17)

The value of £ is an important parameter of our method as it can be seen from the
numerical results and discussion in Section 6.

If (2.17) fails, we conclude that the local distribution of data points does not
permit a stable approximation with polynomials of degree d. In this situation we
reduce the degree by one, and compute in the same way a least squares polynomial
pr of degree d — 1 in the form

d—1,T pd—1
pr= >, o B
i+j+k=d—1

where Bfﬁcl are the Bernstein polynomials of degree d — 1 associated with 7. If
needed, we repeat the process and further reduce the degree of pyr to g =d—2,d —
3,...,0. This algorithm of degree reduction terminates at degree ¢ > 0 as soon
as the minimal singular value o, 7 of the matrix M, 7 = [ijk(g)]HjJrk:q, ¢€Er

satisfies o~} < k. In this case the local approximating polynomial pr will be
a,T g

of degree q. If o;} > kg for all ¢ = d,d — 1,...,1, we compute pr as the best
least squares constant approximation to f(&), & € Ep, which is uniquely solvable
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as soon as #Zp > 1. Hence, this procedure of adjusting the degree of the local
approximation polynomials is numerically stable.

If the degree of pr is reduced to some ¢ < d, the representation (2.15) of p with
respect to Bernstein-Bézier polynomials of degree d can be efficiently computed by
well-known degree raising formulas, see [16].

Note that it is also possible to start the above procedure with some degree
qo < d instead of d. This seems reasonable, for example, for the approximation
operators based on the space RSZ(A) which does not contain all polynomials of
degree d. Indeed, we use gy = 5 in this case, see Section 5.

Remark 2.7. The adaptive treatment of the local data is necessary for the com-
putation of appropriate local polynomial approximants as soon as the points are
allowed to be arbitrarily distributed. Detailed justification of the above procedure
of local polynomial approximation can be found in [9]. Computational aspects of
this adaptive approach are also discussed in Section 6.1.

Remark 2.8. Since we compute the least squares polynomial pr directly in its
Bernstein-Bézier form, the coefficients ¢, (pr), n € Mg, T € T, of the approximat-
ing spline @ f needed in (2.13) are immediately available. In particular, we have
Qf|r = pr, T € T. Thus, we avoid any intermediate estimates of the values of f
or its derivatives. The remaining coefficients of Qf in its Bernstein-Bézier repre-
sentation can than be computed step by step using the smoothness conditions (2.4)
(see the particular form (3.1)—(3.2), respectively (3.3)—(3.5), they take for r = 1
and r = 2, respectively), where in the C? case the additional conditions (2.9) or
(2.11), and (2.10) are used. (Concerning the treatment of the boundary we refer
to the discussion in Section 6.1.) Therefore, the computation of the approximating
spline does not require a (pre)computation of the basis splines B, in (2.13), which
are, on the other hand, a useful tool to analyze the approximation properties of the
method (see Sections 4 and 5).

Remark 2.9. Our method does not employ the minimization of the global least
squares error or other global non-linear functionals such as the surface energy, thus
avoiding computational expenses needed to solve such a large scale optimization
problem. Nevertheless, the numerical examples in Section 6 show that our local-
ized method is able to produce smooth artifact-free spline surfaces from difficult
scattered data.

Remark 2.10. The adaptivity of the local stage can certainly be increased by
designing appropriate algorithms of choosing the tolerance  individually for each
triangle T' € T, or by using the best discrete £; or £, polynomials where they are
more appropriate. In addition, algorithms that take into account the anisotropies
and statistical properties of the local data can be also thought of.

§3. Minimal Determining Sets

In this section, we show that the sets constructed in Sections 2.2 and 2.3 are minimal
determing sets of the corresponding spline spaces, i.e., we prove Theorems 2.2, 2.3,
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and 2.4. Throughout this section we use the notations introduced in Section 2.2
and 2.3, respectively.

Proof of Theorem 2.2: It is easy to see that #M = 5n2+8n+3, which coincides
with the dimension of S1(A) in view of (2.5). Therefore, it suffices to show that
M is a determining set. To this end, given s € S3(A\), we suppose that

e = cy(s) =0, all n € M.

We have to show that ¢, = 0 for all n € D. To do this, we use the smoothness
conditions (2.4) of order 1 necessarily satisfied by s. These include

[m,m] _  [m+1,m—1] [m—1,m+1] .
2ci7j =¢; +c , m=1,...,9, (3.1)
20573,,6—m] _ C£?+1,6_m+1] + CE_zv;—l,G—m—l], m=1,...,5,

to ensure the C'-smoothness of s across the two diagonals of each Qij, 4,J =
1,...,n,and

o = T m=0,2,4,6,i=1,...,n-1, j=1,...,n,

CEZ’.m] +c££r’71n; = cg?]fmﬂ] —{—cgfi]?m_l], m=13,5i=1,....,.n—1, j=1,...,n,
O = 0 m=0,2,4,6,i=1,...,n, j=1,...,n—1,

cE?’l] +c£f';f]1 = Z’;H’O] _{_ch;—l,o], m=135,1=1,...,n,j=1,...,n—1,

(3.2)
for the C'-smoothness of s across interior vertical and horizontal sides of the
squares. In the following, we only consider the “interior” part of D, namely,
n € DN Q,; , where i, € {2,...,n — 1}. The proof that ¢, = 0 for the re-
maining 7 € D follows along the same lines, with an appropriate use of the points

in M\ M.
We consider two cases.

Case 1: i + j even. First, it is clear that ¢, = 0 for allp € DN Ti[’lj]. Obviously,

there are only five points 7 in D ﬂTi[,Qj] that are not included in DN (Ti[}j] U T‘[i]l’ 1)

1
namely
[2,0]  [3,1]  [4,0] [4,2]  [5,]
MEAN; ST Mg Mg M)

By (3.1), we have

[m,m—2] [m—1,m-1]  [m—2,m] _ —
'Lt;lm :2CZZL m —Cz:r; m —0’ m—2,3,4-

Using (3.2) we get

[5,5] __ [0,4] [0,6] (1.,5] _
Cij+1 = Cix1j41 T Cid1541 ~ Cif141 = 05
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and therefore from (3.1) and (3.2) we obtain successively

[4 0] _ o .[5,5] [0,4] _

Cij =2Ciji1— Citi 41 =0

[5,1] __ [4,0] [0,6] [5,5] __
Cij = CGj TC{rin G =0

It follows that ¢, = 0 for all n € DN T . Similarly, ¢, = 0 for all n € DN Ti[jlj].

Finally, (3.1) implies that ¢, = 0 for n € {771[533 ,772[ ; 2, 772[6]4]} and hence ¢, = 0 for

alln e DN Q; 5, ©+ 7 even.
Case 2: ¢+ j odd. Case 1 implies that that ¢, = 0 for all

Tl

1
nEDﬂ(T[] i1

3
i+1,5 U T’L[ ] ; U Tz[]]+1)

Hence, it follows from (3.1) (for m € {1,5}) that ¢, = 0 for all

11 5,1 5,5
nE{m[J ,m[j ],nij ],HE,J .

Moreover, by (3.2) (for m = 3), we have ¢, = 0 for all

n € {2 nlH, gl g5,

Hence, (3.1) (for m € {2, 3,4}) implies that ¢, = 0 for the remaining n € DN Q; ;.
O

Proof of Theorem 2.3: Since #M* = 19n? + 24n + 6 = dimS2(A), which is
easy to check by inspection, it suffices to show that M* is a determining set. To
this end, given s € S2(A), we suppose that

e i=cy(s) =0, all n € M*.
We have to show that then ¢, = 0 for all n € D. As in the proof of Theorem 2.2,

we start by reformulating the smoothness conditions (2.4) satisfied by s in the
appropriate notation introduced in Section 2.3. The C?-smoothness of s across the

two diagonals of each @; j, 4,7 =1,...,n, leads to the equations
[m,m] _  [m+1,m—1] [m 1 m+1] _
2¢, ;7 = ¢ +¢; =1,...,11,
4™ = mAtme g lme il [’j; 2 m+21, m=2,...,10,
26[’7; 12— m] [*:r;—}-l 12—m+1] + ['tr; 1,12—m— 1] m=1,...,11
4C1|EZJ.,,12—m] [777;,-|-2 12—m+2] +4e [m 1,12—m— 1] CL?—2,12—m—2], m=2,...,10.

(3.3)
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The C?-smoothness across interior vertical sides of the squares for s = 1,...,n —
1, 7=1,...,n,is given by

cs 2™ = T, =0,2,4,6,8,10,12,
11,m 1,m 12,m+1 12,m—1
'[LJ ]+c£+1,.]7':c£j ]+ EJ ]7 :1737577797117 (3 4)
2m] _ f1zm=2) | D2m42) | [0m] '
ci+71'fj c”m +e "M e ,]m-i-
2™ — 2 [,1]1’" T gt —9,4,6,8, 10.

Moreover, the C2-smoothness across interior horizontal sides of the squares for
1=1,...,n,35=1,...,n—1, reads as

C[ZL 0] _ cE";_:f]’ =0,2,4,6,8,10,12,
ol 4 EZLLFIIIJ _ En;+1 ,0] Te [m 1, 0]’ —1.3,5.7,9.11,
[m,10] _ [m—2,0] (3.5)

Ciin1 = Cig + c[f';+2 e [m 2]—1-

2¢ [f? o) 26% b 265?“’1], m =2,4,6,8,10.

Again, we only have to consider the substantial part of D, i.e, n € DN Q; ;, where
1,7 € {2,...,n — 1}, since the proof for the remaining domain points is analogous

with an appropriate use of the points in M* \ (.Mv UN; UN,).
We consider two cases.

Case 1: i+ j even. First, it is clear that ¢, = 0 for alln € DN Ti[’lj]. We proceed
by considering Ti[?j]. By (3.3), we have

[m,m—2] [m 1,m—1] [m—2,m] o
Cij = 2¢ i —Cij =0, m=2,...,7,
c£?+2,m—2] _ 4c£:r7;,,m] _ 4C£TZL 1,m+1] +e [m 2,m+2] _ =0, m =2, .6,

Using (3.4), we get successively

[11,9] _ [12,10] [12,8] [1,9]
i1 = Cigr T Cigi1 — Cixr i = 0;
(11 _ (12,12 [12,10] [1,11]
ij+1 = G+t +¢ J+1 Cz+1 J+1 — 0,
[10,10] _ [2,10]  [12,8]  [12,12] [12,10] [11,9] [11,11]
Ciji1 = Cig1j+1 — Cijp1 — Cigi1 — 2Ciji1 T2¢ 501 +2¢ ;4, =0.

Condition (3.3) now implies cgsjfl] = cEgj’ill] = cglfjrlf I = 0, and therefore by (3.4),

we obtain successively

[9 1] _ [8 ,0] [10 0] [9,11] _
Ci,j +cij T —Cijy1 =0,
11 1 10,0 12 ,0 11,11
C[’IJO 2] c[1]0+110] C[?JO] 6[32 ,0] _ 9% [10 0] + 26[9 1] + 26[11 1] _ 0.
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Fig. 7. BB-coefficients associated with points marked by boxes stand in relation.

Similar arguments give ¢, = 0 for all

11,3] [12,2] [12,4] [1,1 1,3 2,0 2,2 3,1 3,11 4,0
ne {77[ 7771[1 ]7 1[,1' ]7T’E—Fl}]"r"l:—i-l}]"r)z[—i—l]_j’nE—i—l]j’n’lF-l—l?]’n’E-l—l,J]-i-l’n’E—l—l}]}

By definition, we have
6,0] _[9,3] [12,6] .
wi iy e € M.
It follows from this and the smoothness conditions (3.3), (3.4), and (3.5) that the
coefficients ¢, with

71 8,2 10,4 11,5 1,5 2,4 3,3 7,11 810
URS {m[J ,?75,] y m[J L z[,g ] m[+ﬂy m[+1]ym[+ﬂg, m[,m], m[,m, m+1}

stand in linear relations. More precisely, we have Ac = 0, where

2 -1.0 0 0 0 0 0 0 07
4 -4 1 0 0 0 OO0 O0 O
o 0 1 1 0 O OO0 O O
0O -12 0 1 0 0O 0 O
A o 0 0 0 1 1 00 0 0 ’ (3.6)
o 0 0 -1 4 0 10 0 O
o 0 0 0 0 O 1 1 0 O
o 0 0 0 0 -1 2 0 1 O
0 0 0 0 O 00 -1 2
L0 0 0 0 O 01 —4 4.
and
© = (630 Gy G G Gy iy ey e G L)'
(see Fig. 7).
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Since A is nonsingular, it follows that ¢ = 0, and hence ¢, = 0 for all n €

DN T . Similarly, ¢, =0 for alln € DN Ti[jlj]. It remains to show that ¢, = 0 for

all
8, 6 9,7 10,6
R URRR el el ¥

But, this follows from (3.3). Hence, ¢, =0 for alln e DN Q; ;, i + j even.
Case 2: 7+ j odd. Case 1 implies that that c,, = 0 for all

ur?

1
neDn (T 2

[3] (4]
i+1,5 U T U Tz g—}—l)
Moreover, from the arguments given in Case 1, we obtain that ¢, = 0 for alln € T'; ;,

where
[m., 4]

ri,j:{m["%e]; m+£<6}U{n ;" m+L£>18}
Ut e=0,...,12—m, me {6,...10}}
u{n”m“] £=0,. —m, me {6,...10}}.

It follows from (3.4) and (3.5) (for m = 6) that ¢, = 0 for all

26 6,10 10,6
né{m[J ,m[,J ],WE,J ) Z[,J .

We have Ny C M*, and therefore the smoothness condition (3.3) (for m = 4,6, 8)
successively imply that ¢, = 0 for all

n € {n™, 2 pl>sl g5 plnsl oy

and ¢, = 0 for all

n € {ny2, > gt gl plosl plemy,

The same argument (applying (3.3) for m = 5,7) implies that ¢, = 0 for the
remaining n € DN Q; ;. O

Proof of Theorem 2.4: In addition to the smoothness conditions (3.3)—(3.5),
the splines in SS3(A) or RS2(A) satisfy the conditions (2.9) and (2.10) or (2.10)
and (2.11), respectively. In both cases the number of these additional conditions
is equal to 5n? which coincides with #(N; UN3). Since the dimension of SZ(A) is
equal to 19n? + 24n + 6, it follows that the dimensions of SSZ(A) and RS2(A) are
both at least 14n? + 24n + 6. Since

#M = 14n? + 24n + 6,
it is again sufficient to check that M is a determining set.
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We consider first the space SS3(A). Let s € SSZ(A) be such that ¢, :=

cn(s) =0 for all n € M. Since ¢, =0 for allnp € D ﬂTz[J], 1+ j even , it follows by

the C? super-smoothness conditions (2.9) that ¢, = 0 for all

n € {2 g2 gl 2o T 4 g even (3.7)

Therefore, following the lines of the proof of Theorem 2.3, it can be seen that ¢, = 0
for all

neDNQ;;, 1+ j even,

and

[2,6] [6,2] [6,10] [10 6]}

neli; Un i smiy inij i+ j odd.

Now, the conditions (2.10) and (3.3) lead to five (independent) 3 x 3 linear systems
of the form Bc = 0, where B is the non-singular matrix

—1
B=|0 4 -4 /|, (3.8)
—12
and c is one of the 5 vectors
5,9 3,7 4,4] [3.5 8,4] [7.,3
(C[,J ]’CE,J ]’CE,J ]) ’ (C[,J ]’67[',] ]’CE,J ]) ) (C[,J ]’CE:J ]’C’EJ ]) )
9,7 7,9 6,6] [5,5
(e, e T, (DT S 5, i+ odd.

It follows by arguments similar to those at the end of the proof of Theorem 2.3,
that ¢, =0, n € D.

Turning to the space RSZ(A), we see that the same argument applies, the only
difference being that (3.7) now follows from (2.11). O

84. Locality and Stability of the Basis

An important observation is that the basis splines for S1(A), S2(A), SS2(A) and
RS2(A) corresponding to the MDS described in Section 2 have local support and are
uniformly bounded. These properties will be used in Section 5 to obtain estimates
for the error of our approximation operators.

4.1. The Basis for Si(A)

As in Section 2.4, we denote by B, n € M, the basis splines for S3(A) associated
with the MDS M defined in Section 2.2.
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Fig. 8. Supports of C ! basis splines associated with points in M.

Lemma 4.1. The basis splines By, n € M, for §3(A\) are 3-locally supported.

Proof: For simplicity we only consider the case when n € M and 7 lies sufficiently

far from the boundary of €2, i.e. we assume that n € DﬂTi[}j] for some 3 < 1,5 < n—2,
with 747 even. If 5 is located near the boundary our arguments can be appropriately
modified, and supports do not become larger.

First, it is obvious that c¢(B,) = 0 for all

EeDNTSL,  (5)#(i,5), i +j even.

(3

Therefore, it follows from the proof of Theorem 2.2 that c¢(B,) = 0 for all

¢epn  |J Qi

il Fi—1,4,i41
J'#i=1.5.5+1

Moreover, c¢(B,) = 0 for all

1 2 1 4
£eDn (Qi+1,j—1 U Qi+1,j+1 U Ti[—]l,j—l U Ti[—]l,j—l U Ti[—]l,j-|-1 U Ti[—]l,j+1)'
Therefore, it follows that

supp B, CQi; UQi—1,; UQiy1,; UQij—1UQi j+1
2 3 3 4
o ot uTl T

i— 1,j+1°

which implies that supp B, C star3(v), where v is the central vertex of Qi - O

Fig. 8 illustrates the supports of the basis splines associated with the domain
points from M, i.e. the points lying in the crosshatched triangle. Outside of the
white area these 10 basis splines vanish.
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Fig. 9. Supports of C? basis splines associated with points in N7 U No.

Lemma 4.2. The basis splines B, n € M, for §S3(/\) are uniformly bounded, i.e.,
there exists an absolute constant K such that

IByllee < K,  allpe M. (4.1)

Proof: Obviously, the BB-coefficients of B,, can be computed using the smoothness
conditions (3.1) and (3.2) and following the lines of the proof of Theorem 2.2. It
is easy to see that every BB-coefficient c¢, £ € D\ M, of B, is computed by using
at most 7 smoothness conditions (3.1), (3.2). Since each application of a condition
of this type may increase the magnitude of c¢ at most by the factor 3, we get the
rough estimate

lce| < 21, all ¢ € D.

(A more careful examination shows that |c¢| < 4.) The desired estimation (4.1)
now follows since in view of the well-known property of the Bernstein-Bézier re-
presentation, ||Byllco < maxeep |ce|. O

4.2. The Basis for S2(A)

Let us denote by By, n € M*, the basis splines for S2(A\) associated with the MDS
M defined in Section 2.3.

Lemma 4.3. The basis splines By, n € M*, for S2(A) are 3-locally supported.

Proof: Again, for simplicity we only consider the case when n € MU N1 UN,
and 7 lies sufficiently far from the boundary of €2, since for n located near the
boundary, the arguments given below can be appropriately modified and supports
do not become larger.
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We consider two cases.

Case 1: Let n € DN Ti[’] orn € {771[6]0 ,771[6]12],771[J ],771[9]9],771[1]2 6]} for some 3 <

1,7 <n—2, with ¢+ j even, i.e. n¢€ M UWN7. This case is analogous to the proof
of Lemma 4.1. Using the arguments from the proof of Theorem 2.3, it can be seen
that

supp By C Qi U Qi1 UQiy1,; UQ; i 1UQ; 41

2 3 3 !
U Ti[—]l,j—l U Ti[—]l,j—l U Ti[—]l,j+1 U Ti[—]l,j“’

which implies that supp B, C star®(v), where v is the central vertex of Q; ;.

Case 2: Let ) € {77ZJ ,7]1[438],772[%6],772[J ]’m[sjs]} for some 2 < i,j <n-—1, withi+j

odd, i.e. € N. First, it is obvious that c¢(B;) = 0 for all

5 eDn Ti[’l,]J"a (ilajl) 7& (laj)a il +jl evel.

Moreover, c¢(B;) = 0 for all £ € Ni. Therefore, it follows from the proof of
Theorem 2.3 that c¢(By) = 0 for all

EeDn U Qi’,j’-

il #i
J'#5

Hence,
supp B, C Qi j,

which implies that supp B} C star(v), where v is the central vertex of Q; ;. O

Fig. 8 illustrates the support of the basis splines of S2(A) associated with the
domain points from M, i.e. the points inside the crosshatched triangle. Outside
of the white area these 28 basis splines vanish. Moreover, Fig. 9 shows supports
(white areas) of the basis splines of S2(A) associated with the domain points from
N7 and Ns,. Here, the lower right figure illustrates the support of the basis splines
associated with points from N>, while the remaining figures show some typical
supports of the basis splines associated with points from N7 (again, outside the
white area the corresponding basis splines vanish).

Lemma 4.4. The basis splines By, n € M* for S2(A\) are uniformly bounded,
i.e., there exists an absolute constant K* such that

IBillo < K*,  allye M". (4.2)

Proof: The BB-coefficients c¢ of By, n € M* can be computed using the smooth-
ness conditions (3.3), (3.4), (3.5) and following the lines of the proof of Theorem 2.3
with the difference that ¢, = 1, while ¢¢ = 0 for all £ € M*\ {n}. Again, it suffices

to consider the case where 7 € MUN- 1 UN, lies sufficiently far from the boundary.
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Let n € DNTY

1,7 )
(3.5) across the edges of Tz[lj] increase the magnitude of the involved coefficients
ce at most by the factor 9. We proceed by considering the coefficients c¢¢ which
are determined by a system of the form Ac = b, where A is the matrix from the
proof of Theorem 2.3. Solving this system further increases the magnitude of the

coefficients by at most the factor

where 7 + j even. The smoothness conditions (3.3), (3.4),

|A7 |0 = 21/4.

The proof of Theorem 2.3 shows that the smoothness conditions (3.3), (3.4), (3.5)
have to be applied three more times to determine the remaining possibly non-zero
coefficients c¢ of By. Hence, we get the rough estimate

ce| < 21-9%/4, all ¢ € D,

in this case. The remaining cases 1 € N1 U N> are simpler, and we have the rough
estimates
ce| < 21-93/4, all £ € D,

for n € N1, and
ce| < 81, all £ € D,

for n € Ns, respectively.
The desired estimation (4.2) now follows since in view of the well-known prop-
erty of the Bernstein-Bézier representation, ||B} || < maxgep [ceg|- O

4.3. The Basis for SS2(A)

We now examine the support of the basis splines B,,, n € M, for S§2(A\), associated
with the MDS M of Section 2.3. Clearly, every B,, as an element of SZ(A), can

be written as
By, = Z ag B,
EeEM™

where o, £ € M*, are the corresponding BB-coefficients of B,,. Therefore,

By=DBr+ Y B, (4.3)
EENTUN,

and hence the support of By, is contained in the union of supp B} and the supports
of the basis splines Bf, £ € N1 UNs, corresponding to nonzero ag in (4.3).

Thus, to show that B, has a local support, we have to analyse how the co-
efficients ag, £ € N7 U Na, are computed by (2.9) and (2.10) (see the proof of
Theorem 2.4 in Section 3), and check that c = 0 as soon as ¢ lies at a substantial
distance from 7. We will see that although in general the support of B, is slightly
larger than the support of By, it remains contained in star®(v) for an appropriate
vertex v of A.
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Lemma 4.5. The basis splines By, n € M, for SSZ(A) are 3-locally supported.

Proof: For simplicity we only consider the case when 7 € M lies sufficiently far
from the boundary of Q, i.e. n € DN Q;; with 3 < 4,5 < n — 2. For 7 located
closer to the boundary our arguments have to be appropriately modified, where it
can be seen that the supports are not larger than in the cases below.

First, we recall that

SuppB;;:Qi,ju £€N2in,ja Z+]Odda

see Case 2 of the proof of Lemma 4.3. Moreover, by (2.10) and the proofs of
Theorems 2.3 and 2.4, it is easy to see that the computation of ag, £ € Na N Q; 4,
for some 1, j, with ¢ + 5 odd, only involves the BB-coefficients of B,, corresponding
to domain points in DN Q; ;. Therefore, the terms in (4.3) corresponding to & € N
do not increase the support of B,,, and we concentrate in what follows on & € Nj.

We consider six cases.
Case 1: Let

0,2 1,3 1,9 1,11 2,6
77 E {771_7 77]1',:] ]7,'77|E,] ]7,',’7|5J ]7nz[] ]77]1[] ]77]1[’] ]7771[,3 ]7771[,3 ]7

[2,10] | [3,5]  [3,7]  [4, 6]}

T’Z,J 7’,’1_7 ) 'L,J ’771,,_7 7/+J even'

It follows from the smoothness conditions (3.3), (3.4), (3.5), and (2.9) that ag =0,
¢ € N1. The same arguments as in the proof of Lemma 4.3 (in Case 1) show that
in these cases we have

supp B, CQ;; UQi—1,; UQiy1,; UQij—1UQj5 j+1

2 3
oT . uTH, L uTE L oTi

which implies that B, C star®(v), where v is the central vertex of Q; ;.

Case 2: Let o8 (00 (o1
,'7 E {775,3 ]am[J ],nl:’.; ]}, 7:+J even.

It follows from the smoothness condition (3.3), (3.4), (3.5), and (2.9) that in the

representation (4.3) of B, we have ag, # 0, where & = i = 51[1_21’3]_1. Moreover,

ag =0,& €N\ {&}- A close inspection and the arguments given in the proof of
Lemma 4.3 (in Case 1) show that in these cases we have

supp By C Qi U Qi j—1UQi—1,; UQi—1-1UQi—1;-2
which implies that B,, C star®(v), where v is the upper left vertex of Q; ;.

Case 3: Let

(1,71 [2,4] [2,8]  [4,4] [4,8]  [5,5] [57]}’

7]6{7]13 77’2] ’777,_7 ’777‘_7 ’77'&] ’771_7 ’771_7 ,777‘,-7 Z—{_Jeven.
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Fig. 10. Supports of some basis splines from SS%(A).
We consider only the cases n € {77571335], 771[72;4]} since the remaining cases are similar.
In these cases, it follows from the smoothness condition (3.3), (3.4), (3.5), and (2.9)
that in the representation (4.3) of B,, we have ag, # 0, where &, = fz[?jo]. Moreover,
ag =0,& €Ny \{&} A close inspection and the arguments given in the proof of
Lemma 4.3 (in Case 1) show that in these cases we have

3 4
supp By € Qi ;U Qi1 UQis1,;U Qi UTS, o ur

which implies that B,, C star®(v), where v is the central vertex of Q; ;.

Case 4: Let

[373] [3>9]}’

ne{n ;" n; i+ j even.

We consider only the case n = nz[?]?g] since the case n = 771[3;9] is completely symetric.

I

In this case, it follows from the smoothness condition (3.3), (3.4), (3.5), and (2.9)
that in the representation (4.3) of B,, we have a¢ # 0, where

6,0] ~[9,9
¢ e {50 ¢y

Moreover, ag = 0, £ € N7\ {{Z[?Jfo],ﬁz[?jg]}. A close inspection and the arguments
given in the proof of Lemma 4.3 (Case 1) show that in this case we have
3 4
supp By € Qi UQij—1UQij+1UQi—1,; UQiy1,; U Ti[—]l,j-i-l U Ti[—]l,j+1’

which implies that B,  C star®(v), where v is the central vertex of Q; ;.
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[6,6]

Case 5: Let n =, ;", i+ j even. In this case, it follows from the smoothness

condition (3.3), (3.4), (3.5), and (2.9) that in the representation (4.3) of B,, we have
ae # 0, where

¢ € (e, B,

Moreover, ag = 0, £ € N7\ {51[?333],51[?;9]}. A close inspection and the arguments
given in the proof of Lemma 4.3 (Case 1) show that in this case we have

supp By, C Q;; U Qi j—1U Qi j+1 U Qiy1,5

which implies that B,, C star®(v), where v is the central vertex of Q; ;.

Case 6: Let n = 771[?3?6], 1 + j even. In this case, it follows from the smoothness

condition (3.3), (3.4), (3.5), and (2.9) that in the representation (4.3) of B,, we have
ae # 0, where

¢ e {€%%, €50 57y,

Moreover, ag = 0, £ € N7\ {51[?336_]1,51[330],52[3312]}. A close inspection and the

arguments given in the proof of Lemma 4.3 (Case 1) show that in this case we have

supp By, C Qi U Qi j—1UQij+1UQi—1;UQi—1j—1UQi—1,—2UQit1,;

which implies that B,, C star®(v), where v is the upper left vertex of Q; ;. O

Fig. 10 shows areas (white and crosshatched triangles) which contain typical
supports of basis splines of S§Z(A) associated with the domain points from M (the
Cases 2-4, and 6 from the proof of Theorem 4.5 are illustrated in Fig. 10).

Lemma 4.6. The basis splines By, n € M of SS§(A\) are uniformly bounded, i.e.,
there exists an absolute constant K such that

1Byl < K,  allne M. (4.4)

Proof: The proof of Lemma 4.5 shows that

By=Bp+ Y acBf+ Y acB, (4.5)
£EN: EEN>

where N; C N with #N; < 3, and Ny C N, with #N, < 25. It follows from
Lemma 4.4 that the basis splines Bf, £ € {n} U N, U Ny of S§(A) are uniformly
bounded, and therefore it suffices to show that the coefficients cg, £ € N1 U N3 are
bounded by some fixed constant.

This can be seen easily for the coefficients a¢, § € N1, since each application of
(2.9) increases the magnitude of the corresponding BB-coefficient of a basis spline
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B,, at most by the factor 27. Moreover, the splines BE with & € Ny only have
influence on the BB-coefficients c¢/ of B, with

N
e ({n7?, 3 <m0 <P\ 5 S i %,

where i+j odd, and £ € DNQ); ;. It follows from the proof of Theorem 2.4 that these
BB-coefficients of B,, are determined as the solution of a linear system of the form
Bc = d, where B is the matrix in (3.8), or by applying the smoothness conditions
(3.3). Arguing as in the proof of Lemma 4.4, we see that these BB-coefficients are
uniformly bounded, and hence the coefficients o, £ € Ny, in (4.5) are bounded by
some fixed constant. O

4.4. The Basis for RSZ(A)

The examination of the supports of the basis splines B,, n € M, for RSZ(A) is
quite similar to SS2(A). In particular, we again have the representation (4.3), with
some new coefficients a.

Lemma 4.7. The basis splines B,,, n € M, for RSZ(A\) are 3-locally supported.

Proof: Again, we restrict ouselves to the case when 1 € M lies sufficiently far
from the boundary of 2, i.e. n € DN Q;; with 3 <14,j < n — 2. Since the terms
in (4.3) corresponding to £ € Ny do not increase the support of B, (by the same
argument as in the proof of Lemma 4.5), we only have to analyse the case £ € N.

We consider four cases.

Case 1: Let

[0,6] [1,5] [1,7] [2.,4] [2.,6] [2,8] [3,5] [3,7] [4, ]}

,'7 6 {"”'L,J ’771,,_7 7,’72’_7 7,’72’_7 ’nz,] ’nz,] 77727_7 77727_7 7"77,,_7 i+j even'

It follows from the smoothness conditions (3.3), (3.4), (3.5), and (2.11) that ag =0,
¢ € N1. The same arguments as in the proof of Lemma 4.3 (in Case 1) show that
in these cases we have

supp B, CQi; UQi—1,; UQiy1,; UQij—1UQi j+1
[2] (3] [3] [4]
UTiZ ;YT VT i YT s

which implies that B,, C star®(v), where v is the central vertex of Q; ;.
Case 2: Let

0,0 0,4] [0,8] [0,10] [0,12] [1,1] [1,3]
ne{nl:g ]7772[,3 ]7771[_7 7/'727_] 7,,71,_7 7,,71_7 7,,71_7 anJ bl

[1,9] [1,11] [2,2] [2, 11]}

T’z’J 77’7,,_7 ?’r]z’] 7 2_7 Z +.] even.
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Fig. 11. Supports of some basis splines from ’RS&(A).

We consider the cases n = 771[7;L  with m + ¢ < 4, since the remaining cases are

completely symetric. In this case, it follows from the smoothness condition (3.3),
(3.4), (3.5), and (2.11) that in the representation (4.3) of B, we have a; # 0, where

[6,0] [6,12] [9,9] [12,6]
EeN={n ;" 0 1 1M1 j41 Mie 1,_7-!—1}

Moreover, ag =0, £ € N7\ A. A close inspection and the arguments given in the
proof of Lemma 4.3 (in Case 1) show that in these cases we have

supp B, CQ; j U Qi j4+1UQi—2; UQi—2 j41U
Qi1 UQi—1,j+1Y Qi1 j+2UQit1,5

which implies that B, C star®(v), where v is the lower left vertex of Q; ;.
Case 3: Let

4,4 4 . .
n € {2 i g g8 gl BTy 4 even,

[m,m]

We consider the cases n = n; ;"", m = 3,4,5, since the remaining cases are com-

pletely symmetric. In this case, it follows from the smoothness condition (3.3),
(3.4), (3.5), and (2.11) that in the representation (4.3) of B, we have ag, # 0,

where £y = nz[?jg] and ag =0, £ € N1\ {&}. A close inspection and the arguments
given in the proof of Lemma 4.3 (in Case 1) show that in these cases we have

3 4
supp By € QijUQi-15UQis1,UQij1UQijyr UTE ; UTY oy,

which implies that B, C star®(v), where v is the central vertex of Q; ;.

Case 4: Let n = nL6’6]

iq o Lt even. This case is analogous to Case 5 in the proof of
Lemma 4.5. O

The basis splines from RS2(A) treated in Case 2 of the proof of Lemma 4.7
are contained in the white area in Fig. 11 (together with the crosshatched triangle).
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Lemma 4.8. The basis splines B,, n € M of RSZ(A) are uniformly bounded,
i.e., there exists an absolute constant K such that

IBylloo <K, allne M. (4.6)

Proof: As in the proof of Lemma 4.6, it suffices to show that the coefficients o,
¢ € N1UN, are bounded by some fixed constant, where Ny and N5 are appropriate
subsets of N7 and N, respectively. This follows for £ € N; since each application of
(2.11) increases the magnitude of the corresponding BB-coefficient of a basis spline
B,, at most by the factor 11 /5. We note that we now have #N; < 4. The case of
¢ € Ny can be treated exactly as in the proof of Lemma 4.6. O

§5. Error Bounds

The purpose of this section is to give error bounds for our approximation operators
defined in Section 2.4 assuming that the scattered data come from a sufficiently
smooth function and appropriate local approximations are used.

Let S be one of the spaces S1(A), SS2(A) or RSZ(A), and let

{Bn: neMs} (5.1)

be the basis for S defined in Section 2.4 using the corresponding MDS of Sections 2.2
and 2.3. The results of Section 4 imply that (5.1) is a Loo-stable local basis for S,
see e.g. [14]. A standard argument shows that this basis is L,-stable after an
appropriate renorming. Thus, for any 1 < p < oo there are absolute constants
K1, K5 > 0 such that for any coefficient vectors a = (ay)pem,

Killall, < (1Y agh™7By|l1,(0) < Kollallp, (5.2)
nem

where h = 1/n.

Let 7 be the subset of A defined in Section 2.4. As an intermediate ap-
proximation tool needed in the proof of our error bounds, we use the following
quasi-interpolation operator Q : Li(©2) = S. Given f € L1(Q2) and T € T, let
pr denote the averaged Taylor polynomial of degree q for f over the largest disk
contained in T' (cf. e.g. [31]), where ¢ = 3 if S = S3(A), ¢ =6 if S = SS2(A), and
q=>5if S =RSZ(A). We set

Qf = Z Z cn(Pr) By

TeT neMr

The operator Q satisfies the following error bounds.
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Lemma 5.1. If f belongs to the Sobolev space WiT1(Q), for some 1 < p < oo,
then

1f = Qfllz,(@) < K3h®™ [ flyes gy,

where K3 is an absolute constant.

Proof: The lemma follows from Theorem 5.1 of [31] since all its hypotheses are
satisfied due to Lemmas 4.1, 4.2, and 4.5-4.8, and the definitions of S and Q. In
particular, by (2.12) we have P, C S, which ensures the polynomial reproduction

property of Q O

We denote by 1, SQ2 and RQ5 the approximation operators defined by (2.13)
using our constructions for the spaces S3(A), SS2(A) and RSZ(A), respectively.
The local polynomial approximations pr in (2.13) are determined as explained in
Section 2.5. More precisely, for each T € T, let Qpr be a subdomain of 2 such
that T C Qp. (Most often Qrp just overlaps T' and possibly several neighboring
triangles. See Section 6 for a description of how 7 is determined in our current
implementation.) Let pr be the local polynomial approximation to the scattered
data

f(f), EeBp:=2NQp,

obtained by the algorithm of Section 2.5, i.e. the degree gr of pr is adapted to
Z7, where we take 3, 6 and 5 as a starting degree gy for the operators @)1, SQ-
and RQ2, respectively. The coefficients of pr in the BB-representation (2.15) are
computed by minimizing the error

Y (X enBiO-1©)

§EET itjtk=qr

Let, furthermore, ", SQ5" and R(Q5" be the corresponding averaged operators
(2.14).

The main results of this section are contained in the next two theorems giving
estimates of the error of our approximation operators.

Theorem 5.2. Let () be one of the operators (Q1, SQ2 or RQ2, and let

{35 if Q:Q].}
q:=
5, if Q= RQs.

If f € WitH(Q), for some 1 < p < oo, then

1/p
If — Qf”Lp(Q) < K4hq+1‘f|wg+1(9) +K5( Z I.f _pTHip(T)) , if p < oo,
TeT

1
1= Qfllp) < Keh®t flwatr o) + K7 I%lg%iﬂf —prllL. (1)
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where K4—K+ are absolute constants.

Proof: We give details of the proof only for 1 < p < oo since the case p = oo is
similar and simpler. In view of Lemma 5.1 it suffices to show that

A 1/p
1Qf = Qfllz, () < Ksh™™|flyyarq) + Ks( doIF- pTll’z,,<T>) , (54)
TeT

for some absolute constants K5, Kg. We have

QfF—Qf =Y > cylpr —pr)By.

TeT neMr
Then, by (5.2),
A . 1/p
1Qf — Qfllz, @) < K2( Z Z [B*/Pey (pr —pT)|p) :
TeT neMr

By the well known stability of the Bernstein-Bézier basis, see e.g. Lemma 4.1 in
[31], there is an absolute constant Ky such that

R p 1/p —2/p||
( E ey (BT — pr)| ) < Koh™*'?||pr — prllL,(1)-
neMr

Therefore, by the local approximation properties of the averaged Taylor polynomial,

. A 1/p
1Qf —Qfllz, @ < Kng( Z [Fzrg —PT“IE,,(T))

TeT
1/ 1/
<k Ko [( S el )+ (M7 —prl ) ]
TeT TeT
/ /
§K10]ﬂ+1( Z |f|€V,‘}+1(T))1 " + Kng( Z I —pT”I;Jp(T))l p;
TeT TeT

with some absolute constant Ko, which implies (5.4). O

It is clear that similar bounds are valid for each operator QU, i = 1,...,8,
involved in the definition of the corresponding averaged operator Q%Y defined by
(2.14). Therefore, the estimate for ||f — Q* f||1, () presented in the following
theorem easily follows from the inequality

8
1 ‘
If =Q fllz,(@ < 3 E N = Q¥ flL, @
i=1
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and the fact that

Theorem 5.3. Let Q® be one of the operators Q¥, SQ3%¥ or RQ$", and let q be
defined as in (5.3) for the corresponding non-averaged operators. If f € Wat1(Q),
for some 1 < p < oo, then

1/p
If — Q(wf”Lp(Q) < Kllhq+1|f‘wg+1(9) + K12< Z I.f _pT||I£p(T)) , if p < o0,
TeN

1f = Q% fllLe) < Kish®™ | f| a1 oy + Kiamax ||f — prllz (1),

where K11—K14 are absolute constants.

Note that the approximation error ||f — pr||, () of the local polynomials pr
involved in the estimates of Theorems 5.2 and 5.3 depends on the distribution of
the local data =1 as well as a number of parameters such as the degree g7 of pr,
the size of Qp relative to T', the number of points in 27, and the tolerance value &
used in the algorithm of Section 2.5. For instance, by (2.8) in [9] it follows that

If = prlle () < KisCrey/#Er dia‘m(QT)qT+1|f|WgoT+1(QT)’ (5.5)

where K5 is a constant depending only on ¢, and

Cr = sup H Z i By ,
lall2<1 i+jt+k=qr Lo (Q27)
where Bfﬁ are the Bernstein polynomials of degree qr with respect to the triangle

— qaT
T, and o = (0 )i+j+h=qr-

Remark 5.4. Our local polynomial approximations have optimal approximation
order O(h9™1), with ¢ defined in (5.3), if the data is dense enough. More precisely,
if the (local) fill distance

S, Q) 1= in ||z — :
f(Er, Qr) = max min |z — £l (5.6)

is small enough, e.g. if h(27,Qr) < 0.11h/q? in the case when Q7 is a circle of
radius h, then the so called norming constant of P, with respect to Z¢ is at least
1/2 (see, e.g. [60]), which implies by Theorem 2.1 of [9] that o remains small,
and therefore qr = g by the algorithm of Section 2.5 provided the tolerance value
k is appropriately chosen.
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§6. Numerical Examples

We present here results of numerical tests on the approximation order, shape recov-
ery, compression and denoising using standard test functions as well as tests with
real world data. We begin with comments on computational aspects of the method
and its current implementation.

6.1. Computational Aspects

Some important algorithmic details of the non-averaged C'* method skipped in this
paper can be found in [23]. These concern for instance the initial data sorting,
local data thinning, computational aspects of discrete least squares polynomial
approximation, usage of Bernstein-Bézier techniques for rendering, and boundary
treatment where attaching auxiliary strips of squares turned out to be advantageous
since it helped to simplify the implementation by avoiding the special consideration
of the boundary.

In the current implementation, we apply the same principles to the C? method
and to the averaged methods. In order to compute the local least squares poly-
nomials pr, for each T € T, we initially choose the local domain Qp overlapping
a neighborhood of T' (see Section 2.5), to be the circle of radius h centered at the
barycenter of T. (Here h = 1/n is the side of T.) However, if for some T € T,
the number m = #(E N Qr) does not lie within a heuristically chosen interval
[Mnin, Mimax), we either increase the radius of the circle if m < M, or we apply
a grid-type thinning method (see [23] for details) to reduce the number of points in
Z2r = 2N Qp if m > Mpyax. Then, the adaptive algorithm of Section 2.5 is used.
Note that the termination criterion 0;;1 < k based on the explicit estimates of the
approximation error of local least squares given in [9] has shown in our extensive
tests a superior performance over the earlier criterion cond, v = || My 1||2/0q 1 < K
used in [23]. (Here, M, r is the collocation matrix from (2.16).) Therefore, s has
a slightly different meaning in this paper comparing to [23]. Although M,y is
mainly needed to reduce the computational costs, £ and M,,;, are important pa-
rameters of our method that allow to adjust it to various types of scattered data,
similar to the role of parameters in the scattered data techniques based on different
approachs (cf. e.g. [36,56]).

The above computations have a local nature, i.e., they are applied to small
portions of the data concentrated in O(N) subdomains Qp, T € T, where N is the
total number of points in Z. (We assume that the dimension D of the spline space
is chosen of the same order of magnitude O(NV).) Since the size of each matrix
(2.16) is at most 10 X M.y (respectively, 28 X My, ) in the C1 (respectively, C?)
case, the computation of all local least squares polynomials requires O(N) compu-
tational time and memory. (Note that each polynomial is computed independently,
such that this most expensive step of the algorithm can be easily parallelized to
take advantage of a multiprocessor computer.) To find the points located in Q7
efficiently, the data is decomposed into O(IN) grid cells at a pre-processing stage.
This approach guarantees the linear overall complexity of the algorithm (i.e., O(N)
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time and memory requirements) at least in the case when the fill distance h(Z, Q)
satisfies
h(Z,Q) := maxmin ||z — £[] = O(1/VN).
TeQ £€B

Without this assumption the complexity may rise to O(N log N) if for a substantial
number of 7 many consecutive extension steps are needed to find at least Mpn
local data points (compare [56]). Our tests with random and real world data confirm
the linear complexity of the algorithm.

Since we compute the complete BB-representation (2.1) of the approximating
spline s, the subsequent evaluation of s, its derivatives and normals can be done
efficiently by using the well known de Casteljau algorithm (cf. e.g. [16]), with the
computational cost O(M) for M evaluations. Typical CPU time for the evaluation
of the spline at 1,000,000 points is about 1.4 sec in the C! case, and 3.1 sec in the
C? case.

In what follows we denote our approximation operators by @1, SQ2, RQ2,

v, 5Q45" and RQ)5", as in Section 5. We concentrate in Sections 6.3—6.6 on tests
with Q%Y and RQ3%’ since the methods based on RSZ(A) have generally shown a
better performance then those based on SS2(A) (except the approximation order
tests), and since the averaged methods generally produce more pleasant surfaces
and smaller errors for the same data sets.

The tests presented below were made on a Sun Ultra 60 workstation with a
450 MHz processor. The surfaces were visualized with Matlab using evaluations of
the splines on a fine grid (101x101 grid for the test functions of Sections 6.3-6.5,
301x361 grid for the Glacier, 601x601 grid for the Black Forest and 601x1630 grid
for the Rotterdam Port data set.) For the non-square domains (i.e. for Glacier
and Rotterdam Port data sets) we defined the triangulation by subdividing the
bounding box of = into nm rectangles of almost square shape using n — 1 vertical
and m — 1 horizontal lines. The dimension formulas for the spline spaces in this
case read as follows:

dim S (A) = 5nm + 4(n +m) + 3,
dim S3(A) = 19nm + 12(n + m) + 6,
dim SS3(A) = dimRSE (A) = 14nm + 12(n + m) + 6.

We use the following notations in the tables of Sections 6.2-6.6: n, m denote
the triangulation parameters as above (m is omitted if it is equal to n), D is the
dimension of the spline space used in the test, N is the number of data points,
Ky, Mmin and My, are the parameters of the method, as described above, and
t is the computational time in seconds, with the exception of Tab. 2, where the
time is given in minutes. Finally, max, mean and rms denote the maximum error,
the average error, and the root mean square error, respectively. The errors are
calculated against the exact values of the test function on a dense grid containing
~ 9N points for the tests of Section 6.2, and on the 101x101 grid for the tests of
Sections 6.3-6.5. For the real world data sets of Section 6.6, max, mean and rms
are computed with respect to the data.
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6.2. Approximation Order

To test the approximation power of the method, we performed extensive numerical
experiments with the well known Franke exponential test function from [19-21],

P B B ST
+ %eXp[— Bz = 7) 1—(9y—3) ] - %exp[—(9a:—4)2—(9y_7)2}

(The shape of this function is shown in Fig. 12a.) For N in the range between
1,000 and 100,000, we generated N random data points in [0,1]2. Then we eval-
uated the test function at these points and computed spline approximations using
our operators QQ1, SQ2, Q7Y and SQ4”, with the grid size chosen such that the
dimension of the respective spline space S3(A) or SS3(/\) approximately equals
N. Tab. 1 gives averaged values (using 40 data sets for each N) for the maximal
approximation error mazr and computational time ¢ in seconds. We have chosen
Mnin = 11 for the C* method, and My, = 29 for the C? method, such that al-
most all local polynomials (at least 99% in each test) are of the highest degree. The
results clearly indicate the linear grows of the computational costs as well as almost
optimal approximation order. (Recall that the best possible approximation order
for piecewise polynomials of degree d is h?*1, or N—(4+1)/2)) Similar tests with the
operators RQy, and RQS’ (not shown in the table) also confirm their theoretical
behavior.

O Q7 SQy SQ5

N max t max t Max t max t
10° [86-102]0.05(3.1-102]0401.7-102]0.26|4.8-1073% ] 2.1
2-102129-1073/0.09 | 1.0-103 | 0.72 ] 2.2-1073 | 047 | 5.2-107% | 3.8
5-10%7.1-107*]020(28-107%| 1.6 [1.4-107*| 1.1 | 2.7-107° | 8.7
104 [ 24-107%]039|80-10°| 3.1 |1.2-10°| 2.0 |2.7-10°%| 16
2.10* [ 76-107°10.79 | 25-107°| 6.4 | 1.2-107%] 3.9 [3.3-1077 | 31
5-10[2.1-107%| 2.1 [6.2-107%| 17 |6.0-107%| 9.7 | 1.6-10"% | 78
10° [ 7.9-107%| 42 |26-107%| 34 |6.7-107°| 19 |1.9-107% | 155

Tab. 1. Approximation order.

In addition, Tab. 2 gives the results of our tests with some very large randomly
generated data sets (up to 13 millions points). Here and below D indicates the
dimension of the spline space which is not always the same as the number of data
points N. In the cases when D is much smaller than N, we have taken M, = 100
for the C' methods, and 300 for the C? methods.

Note that the data sets obtained in this way are very “smooth” and therefore
the choice of parameters x and Mp,;, does not play such an important role as in
the case of the real world data.
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N n D method maz mean rms t (min)
1.3-107 | 512 |1.3-10°| @ 2.3-1077 19.6-107" | 1.7-107"° | 35
1.3-107 | 512 | 1.3-10° w  15.6-10719 1411071 [ 631071 30
5-105 | 1000 | 5-106 Q1 1.1-1077 | 1.6-107% 1 3.0-1071°| 3.6
5-10°% | 1000 | 5-10° g 4.6-107% | 1.5-1071% | 2.4.10710 29
2.4-10%| 128 [ 2.3-10°5| SQ, |3.0-1071°|33-10°12|57-10 12 4
2.4-10°| 128 [23-10° | RQ, |3.6-1071°|54-1071% | 1.4-107" 4

Tab. 2. Tests with large data sets.

Fig. 12. Shape recovery tests: (a) Franke test function. (b) Locations of 100
points of ds3. (c) C! spline. (d) C? spline.

6.3. Shape Recovery

The next test problem we consider is the recovery of the shape of a test function
from a small number of scattered data points. We again use the Franke test func-
tion (Fig. 12a) and a standard set of 100 points sampled at the location shown in
Fig. 12b. These points (available from [21] as ds3) were used in [19] to test various
scattered data fitting methods. We present in Fig. 12c and 12d the shapes recov-
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ered using our method. Tab. 3 shows the parameters used and the errors of the
spline approximations calculated on a uniform 101x101 grid. Note that the values
for kK and My, were found in tests with random point sets of the same size 100,
and that we start here the algorithm of Section 2.5 for RQ3’ with degree 6 (see
also Tab. 7).

fig | method | n | D | k& | Mpm | max | mean rms
12¢ QY 6 | 231 | 32 3 0.043 | 0.0070 | 0.0101
12d | RQS® |5 | 476 | 32| 16 | 0.038 | 0.0052 | 0.0076

Tab. 3. Shape recovery tests.

6.4. Compression

A different problem is to represent a shape with as few degrees of freedom as
possible. In contrast to the previous subsection, we assume that a sufficient amount
of information is available, i.e., the data set is dense. If this is not the case, then
first the shape recovery can be applied as above, and, subsequently, the dense
evaluations of the resulting spline surface can be used as input for a second step
aimed at compression.
As a test function we choose the “curved valleys” benchmark function
f(z,y) = 0.5y cos*(4(a? +y — 1)),

whose shape is shown in Fig. 13a (cf. [22,39,40]). Using 10,201 values of this
function on a regular grid, we run our C! averaged method with spline dimensions
72, 115 and 168. The (nominal) values of 7 and 107, respectively, are assigned to the
parameters M, and k. Because of the high density of the data there are between
1000 and 4000 points in the local subdomains Q7 for this tests. Therefore we also
use them to demonstrate the reduction of the computational time achievable by the
appropriate choice of the parameter M,,,.. Since we take relatively high values for
M %, the degrees of local polynomials remain 3 for all 7. Results are presented
in Fig. 13 and Tab. 4. (The errors are evaluted on the same 101 x 101 grid.) Note
that there is no visual difference in the appearance of the surfaces calculated with
Mpax = 300 and My, = 10000. An important observation is that due to the
regularity of the four directional mesh, the number of real numbers needed to store
a spline surface is equal to the dimension D of the space if the position of the
(rectangular) domain is known.

fig (n| D | max | mean rms t mar | mean rms t

13b | 3| 72 | 0.117 | 0.0298 | 0.0401 | 0.48 0.114 | 0.0278 | 0.0378 | 3.04
13c | 4 | 115 | 0.105 | 0.0140 | 0.0199 | 0.48 0.104 | 0.0132 | 0.0189 | 3.12
13d | 5 | 168 | 0.094 | 0.0101 | 0.0150 | 0.72 0.091 | 0.0095 | 0.0143 | 3.12

(a) (b)

Tab. 4. Compression tests: (a) Mmax = 300, (b) Mmax = 10000.
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6.5. Denoising

To test the performance of the method in the case of noisy data, we used two
data sets contaminated with normally distributed random errors with standard
deviation 0.05. The first of them is obtained by adding the random errors to the
evaluations of the Franke test function (Fig. 12a) on a 101 x 101 grid. We use the
operator Q{”. The resulting noisy surface is visualized in Fig. 14a using Matlab
mesh command, while the shape recovered by our method is presented in Fig. 14b.
The computational time is 2.88 seconds. (Note that we use Myax = 600.) The
rms error in Tab. 5 shows the reduction of the noise with a factor more than 9.
The second data set is obtained in the same way from the values of the Franke test
function at 500 locations shown in Fig. 14c. It was used in [38] to test a scattered
data fitting algorithm based on thin plate splines and is available from [21] as
vde500. Our results are given in Fig. 14d and Tab. 5. In both cases the errors
in Tab. 5 are computed on a 101 x 101 grid against the exact values of the test
function. Note that choosing x as small as 1 was very essential for the performance
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Fig. 14. Tests with noisy data: (a) Franke test function contaminated on a

101 x 101 grid with normal noise of standard deviation 0.05. (b) C* spline
reconstruction using this data set. (c) Locations of 500 points of vde500. (d)

C? spline reconstruction using 500 contaminated points.

fig | method |n | D | K| My | max mean ms
14b QY 713041 7 0.0260 | 0.0040 | 0.0052
14d QY 612311 1 0.0494 | 0.0145 | 0.0178

Tab. 5. Tests with noisy data.

shown in these tests.

In addition, we repeated these tests using the same local polynomial approxi-
mations of degree not more than 3, but applying the C2 method based on the space
RSZ(A) in the second stage. The resulting surfaces do not look different from
those in Fig. 14b and 14d, but the errors reduce to max = 0.0201, mean = 0.0039,
rms = 0.0051, for the first test, and max = 0.0435, mean = 0.0136, rms = 0.0169,
for the second test. Note that the computational time does not change since the
second stage of the algorithm in both cases is much faster than the first stage.
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Fig. 15. C? spline approximation of glacier data: (a) General view. (b) Contour
plot (the thick lines consist of the locations of the data points, while the thin
lines are the contours of the spline at the same 44 hight levels). (c) Screenshot
of the spline surface with the data points as dots.

6.6. Real World Tests

1. Glacier. As a first real world data set we use 8,345 points (available from [21]
as vol87) representing 44 digitized height contours of a glacier (cf. [38,56,60]). The
difference between the maximal and minimal heights is 800 m. We approximate
this data with a C? spline with 7,254 degrees of freedom using the operator RQ%Y
and parameters n = 20, m = 24, kK = 2, My,jn = 60, M. = 160, starting the local
stage with degree 5, as explained in Section 5. The spline surface is shown in Fig. 15.
Note that the contour lines of the spline surface in Fig. 15b are almost everywhere
covered with the original data points. However, in some places smoothing effects
are visible. The errors at the data are mazr = 18.66 m, mean = 1.95 m, and
rms = 2.78 m. The computational time is 19 seconds.
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Fig. 16. C? spline approximation of black forest data: (a) Locations of the data
points. (b) Contour lines of the approximation. (c) General view. (d) Spline
surface in the area indicated with a box in (a) (the data points are shown as
black dots). (e) The same with real proportions.
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2. Black Forest. Another data set consists of 15,885 points representing a terrain
in the neighborhood of Freiburg, Germany, see Fig. 16. The difference between
the heighest and the lowest point is 1,214 m. (Note that the data are scaled in
the horizontal plane with a factor ~ 1/4 to the real proportions, compare Fig. 16d
and e.) We again use the C? method RQ$’ starting the local stage with degree 5.
The number of degrees of freedom (91,526) is chosen substantially higher than the
number of points in order to achieve high approximation quality in the areas where
the data set is dense. This, however, did not produce any substantial oscillations in
the extremely sparse areas, see Fig. 16d. The values of parameters used to produce
this spline surface: n = m =80, kK =5, Muin = 3. Mmax = 100. The errors at the
data are max = 30.56 m, mean = 2.563 m, and rms = 3.567 m. The computational
time is 9.8 seconds.

3. Rotterdam Port. Finally, we apply our method (Q{") to a set of 634,604 raw
data points in an almost rectangular domain of size 367 m by 997 m produced by
the high density multibeam echosounder for the purpose of dredge monitoring of the
Rotterdam harbor. A typical distribution of the data locations is shown in Fig. 17a.
The heights vary between -27.62 m and -5.26 m to the sea level. First, we apply
our algorithm to the full (raw) dataset and compute the averaged C! spline with
the gridsize of about 9 m (dimension of the spline space: 22,399) with parameters
k = 0.5, Mpin = 300, Mpax = 100, starting from degree 1 at the local stage. The
spline surface is presented in Fig. 17b. (We multiply the spline by the factor 4 in
order to emphasize the details.) The computational time is 23.8 seconds. The main
purpose of this first run is to remove outliers and reduce noise present in the data
due to measurement errors. This is achieved by leaving out all points (12,980 or
2%) whose height difference to the spline surface exceeds the rms error (0.6096 m)
of our approximation. The cleaned dataset consists of 621,624 points with heights
between -25.09 m and -6.42 m. Then we choose the C?! spline space with gridsize ~
3.6 m and dimension 142,027, and apply the averaged method QQ$* with parameters
Kk =15, Munin = 3, Mmax = 49 to the cleaned data. The computational time for
this second run is 114.6 seconds, and the resulting surface is presented in Fig. 17c
and 17d. It faithfully represents a fine structure on the harbour floor, in particular,
remains from the dredge process. In addition, Fig. 18 shows the robust behavior
of the spline in the presence of outliers and demonstrates the effects of cleaning.
Errors (in meters) with respect to the full data set as well as to the subset of “clean”
data obtained as explained above are presented in Tab. 6. (We do not provide the
maximal error to the raw data since it is obviously useless.)

raw data cleaned data

fig n m D mean rms mazx mean rms
17b | 40 | 109 | 22,399 | 0.1821 | 0.6096 | 0.6096 | 0.1346 | 0.1780
17c | 100 | 281 | 142,027 | 0.0995 | 0.6016 | 1.0774 | 0.0576 | 0.0784

Tab. 6. Errors in tests with Rotterdam port data.
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Fig. 17. C! spline approximation of Rotterdam port data: (a) Locations of the
data points in a subregion. (b) Coarse spline approximation obtained by direct
application of the operator Q{" to the raw data. This spline is used to clean the

data. (c) Fine spline approximation (Q{") to the cleaned data. (d) View from
the above.
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Fig. 18. Effect of cleaning of the Rotterdam port data: The C 1 spline approxi-
mation in the rectangle indicated in Fig. 17d with (a) raw data and (b) cleaned
data (data reduction 2%).

Remark 6.1. As explained above, our algorithm tries to fit polynomials of the
highest possible degree in each local subregion, and drops the degree successively
if the criterion (2.17) is not satisfied. In Tab. 7 we sum up the information on the
degrees of local polynomials computed in the tests of Sections 6.2 and 6.4-6.6. Re-
call that practically all local patches are of the highest degree in the approximation
order and compression tests of Sections 6.1 and 6.3, respectively.

fig | 0 1 2 3 1 5 6
12c | 1.6% | 43.8% | 48.8% | 5.9% | - - -
12d | 0.0% | 0.0% | 14.3% | 30.6% | 25.5% | 21.4% | 8.2%
14b | 16.0% | 23.5% | 0.0% | 60.5% | - - -
14d | 45.7% | 17.6% | 19.1% | 17.6% | - -
15 | 1.7% | 16.7% | 7.8% | 12.8% | 22.3% | 38.8% | -
16 | 1.7% | 38.4% | 30.9% | 21.7% | 6.7% | 0.6% | -
17b | 26.3% | 73.7% | - -
17¢ | 17.1% | 4.6% | 1.9% | 76.3% | - - -

Tab. 7. Degrees of local polynomials: The columns numbered 0-6 contain the
percentage of the polynomials of corresponding degrees for the surfaces shown
in the figures indicated in the first column.

Remark 6.2. We note that the above computational times can often be signif-
icantly reduced if one pursues the goal of obtaining approximations of sufficient
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quality for practice rather than the best possible quality. For example, the non-
averaged splines are computed 8 times faster. In addition, bigger x and smaller
M nin, Mmax also reduce costs. Pivoted QR decomposition can be used for the es-
timation of oy, instead of the more reliable (but, in general, also more expensive)
singular value decomposition employed in this paper. Finally, without any loss of
quality, an easily implementable parallel version of the first (local) stage of the al-
gorithm should reduce overall computational times by a factor nearing the number
of processors on a multiprocessor machine.

Remark 6.3. The usability and efficiency of the non-averaged C! method in the
context of interactive visualization and rendering of large terrain data has been
demonstrated in [23], where real-time frame rates for typical fly-through sequences
are achieved.

Acknowledgement. We thank David Stelpstra from the company QPS (Quality
Positioning Services), Zeist, The Netherlands, for providing us with the Rotterdam
port data set, which was recorded using the QINSy software.
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