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ON THE AVERAGE CASE COMPLEXITY
OF SOME P-COMPLETE PROBLEMS *

MARIA SERNA! AND FATOS XHAFA!

Abstract. We show that some classical P-complete problems can be
solved efficiently in average NC. The probabilistic model we consider
is the sample space of input descriptions of the problem with the un-
derlying distribution being the uniform one. We present parallel algo-
rithms that use a polynomial number of processors and have expected
time upper bounded by (eln4 + o(1)) log n, asymptotically with high
probability, where n is the instance size.

Résumé. Nous montrons que quelques problémes classiques qui sont
P-complets peuvent étre résolus efficacement en average NC. Le mo-
dele probabiliste que nous considérons est ’espace de descriptions des
entrées du probléme sous la distribution uniforme. Nous présentons
des algorithmes paralléles qui utilisent un nombre polynomial de pro-
cesseurs dont leur temps espéré est majoré par (eln4 + o(1))logn, as-
symptotiquement avec haute probabilité, ou n est la taille de 'entrée.

1. INTRODUCTION

An important topic of the theory of parallel computations is to study the
possibility that certain problems are difficult to parallelize. As a matter of fact,
hundreds of problems are known to resist finding efficient parallel algorithms.
The study of this behavior led to the theory of P-complete problems, initiated
with the work of Cook (3] (see also [8,11]). A given problem is called P-complete
if there is a polynomial time algorithm that solves it, and any other problem in
the class P of problems solvable in polynomial time, considered as a language, can
be logspace reduced to the problem [11]. Many important problems have been
shown P-complete, evidencing that they all appear to be inherently sequential.
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(For more on the P-completeness theory, we suggest to the reader the book by
Greenlaw et al. [6].)

Given a P-complete problem there is little hope of finding an efficient parallel
algorithm to solve it, unless P = NC. Consider that a parallel algorithm is efficient
if it finds feasible solutions to instances of the given problem in time polylogarith-
mic in instance size and uses a polynomial number of processors (see, e.g. [1,6]).
Since the P-completeness is a worst case complexity result, it does not rule out
the existence of parallel algorithms that although needing polynomial time in the
worst case, perform efficiently for “almost all” instances. Finding such parallel
algorithms, is an alternative method to cope with P-complete problems. This
approach has been initiated for P-hard problems in Calkin and Frieze [4], Copper-
smith et al. [2] and further considered in Diaz et al. [5] for Circuit Value Problem
(CVP). It should be pointed out that in [5] their main goal was to give a parallel
algorithm for CVP having an expected time polylogarithmically upper bounded.
They do not consider the possibility for improvements on the upper bound. In a
recent paper, Tsukiji and Xhafa [16] proved a structural result on the depth of cir-
cuits, namely the expected depth of circuits of fixed fan-in f, unbounded fan-out
and n gates under the uniform probabilistic model is e f Inn, asympotically with
high probability. This was a strong probability law from which, as a side effect,
the average NC complexity of CVP was completely resolved.

In this paper our interest is, first, to extend the result of Diaz et al. for the the
following classical P-complete problems: Uniform Word, Unit Resolution, Path
Systems and Generability, and secondly, to give improved expected parallel time,
i.e. to find parallel algorithms with expected time bounds better than those of Diaz
et al. Consider that a parallel algorithm is efficient on average, or is in average NC,
if it uses a polynomial number of processors and finds the solution to the problem
in polylogarithmic expected time, under an appropriate probabilistic model. The
probabilistic model that we consider is the following: the sample space is the set
of input descriptions, and the underlying distribution is the uniform one. That is,
every object in the sample space is counted once. We present parallel algorithms
for the problems mentioned above such that if the instances of the problems are
chosen uniformly at random they have expected time that is polylogarithmic in
the instance size. More precisely, we use combinatorial arguments to show that
under the uniform distribution of instances, our algorithms have expected time
upper bounded by (eln4+ o0(1)) logn, asymptotically with high probability, where
n is the instance size. The bound of [16] for the problems considered here would
require a deeper analysis which we currently lack.

Given a parallel algorithm to solve a P-complete problem another questlon of
interest is whether we can compute beforehand, for a given instance, the time
the algorithm runs on this instance. Our motivation for this issue comes from
the following observation: if we can quickly compute the time the algorithm runs
on instances then we could use the algorithm for the easy instances and decide
whether to use it or not on the difficult ones. We address this problem for the
proposed parallel algorithm for Uniform Word. We define a new problem, called
Extended Uniform Word, in which we are given an instance of Uniform Word and
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we want to compute the “depth” of the given pair of terms in the set of axioms.
We show that this problem is P-complete and furthermore that the problem of
approximating it within any € > 0 is P-complete. Similar results can be found
for other problems addressed in [12]. Regarding this result we will refer to e-II
problems as well as logspace e-gap reductions [13,14] which are helpful for proving
parallel non-approximability results.

The methodology for the problems considered here is almost the same. First
we show how to generate uniformly at random instances of the problem at hand
and then exhibit a parallel algorithm for it that is in average NC. Since random
generation of instances presents peculiarities for each problem, we do it for any
case. On the other hand, the analysis that proves the upper bound on the expected
time of the proposed algorithm is given in full detail for the Uniform Word and
without proof for other cases.

1.1. PRELIMINARIES

Function Problem. Let II be a given problem such that for any instance I there
is a unique solution to I, and let II(J) denote the (unique) value corresponding to
the solution. Clearly, II(I), as a function, is well defined. II is called a function
problem.

e-II Problem. Given a function problem II, an instance I of ll and an ¢, € € (0,1),
compute a value V(I) such that eII(I) < V(I) < II(1).

Logspace e-Gap Reduction [13,14]. Given a decision problem II, a function
problem II' and an € € (0,1), a logspace e-gap reduction from II to I is a pair
of functions (f,g) computable in logspace such that (a) function f transforms
instances of II into instances of II', (b) function g assigns a rational value g(I)
to instance I of IT and, finally, (c) if II(Z) = 0 then II(f(I)) < g(I), otherwise
I(f(1)) = g(I)/e.

Logspace e-gap reductions are useful to prove parallel non-approximablity
results as stated by the result of Serna [12]. Let II be a P-complete problem,
Il a function problem and £ € (0,1). If there is a logspace e-gap reduction from
IT to I’ then e-II' is P-complete.

2. THE UNIFORM WORD PROBLEM

The Uniform Word Problem (UWP) for finitely presented algebras was among
the first problems shown to be P-complete. Kozen [10] gave a polynomial time al-
gorithm for the problem and provided a logspace reduction from Monotone Circuit
Value Problem.

The Uniform Word Problem is defined as follows. Let (M, arity) be a ranked
alphabet where M is a finite set of symbols and arity: M — N is a mapping that
assigns a non-negative integer to each symbol. The alphabet M is partitioned
into two sets: G = {a € M | arity(a) = 0} and O = {# € M | arity(d) > 0}.
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The elements of G are called generator symbols and those of O operator symbols.
Further, the set of terms over M is defined as follows:

- all elements of G are terms;

- if 8 is m-ary and z1,Z2,... , T, are terms then 8(z1,z2,... ,Tm) is a term.
Let T denote the set of terms. Then, a binary relation = in 7 is a congruence pro-
vided that: (a) = is an equivalence relation, and (b) if § € O is m-ary and x;, y;, ¢ =
1,...,m are terms such that z; =~ y; then 8(z1,Z2,... ,Zm) = 0(y1,Y2,-- - ,Ym)-
Next, a set of azioms I is a set of unordered pairs of terms. It is possible to define
on 7 an equivalence relation that satisfy all the axioms of I". For that we first
define the binary relation: Vz,y € T, z = y iff {z,y} € I, which satisfies all the
axioms of I. Having ~ we define =r to be the smallest congruence in 7.

The Uniform Word Problem is: Given I', T and a pair of terms {z,y} decide
whether {z, y} belongs to the closure of =r.

2.1. EXTENDED UNIFORM WORD

We define a new problem, called Extended Uniform Word (EUW), in which we
are given an instance of Uniform Word and we want to compute the “depth” of
the given pair of terms in the closure of the set of axioms rather than to prove
whether that pair of terms belongs to the closure. Given an instance (I, T, {z,y})
of UWP, the axiom {z,y} belongs to the closure of I if there is a proof ¢ — 1 —
Zg — --+ = 7 — Y. Let us define

RT)={w|Fueli_1, u— w}

where R(I'g) =T and T'; = R(T';—1), @ > 1. Let L(T") denote the length of the
longest proof. That is,

LT)=min{k | Tx =Tg41}:
We define the depth of a pair {z,y} in the set of axioms I' as

_ [ max{k|{z,y} €eTe ANO< kS L)}, if z=ry,
DT, {z,y}) = { L(D), otherwise.

The Extended Uniform Word (EUW) is: given an instance (T, T, {z, y}), compute
the depth D(T', {z, y}).

We prove that e-EUW is P-complete for any value of €, € € (0,1), i.e. EUW
problem is non-approximable in NC, unless P = NC. This result is obtained by
providing a logspace e-gap reduction.

Proposition 1. e-EUW is P-complete.

Proof. We present a logspace e-gap reduction from UWP to EUW. Given a set of
m axioms I', we let | = [m?/e], for some ¢ € (0, 1) and construct the following set
of axioms

I =T Uu{{z, 21}, {z1, 22}, .., {z1,y}}-
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For the new instance we have:
- if the axiom {z,y} belongs to the closure of I' then

DT, {z,y}) = D(T",{z,y}) < m?,
- if the axiom {z,y} is not in the closure of T then

DI, {z,y}) =1 = [m?/e],

implying that the above reduction is a logspace e-gap reduction. The proposition
then follows. O

2.2. GENERATING INSTANCES OF UNIFORM WORD

Let (M,arity) be a given ranked alphabet. Let us fix a positive integer n. We
will generate a set I' of n axioms and an additional term to be checked, as given
below. We will suppose that there is a fictitious operator of arity 1 in O such that
whenever it is chosen this means that a symbol from G is to be chosen. This is to
assure that terms, which are symbols from G, can be generated as well.
procedure instance
A:=G;
for i:=1ton+1 do

choose uniformly at random two operators 8, ¢ € O;

choose uniformly at random from A arity(6) elements g1,. .. , garicy(s)

corresp. to § and arity(¢) elements ey, ez, ... ,€arity(g) COITEsp. to @;

generate the pair {0(917 g2,--- 7garity(0))7 ¢(€1, €2,. .- aea.rity(¢))};

update A:= A U {9(91) g2, .. ,garity(e))a ¢(€1, €2;... aearity((b)};
end |
Notice that we generate a pair of terms in each step and the terms of the next
one are generated from the set of all the previous terms. This procedure generates
n + 1 pairs of terms. The first n terms will be the axioms and the last one is the
term {z,y} that we want to check. Clearly, the procedure instance generates
any term, so we cover all the instances, and moreover, the probability distribution
over the instances is uniform. The encoding of an instance of UWP. is then the
sequence of axioms followed by the term to be checked.

2.3. THE ALGORITHM AND ITS EXPECTED TIME

The following deductive system for proving congruence of terms is given in [10].
We say that x derives y in one step, denoted = — v, if there is an axiom z = w in
T" and an occurrence of z in x such that when that occurrence of z is replaced by
w then the result is y. Recall that, a proof of x =r y is a sequence x,... ,z, of
terms such that

T=T] = T2 > —>Tp =Y.
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Notice that a single step x; — z;+1 can be efficiently computed in parallel (there
are a polynomial number of axioms as well as substitutions to be checked for
x; = T;4+1) hence the total parallel time for the whole proof of z — y depends
on the length of the proof itself. We want to estimate the expected length of the
proofs needed to decide whether {z,y} belongs to the closure of I'. We claim
that the expected length of proofs is bounded from above by (eln4 + o(1))logn
asymptotically with high probability, where n is the total number of terms of the
given instance.

Theorem 1. Assuming uniform distribution over descriptions of (I, T,{z,y}),
where T has n terms, then the expected length of proofs that decide whether a given
pair of elements {z,y} belongs to the closure of I is upper bounded by (eln4 +
o(1)) logn, asympotically with high probability.

Proof. Given a description of (I', T, {x, y}), with 7 having a total of n = 2* terms,
we construct a directed acyclic graph as follows. Let P be the set of all the proofs
for x =r y. We can consider a proof as a directed path from z to'y. Different
proofs may have common terms other than z and y. So, let Q be the corresponding
graph of P whose vertices are terms from 7 and there is an edge from vertex u
to vertex v if u — v. Further, we consider a topological order on Q (the order in
which the terms are deduced) and classify the vertices of Q in the sets

N, ={T; : 2" <j< 2"t}

fori=0,... ,k—1whereTp==z,... ,Th_1 =Y.

Let d;y denote the length of the (longest) proof for 2 =r y. Notice that when
there is a proof of length d for x = y, there must be a sequence of terms having
length d, <.e.,

Q=T a1~ A=Y (1)

and we will denote by A, the event:
Ag = {z =r y has a proof of length d}-
Our first objective is to upper bound Pr[A4]. To this aim, we will express the event
Ag as union of a set of disjoint events and compute their probabilities from which
we will deduce the bound on Pr[A4]. We split the path (1) into the following sets:
Li={a]‘11Sde, O(jENi}

and let [; = |L;|. Note that L; can be seen as an intersection of path (1) with the
set V;. For some intuition, we will use later on this splitting to bound the length
of possible paths in any N; which will be used, in turn, to bound the whole length.

The events expressing A, are defined as follows: given 4, 1 < ¢ < k — 1 and
numbers my, ... ,mg—1 such that m; # 0 and 25;11 mj =d we let A; ;.. me_y
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be the event:
Aim,,... mi_, = {There is a proof g, a1,... ,04 s.t. a1 € N; Al; =my; Vj > i}

Clearly, Ay is the union of all A;pm,, . m,_, over all possible values of ¢ and
My, ... ,Mi-1, as specified previously, and the events A; ,,, . .m,_, are disjoint
ones. Here is some intuition behind this splitting of A;. Any path (i.e., proof)
starts by z. It is the position of the second term «@; and the values of the
parameters I; which vary for different paths hence our event should cover all these
cases. From the expression of Ay we can write

Pridd = > PrlAim., .me)- . (2)

6 yeee M —1

Next, we upper bound the Pr[A; m, .. m._,] by

k-1
PrlA; m;,... me_1] < H Pr[There is a path of length m; in N;]. (3)
j=i
The following holds:
k=1
Pr[Aipm,,.. mes) < 24 4)* I i (4)
j=i
Indeed, we can express the set L; as L; = {agiypn,,. .- ,a2j+nmj} for some values

Ni,... ,Nm, satisfying 1 < ny < ... < ng, <29, Next, N; has cardinality 2¢, we
are considering paths of length m; and each vertex in the path appears with the
same probability, therefore:

v 1 1
Pr[There is a path of length m; in ;] < 2° Z 2"‘7'(2], = ) - -<2J. s ) .
1 mj
(5)

N5 Mm

In order to estimate the last sum above we remove the condition 1 < n; < ... <
Ny, <27 on my, ..., Ny, and use the following fact.

Fact 1. Let ny,...,n; be independent and uniform numbers in {1,...27}. Then

1 1 m2\*
E - LR - < s .
29 +m 294+n| T\ 2
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Proof. (of Fact 1) We have that

1 1 1 1
Bl = - Pr({n,...
[2-7 + ny 27 4+ nk] n Z 2) +n1 23 T g r[{nl, 7nk}]

yorey

1 In2 k
. dz - - dxe = [ =2
—2Jk/ / Pl pra A (21)

thus the fact follows. O

Now, we apply this fact to bound the summation in (5) as follows: we bound
the total sum of terms by the expected value of the summation term (where
N1,...,Mm, are m; independent random numbers in {1,...,27}) multiplied by
the total number of the terms in the summation. Therefore,

; m; 27 (In2
Pr[Ai,mi,...,’Ink—l] S 2 H2 'rn] (—)

Jj=i
k—1

) 271 1
T My My ™msj
< 2(In2) k IEZ Jm~!(21'—m-)!2jmz‘
< 2(In2)¢ H 2 — < 2¢(In2)% - 2¢ H

7: 1
g=i 7

and thus proving (4). For the A4, we have

k-1
Pr[44] < (In4)¢ Z 2
=0

mq,

7 L dok
.H. o < ()2 S oY 4 -
k—1 J=1 =0 mi,... ,mi_1 j=1
where, again, m;,... ,mg_1 satisfy m; = 0 for j < ¢ and Z ,my = d Since
summing H;:il mlj! up for all non-negative m;, ... ,my_; satisfying E j=i m; =d
is equal to % (see, e.g. [9], page 64), we deduce
k kln4 \¢
dok k

Our final step for the proof of the theorem is to use (7) to derive the upper bound
on E[dsy|. Let us write E[dgy| = E1 + E2 where

E, = Z d-Prldyy =d|, E,= Z d-Prldzy =d].
d<(eln4+o(l))k d>(elnd+o(1))k
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For E; we have F; < (eln4 + o(1))k and for the Es:
B, < d 2k kln4 d 8
2 < D) 2 \@yE) ®)
d>(elnd+o(1))k

By applying Striling’s formula for d!, i.e.,
d4 1
dl=v2rd — |1+ 0| -
e d

we observe that for d > (eln4 + o(1))k

kin4 1
@/d - 1+o(0) ©)

Notice that when we fix a value of k in (8), the dominating term in the sumation

is :
kind \*
(dyr/d
hence, together with (9) we derive klim E3 = 0 and thus the thorem follows. [
—00

From Theorem 1 we have the following corollary.

Corollary 1. The Uniform Word Problem is in the class Average NC.

3. UNIT RESOLUTION

The Unit Resolution is another classical P-complete problem. Jones and
Laaser (8] gave a polynomial time algorithm for the problem together with a proof
of P-completeness. A different proof of P-completeness, using a reduction from
CVP, can be found in [7] (see also page 167 of Ref. [6]). Serna and Spirakis [15]
showed that approximating this problem, under an appropriate definition of the
optimization version, is also P-complete.

In any instance of Unit Resolution we are given a set of clauses F in CNF and
a clause C. We want to determine whether C belongs to the closure of F under
unit resolution. When C = [ the problem is to decide whether we can derive a
contradiction.

We will consider the 3Unit Resolution, the case when clauses have up to r literals
follows along the same line of reasoning. The instances of 3Unit Resolution are
generated in the standard way, namely by choosing at random 3SAT formulae.
We will denote by N the total number of clauses of the instance.

3.1. THE ALGORITHM AND ITS EXPECTED RESOLUTION TIME

Let F = {Cy,...,Cm} be the set of clauses in CNF. We define in F, a unit
step resolution as follows: whenever we have clauses z and —z + C, deduce C. We
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say that C is obtained by a unit step resolution over (z, -z + C'). More generally,
a clause C' is obtained by an m-step unit resolution iff there exist a sequence

Ul)U27"'7UmEO (10)

where Uj is (z;;,C;). In other words, to achieve C' we start from a pair (z;,,C1)
and apply step by step the unit resolution. So, the sequence (10) can be written
as: ‘

(xilacl)a ($i2)02)7”' ,(xij,Cj),-.. 3 (xikycm) = C

where Cj11 is the result of unit step resolution over (z;,,C;). Further, consider a
clause saturated iff it is not possible to reduce it anymore by a unit step resolution.
In general, it is possible to reduce a clause from different sequences of unit step
resolution, each of them beginning with a different clause. So we can define the
depth of a clause C in F to be the longest sequence from which C is reduced.

Now, given an instance consisting of a set of clauses F and a clause C, in
order to decide in parallel whether the clause C belongs to the closure of F, the
algorithm proceeds as follows: detect and perform level by level all the unit step
resolutions, where each level is done in parallel. Here a level is the set of clauses
at the same depth. Note that, as in the case of Uniform Word, we can define
a topological order in the closure of F, namely the order in which the clauses
are deduced. Of course, the expected running time of this algorithm depends on
the depth of the closure of F. We prove that under the uniform distribution of
instances, the expected depth of the closure of F of N clauses has an upper bound
of (eln4+ o(1)) log N, asymptotically with high probability. (The proof follows as
in the case of Uniform Word and is omitted.)

Theorem 2. For sufficiently large N, the expected resolution time to decide
whether a given clause C belongs to the closure of a set of clauses F in CNF,
chosen under the uniform distribution, is bounded by (eln4 + o(1))log N, with
high probability.

4. SOLVABLE PATH SYSTEMS

Path Systems was defined by Cook [3]. This is the first problem shown to be
P-complete, though it was not expressed in terms of completeness, as it is given
in [8]. Serna and Spirakis [15] showed that approximating this problem, under
an appropriate definition of the optimization version, is also P-complete. A path
system is defined as a quadruple P = (X, R, S, T"), where X is a finite set, S C X,
TCXand RC X x X x X. An element z is called accessible iff z € T or there
are y,z € X such that (z,y,z) € R and both y and z are accessible. The Path
Accessible Problem is: given a path system P = (X, R, S,T), determine whether
there is an accessible element in S.
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We generate instances of this problem as follows. Let X = {z1,...,zn}.
Generate uniformly at random two subsets S,T of X by choosing first their car-
dinalities £ and [, and then their elements from X. Let S = {s1,...,sx} and

T = {t1,...,t}. And now, generate the relation R:

- choose uniformly at random two elements y, z € X;
- choose uniformly at random an element z € X;
- add (z,y,2) to R.

Repeat this process until NV elements of R are generated.

Clearly, every relation R in X x X x X is generated, furthermore, the probability
distribution over them is uniform. The encoding of an instance is the sequence
of elements of 7' and the triples of R. A parallel algorithm for a given instance
proceeds by levels as follows: at level 0 the set of accessible elements is 7. Find
all the pairs (y,z) of T and the elements z € X such that (z,y,2) € R. The z’s
found in such a way are accessible. Let A; be the set of accessible elements until
step . In the next step find all the pairs (y, z) of A; and the elements z € X such
that (z,y,2) € R. Repeat this process until no accessible elements are left. Let
N be the total number of accessible elements. Note that this algorithm provides
a natural order between the accessible elements. The execution time is the length
of the longest sequence from any element of T' to any accessible element. We can
estimate the expected time of this algorithm as in the previous cases. Here we
formulate just the theorem which states the result of that analysis.

Theorem 3. For sufficiently large N the expected time to decide whether a given
set S of a path system P = (X, R,S,T) chosen under uniform distribution, has
some accessible element is bounded by (eln4 + o(1))log N, with high probability.

5. GENERABILITY PROBLEM

This problem was shown P-complete by Jones and Laaser [8] by reducing from
Unit Resolution. Serna and Spirakis [15] showed that approximating this problem,
under an appropriate definition of the optimization version, is also P-complete. It
is defined as follows. Given (X, T, z,e) where X is a set, T a subset of X, z is an
element of X and e a binary (commutative) operation, decide whether z belongs
to the closure of T'.

Generating Instances. Let X = {z1,...,zm} be a given set of m
elements. Generate firstly, uniformly at random a set T of k elements from X,
T = {t1,...,tx} and the element = to be checked. Further, we generate the table
of the binary operation e in X by the following procedure:
procedure table
tab:= 0;
for i:=1to m? do
choose uniformly at random z € X and y € X;;
if (z,y) & tab then
choose uniformly at random z € X;
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set z ey = z and tab := tab U {(z,v)};
end

Notice that the binary operation e given by table is defined correctly. We consider
the pair (z,y) unordered so this operation is commutative. Furthermore, all the
tables that define such an operation are generated and the probability distribution
over them is uniform.

The algorithm to find the closure of T' proceeds as follows. Initially, we let
closure(T):= T. In the first step, we find all the pairs (z,y) € T such that z =
zey, 2z ¢ T and set closure(T):= closure(T) U {z}. At step ¢, find all the pairs
(z,y) € closure(T') such that z =z ey, z & closure(T) and set closure(T):=
closure(T)U{z}. Repeat until no new elements can be added. Note that we have
an order among the elements as they were inserted to closure(7T"). We can define
the depth of an element z in the closure(T’) as one greater than the depth of z and
y from which it was obtained, and the depth(closure(T’)) as the maximum of the
depth of its elements. The maximum depth corresponds to the longest sequence
beginning with an element of T to any element of the closure. Let N = 2* be the
number of the elements of the closure. We can analyze the ezpected depth of the
closure(7T) in terms of N as in the cases above, therefore we can formulate the
analogue theorem for Generability.

Theorem 4. For sufficiently large N, the expected time to decide whether a given
element x € X belongs to the closure of a given subset T of X, assuming uniform
distribution over discriptions of (X T,xz,e), is bounded by (elnd+o0(1))log N with
high probability.

Fatos thanks Josep Diaz for support from the ALCOM Project while conducting this
research. We thank Ray Greenlaw for many helpful comments that significantly improved
the paper. We are grateful to an anonymous referee for several useful comments.
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