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THE FUNDAMENTAL THEOREM OF FINITE FIELDS:

A PROOF FROM FIRST PRINCIPLES

ANASTASIA CHAVEZ AND CHRISTOPHER O’NEILL

Abstract. A mathematics student’s first introduction to the fundamental theorem
of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes
the power of Galois theory to prove it. Yet the combinatorial and algebraic coding
theory applications of finite fields can show up early on for students in STEM. To
make the FTFF more accessible to students lacking exposure to Galois theory, we
provide a proof from algebraic “first principles.”

1. Introduction

A student’s first introduction to finite fields and the magic they invoke often oc-
curs in an advanced undergraduate or graduate abstract algebra course. In particular,
the fundamental theorem of finite fields (FTFF) is most commonly proved via Galois
theory. Finite fields have many exciting combinatorial applications, one of which is
algebraic coding theory. Error-correcting codes, t-designs, and Hamming codes are
common topics for computer science majors with minimal abstract algebra training.
For curious undergraduates with just one year of abstract algebra, such applied combi-
natorics is both enriching and inspiring. Yet the Galois theory approach to finite fields
leaves these students at a disadvantage. To fill an apparent gap in the accessibility of
the FTFF, we provide a proof of this great theorem from “first principles,” i.e., without
appealing to Galois groups or splitting fields.

The Fundamental Theorem of Finite Fields.

(a) There is a field with exactly q elements if and only if q = pr for p prime, r ≥ 1.
(b) Any two finite fields of the same cardinality are isomorphic.
(c) For any finite field F with |F| = pr for p prime,

(i) the additive group (F,+) ∼= ((Zp)
r,+), and

(ii) the multiplicative group (F \ {0}, ·) is cyclic.

The proof we provide here is built from several different sources, many of which
either briefly mention or wave their hands at Galois theory for one or more parts of
the argument [1, 2, 3, 4]. This approach of introducing finite fields to those with
little abstract algebra exposure has been successfully implemented in several iterations
of the applied combinatorics course at our former home institution. We provide this
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manuscript as a resource for those in need of a proof of the Fundamental Theorem that
does not utilize the heavy machinery of Galois theory.

This article is organized as follows. In Section 2, we survey the assumed abstract
algebra background, and in Section 3, we review quotient rings and outline a general
method for explicitly constructing finite fields. Sections 4 and 5 together contain the
proof of the FTFF, with the former section providing a Key Lemma that has some
consequences of its own.

Acknowledgements. The authors would like to thank Scott Chapman, Lily Silver-
stein and Wencin Poh for numerous helpful conversations. We are grateful to Jesús A.
De Loera for sharing his lecture notes from the course that inspired this manuscript.
We also wish to thank the referees for their insightful comments.

2. Prerequisite background

In this section, we survey the minimal prerequisite definitions and results that are
needed for this article. We assume the reader is familiar with undergraduate-level
linear algebra (including vector space dimension) and ring theory (including cosets
and quotient rings). Please see [2, 3] for more details. Note that all rings are assumed
to be commutative and have a multiplicative identity.

There are two main families of rings appearing in this paper. The first is the ring Zn

of integers modulo n ≥ 2. Note that Zn is a field whenever n is prime, and contains
zero-divisors whenever n is composite. The second is the polynomial ring F [x] whose
coefficient ring F is a field, as well as quotients F [x]/I by an ideal I. Several times
throughout this article, we will use the fact that the polynomial ring F [x] is:

(i) a principal ideal domain (PID), meaning every ideal I ⊂ F [x] can be written as
I = 〈f(x)〉 for some f(x) ∈ I, and the quotient ring F [x]/I is a field if and only
if f(x) is irreducible; and

(ii) a unique factorization domain (UFD), meaning that every monic, non constant
polynomial in F [x] can be written uniquely (up to reordering) as a product of
monic irreducible polynomials in F [x].

We close this section with the following theorems, all of which are usually covered in
an introductory course in rings, and which will be used in the proof of the Key Lemma
given in Section 4.

The Root Theorem. Fix a field F . For any f ∈ F [x], we have f(a) = 0 if and only
if f(x) = (x− a)g(x) for some g ∈ F [x].

The Freshman’s Dream. Fix a prime p, and let R be a ring with characteristic p
(that is, p · 1 = 0 in R). If a, b ∈ R, then (a + b)p = ap + bp.

The First Isomorphism Theorem. If R and S are rings and σ : R → S is a ring
homomorphism, then Im(σ) ⊂ S is a subring, ker(σ) ⊂ R is an ideal, and R/ ker σ ∼=
Im(σ).
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+ 0 1 a
0 0 1 a
1 1 a 0
a a 0 1

· 0 1 a
0 0 0 0
1 0 1 a
a 0 a 1

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

Figure 1. Unique operation tables for F3 (left) and F4 (right).

3. Constructing finite fields

When constructing small finite fields from first principles, a common approach is to
use the addition and multiplication tables (or “+/· tables”) to help guide the behavior
of the field’s elements. For example, suppose we wish to discover all possible finite
fields with 3 elements. We know there must be two distinguished elements 0 and 1, so
denoting the only remaining element a, we can consider all possible ways of completing
the +/· operation tables of 0, 1, a in such a way that all of the field axioms are satisfied.
It is a fun exercise (with a lot of similarities to playing Sudoku) to show that the only
possible configurations are those given in the left side of Figure 1. In fact, one can
easily check that these tables match those for the well-known field Z3. In general, this
approach works for any prime value p to produce the finite field Zp.

When constructing finite fields of non prime cardinality, such as 4 (a prime power),
we can use the same approach. Let us consider elements {0, 1, a, b}. After checking all
the ways to fill out the +/· tables, we see there is again a unique solution, depicted
in Figure 1. As there is only one way to complete the tables, we once again obtain a
unique finite field of this size, which we denote by F4. Note that F4 has characteristic 2
(i.e., 1 + 1 = 0), so F4 is not simply Z4 (which is, in particular, not a field).

It would be nice to identify F4 as a more “familiar” ring, as we did with F3
∼= Z3.

One way to do this is to view the elements 0, 1, a, b ∈ F4 as the elements 0, 1, z, z + 1
in the quotient ring Z2[z]/〈z

2 + z + 1〉. In particular, z2 + z + 1 = 0 in this quotient

ring, meaning z2 = −z − 1. As such, each element can be represented by a polynomial
in z with coefficients in Z2, and terms of degree 2 and higher can be eliminated via the
substitution z2 = z + 1, e.g.,

(z + 1)(z + 1) = z2 + 2z + 1 = (z + 1) + 2z + 1 = 3z + 2 = z,

or equivalently using division by z2 + z + 1, e.g.,

(z + 1)(z + 1) = z2 + 2z + 1 = 1(z2 + z + 1) + z = z.

Using this collection of elements, the +/· tables are then obtained by performing poly-
nomial addition and multiplication, reducing coefficients modulo 2, and then perform-
ing polynomial long division by z2 + z + 1; see Figure 2. Note that in order for this
quotient ring to be a field, it is imperative that z2 + z + 1 is irreducible. (In fact, it
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+ 0 1 z z + 1

0 0 1 z z + 1

1 1 0 z + 1 z

z z z + 1 0 1

z + 1 z + 1 z 1 0

· 0 1 z z + 1

0 0 0 0 0

1 0 1 z z + 1

z 0 z z + 1 1

z + 1 0 z + 1 1 z

Figure 2. Operation tables for Z2[z]/〈z
2 + z + 1〉.

is the only degree-2 irreducible polynomial in Z2[z].) To verify z2 + z + 1 is indeed
irreducible, note that any reducible degree 2 polynomial has a degree-1 factor, and
therefore has a root by the Root Theorem. However, neither element of Z2 is a root of
z2 + z + 1, so it must be irreducible.

As a final example, we construct the finite field of 8 elements, F8 (a similar illustration
of the construction of F9 can be found in [1]). Proceeding as above, we wish to use
polynomial quotient rings to write F8 in the form Z2[z]/〈f(z)〉, where f is an irreducible
polynomial of degree 3. By the Root Theorem, any reducible degree-3 polynomial has
a root, so by inspection of all 23 = 8 polynomials of degree 3 in Z2[z], we see that only
two are irreducible, namely z3 + z + 1 and z3 + z2 + 1. Let

F8 = Z2[z]/〈z
3 + z + 1〉 and F′

8 = Z2[w]/〈w
3 + w2 + 1〉.

Although the two quotient rings above are both fields with 8 elements, their multiplica-
tion “rules” appear different, in that in F8 we reduce terms of degree 3 and higher using
the equality z3 + z + 1 = 0, while in F′

8 we reduce using w3 + w2 + 1 = 0. For example,
despite the visual similarity, the left-hand side products

F8 : (z2 + 1)(z + 1) mod (z3 + z + 1) = z2,(3.1)

F′
8 : (w

2 + 1)(w + 1) mod (w3 + w2 + 1) = w(3.2)

yield visually distinct results. That said, F8 and F′
8 are isomorphic by the FTFF, and

we give an explicit isomorphism in Section 5.

4. The Key Lemma: factoring over finite fields

For a finite field Fq with q = pr, the key to the FTFF turns out to be factoring the
polynomial xq −x, both over Fq itself and over Zp. The Key Lemma, stated below and
followed immediately by several examples, identifies precisely how xq − x factors as a
product of irreducible polynomials over both fields.

The Key Lemma. Suppose q = pr for p prime and r ∈ Z≥1.

(a) If K is any finite field with |K| = q, then the polynomial xq − x factors over K as
a product of distinct linear factors.
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(b) The polynomial xq − x factors over Zp as the product of all irreducible polynomials
over Zp with degree dividing r.

Let us work through a few examples. We start with q = 4, which we constructed as

F4 = Z2[z]/〈z
2 + z + 1〉 = {0, 1, z, z + 1}

in Section 3. Since 0, 1 ∈ Z2 are both roots of x4 − x, the Root Theorem tells us x
and x−1 are both factors. The Key Lemma implies all remaining factors are degree 2.
Since polynomial long division by x− 1 yields

x4 − x = x(x− 1)(x2 + x+ 1),

the Key Lemma implies x2+x+1 is the only irreducible polynomial of degree 2 over Z2,
a fact we also observed in Section 3. Now, since Z2 ( F4, the “extra” two elements
of F4 provide more coefficients at our disposal when factoring, so some irreducible
polynomials over Z2, like x2 + x + 1 in this case, may be factored further over F4.
Indeed, we obtain four distinct linear factors, one for each element of F4, i.e.,

x4 − x = x(x− 1)(x2 + x+ 1)

= x(x− 1)(x− z)(x− z + 1)

wherein z and z + 1 are the roots of x2 + x+1 in F4. Remember that the polynomials
in the above expression live in F4[x], so in the second line z and z + 1 are coefficients

that live in F4.
For q = 8, after factoring x and x+1 out of x8−x, we obtain a degree-6 polynomial

that, by the Key Lemma, must factor into (exactly 2) distinct degree-3 irreducible
factors over Z3. As both irreducible polynomials were identified in Section 3, this yields

x8 − x = x(x+ 1)(x6 + x5 + x4 + x3 + x2 + x+ 1)

= x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1)

as the factorization over Z3. It is in this way that we can use the Key Lemma to
locate all possible choices of an irreducible polynomial when constructing a finite field
of a particular size. Next, to factor further over F8, we choose the representation
F8 = Z2[z]/〈z

3 + z + 1〉 and obtain

x3 + x+ 1 = (x− z)(x− z2)(x− z2 + z)

x3 + x2 + 1 = (x− z + 1)(x− z2 + 1)(x− z2 + z + 1).

Had we instead chosen the representation F′
8 = Z2[w]/〈w

3 + w2 + 1〉, we would have
obtained

x3 + x+ 1 = (x− w + 1)(x− w2 + 1)(x− w2 + w)

x3 + x2 + 1 = (x− w)(x− w2)(x− w2 + w + 1)

as the remaining linear factors of x8 − x.
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We give one final example before proving the Key Lemma. Applying a similar process
as above for q = 9, we obtain

x9 − x = x(x+ 1)(x+ 2)(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2)

over Z3, and factoring further over F9 = Z3[z]/〈z
2 +1〉 (this time there were 3 possible

representations to choose from) yields

x2 + 1 = (x− z)(x− 2z)

x2 + x+ 2 = (x− z + 1)(x− 2z + 1)

x2 + 2x+ 2 = (x− z + 2)(x− 2z + 2),

which we encourage the reader to verify as an exercise.

Proof of the Key Lemma. Suppose q = pr for p prime and r ≥ 1, and suppose K is a
field with |K| = q. Since K is a field, (K\{0}, ·) is a group of order q−1, meaning that
every element has order dividing q− 1. As such, aq−1− 1 = 0 for every nonzero a ∈ K,
and thus each is a root of xq−x. By the Root Theorem, this produces q distinct linear
factors and xq − x has degree q, so this must be precisely the list of factors, proving
part (a).

Next, fix an irreducible polynomial f ∈ Zp[x], and let d = deg f . We wish to show
f(x) | xq − x if and only if d | r, as this implies that the irreducible factors of f(x)
over Zp claimed in part (b) are precisley those that appear. Since f is irreducible, as
stated in Section 2, the quotient ring K = Zp[x]/〈f(x)〉 is a field. To more clearly
distinguish K from the field Fq constructed elsewhere in this document, we will denote
the elements of K using the “bracket” notation [h(x)] for h ∈ Zp[x] rather than with
the “overline” notation. Since |K| = pd, we can list the elements of K as

K =
{
[h1(x)], . . . , [hpd(x)]

}

with h1(x) = 0. If f is linear, then the claim follows from part 1, so assume d ≥ 2.
First, suppose d | r. Since K is a field, multiplication is cancellative, so multiplying

by [x] permutes the set of nonzero elements. In particular, the list

[x][h2(x)], [x][h3(x)], . . . , [x][hpd(x)]

contains every nonzero element of K exactly once. As such, the product of all elements
in this list can be simplified in two ways to obtain

[x][h2(x)] · · · [x][hpd(x)] = [h2(x)][h3(x)] · · · [hpd(x)]

= [xpd−1][h2(x)] · · · [hpd(x)],

in K, where the expressions on either side of the first equality consist of the product of
the same pd − 1 elements of K (albeit in a different order). Subtracting and factoring
yields

[xpd−1 − 1][h2(x)][h3(x)] · · · [hpd(x)] = [0] ∈ K,
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which implies [xpd−1 − 1] = [0] since K has no zero-divisors. This means we have

xpd−1 − 1 ∈ 〈f(x)〉 ⊆ Zp[x] and thus f(x) | xpd−1 − 1. Since d | r, say r = dk for some
k ∈ Z,

pr − 1 = (pd − 1)(pd(k−1) + pd(k−2) + · · ·+ pd + 1),

meaning pd− 1 | pr − 1. Analogously, fixing t ∈ Z≥0 so that pr − 1 = t(pd− 1), we have

xq−1 − 1 = xt(pd−1) − 1 = (xpd−1 − 1)(x(pd−1)(t−1) + x(pd−1)(t−2) + · · ·+ 1).

Putting all of this together, we conclude f(x) | xpd−1 − 1 | xq − x.
Conversely, suppose f(x) | xq − x. Using the division algorithm to write r = ad+ b

for a, b ∈ Z with 0 ≤ b < d, we wish to show b = 0. By way of contradiction, suppose
that b is positive. Since |K| = pd, similar reasoning as in the first paragraph of this

proof implies [x]p
d

= [x] in K, and by assumption [xq − x] = [0] in K, so

[x] = [xq] = [xpad+b

] = [((· · · ((xpd)p
d

) · · · )p
d

︸ ︷︷ ︸
a times

)p
b

] = [xpb].

By the Freshman’s Dream, for any g(x) = g0 + g1x+ g2x
2 + · · · ∈ Zp[x], we have

[g(x)]p
b

= [(g0)
pb + (g1)

pb(xpb) + (g2)
pb(xpb)2 + · · · ]

= [g0 + g1x+ g2x
2 + · · · ]

= [g(x)],

meaning every element of K is a root of xpb − x. However, this is impossible by the
Root Theorem since K has pd > pb elements, so we conclude b = 0. This completes
the proof that f(x) | xq − x if and only if d | r.

There remains one final claim to prove: that each irreducible polynomial f(x) in the
factorization of xq − x over Zp appears only once. Indeed, by part (a), the roots of
xq − x in K are all distinct, so xq − x cannot have repeated factors over Zp as this
would yield repeated roots in K. This completes the proof. �

5. The fundamental theorem

In this section, we use the Key Lemma to prove the FTFF in its entirety. Before
diving into the proof, let’s briefly explore some of its implications in the context of F8

and F′
8 from Section 3.

First, the set F8 \ {0} is ensured to be a cyclic group under multiplication, meaning
there is some element a ∈ F8 such that the list a, a2, a3, . . . includes every nonzero
element of F8. One such element is z + 1, and we can readily check that every nonzero
element of F8 can be written as (z + 1)n for some n. In fact, it turns out that any
nonzero element we choose for a will do the trick (except a = 1, of course). This is not
true in general: in F7 (which is isomorphic to Z7), only 2 nonzero elements generate
{1, 2, 3, 4, 5, 6} as a group under multiplication modulo 7 (one such element is 3 ∈ Z7,
and we encourage the reader to locate the other).
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Second, the FTFF implies that F8 and F′
8 are isomorphic, but it is not hard to show

that the map F8 → F′
8 given by az2 + bz + c 7→ aw2 + bw + c is not an isomorphism

(compare, for instance, the right hand sides of (3.1) and (3.2) in Section 3). One
possible isomorphism σ : F8 → F

′

8 turns out to be

σ(0) = 0 σ(z) = w + 1 σ(z2 + z) = w2 + w

σ(1) = 1 σ(z2) = w2 + 1 σ(z2 + z + 1) = w2 + w + 1

σ(z + 1) = w σ(z2 + 1) = w2,

which happens to map a generator to another generator. In general, locating an explicit
isomorphism between finite fields of equal size need not be easy, as mapping a generator
to a generator does not always yield an isomorphism. This map sends the element
z + 1 ∈ F8 to the element w ∈ F′

8, and the remaining nonzero elements, necessarily
of the form (z + 1)n for some n ≥ 2 by the previous paragraph, is sent to (w)n.
This guarantees multiplication is preserved by σ. Verifying that addition is preserved
can be done manually, or by observing that every element a ∈ F8 can be written
uniquely as a sum involving 1, z, and z2, and that for each such a, σ(a) equals precisely

the image of this sum (for example, σ(z2 + 1) = σ(z2) + σ(1) = w2).

Proof of the FTFF. Consider the subring R ⊂ Fq consisting of 0, 1, 1+1, . . . ∈ Fq, and
let p = |R| (the characteristic of Fq). We see that R ∼= Zp, and so p must be prime, as
otherwise Zp (and thus Fq) would contain zero-divisors. This makes Fq a vector space
over the field Zp, necessarily finite dimensional since Fq is finite, so the fundamental
theorem of linear algebra tells us that for some r ≥ 1, we have (Fq,+) ∼= (Zp)

r. This
proves part (c)(i) and the forward direction of part (a).

For the backwards direction of part (a), we must prove Zp[x]/〈f(x)〉 is a field with
exactly pr elements. Thus, it is enough to show there exists at least one irreducible
polynomial in Zp[x] of each degree r. The Key Lemma implies that the sum of the
degrees of all irreducible polynomials in Zp[x] whose degree divides r is pr. If we sum
only those degrees strictly dividing r, we obtain

∑

d|r, d6=r

pd ≤
∑

d<r

pd =
pr − 1

p− 1
< pr.

As such, there is an irreducible polynomial f ∈ Zp[x] with deg f = r, as desired.

Next, we prove part (c)(ii). Let N denote the maximum order of any element of
the group (Fq \ {0}, ·). We claim every element of (Fq \ {0}, ·) has order dividing N .
Indeed, if |a| = N and |b| = m ∤ N , then there exists some prime power t such that
t | m and t ∤ N . However, |abm/t| = lcm(N, t) > N contradicts the maximality of N .
This proves the claim. Now, this means every nonzero element of Fq is a root of xN −1,
which is only possible if deg(xN − 1) ≥ q − 1 = |Fq \ {0}|. As such, N = q − 1, and
any element of order N generates (Fq \ {0}, ·), thereby proving part (c)(ii).
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Finally, we prove part (b). Fix any irreducible polynomial f ∈ Zp[x] of degree r. We
claim Fq

∼= Zp[x]/〈f(x)〉. Since f(x) divides x
q − x by The Key Lemma, some element

a ∈ Fq is a root of f . Consider the homomorphism

ϕ : Zp[x] −→ Fq

g(x) 7−→ g(a),

which has kernel
ker(ϕ) = {g(x) : g(a) = 0} = 〈f(x)〉

by the Root Theorem since f is irreducible over Zp and has a as a root. As such, the
First Isomorphism Theorem implies Zp[x]/〈f(x)〉 ∼= Im(ϕ), and ϕ must be surjective
since Fq and Im(ϕ) both have q elements, so the claimed isomorphism is shown. �
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