arXiv:1609.04982v2 [math.OC] 12 Jul 2017

Equivariant Perturbation in
Gomory and Johnson’s Infinite Group Problem.

V. Software for the continuous and discontinuous 1-row case

Chun Yu Hong®*, Matthias KéppeP** and Yuan Zhou

@ University of California, Berkeley, Department of Statistics, USA
b University of California, Davis, Department of Mathematics, USA

We present software for investigations with cut-generating functions in the Gomory—Johnson
model and extensions, implemented in the computer algebra system SageMath.

Keywords: Integer programming; cutting planes; group relaxations

AMS Subject Classification: 90C10; 90C11

1. Introduction

Consider the following question from the theory of linear inequalities over the reals:
Given a (finite) system Az < b, exactly which linear inequalities (a,z) < /3 are valid, i.e.,
satisfied for every x that satisfies the given system? The answer is given, of course, by
the Farkas Lemma, or, equivalently, by the strong duality theory of linear optimization.
As is well-known, this duality theory is symmetric: The dual of a linear optimization
problem is again a linear optimization problem, and the dual of the dual is the original
(primal) optimization problem.

The question becomes much harder when all or some of the variables are constrained to
be integers. The theory of valid linear inequalities here is called cutting plane theory. Over
the past 60 years, a vast body of research has been carried out on this topic, the largest
part of it regarding the polyhedral combinatorics of integer hulls of particular families
of problems. The general theory again is equivalent to the duality theory of integer
linear optimization problems. Here the dual objects are not linear, but superadditive (or
subadditive) functionals, making the general form of this theory infinite-dimensional even
though the original problem started out with only finitely many variables.

These superadditive (or subadditive) functionals appear in integer linear optimization
in various concrete forms, for example in the form of dual-feasible functions [2], superad-
ditive lifting functions [24], and cut-generating functions [9].

In the present paper, we describe some aspects of our software [18] for cut-generating
functions in the classic 1-row Gomory-Johnson [14] [I5] model. The model has a single
parameter, a number f € R\ Z. On the primal side of the model, one has finite-support
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functions y: R — Z, that satisfy the group equation

> ry(r) e f+Z. (1)

reR

We omit any further discussion of the primal side and how it arises as an infinite-
dimensional relaxation of integer linear optimization problems; we refer the reader to
the recent survey [4], [5] for a complete exposition. Our software only works on the dual
side, where the main objects of interest are the so-called minimal valid functions. By
a characterization by Gomory—Johnson [I4] (see also [4, Theorem 2.6]), they are the
Z-periodic functions 7: R — R that satisfy the following conditions:

©(0) =0, n(f) =1 (2a)
w(x) >0 forz € R (2b)
w(x)+7(f—z) = for x € R (symmetry condition) (2¢)
m(x) +7(y) > m(x+vy) for z,y € R (subadditivity). (2d)

In the same way that finite-dimensional cutting plane theory has focused on finding
families of facet-defining valid inequalities, a large part of the literature on the Gomory—
Johnson model has focused on extreme functions. These are the minimal valid functions
that are not a proper convex combination of other minimal valid functions. [Figure T-left
shows the famous extreme function gmic, the cut-generating function of the Gomory
mixed integer cut. It is convenient to rephrase the extremality condition in terms of
perturbation functions. We say that a function 7: R — R is an effective perturbation
function for the minimal valid function 7, if there exists € > 0 such that w4e7 are minimal
valid functions. The effective perturbation functions form a vector space, denoted by
1™ (R, Z); thus 7 is extreme if and only if this space is trivial.

This paper is part of a series, dedicated to making the theory of cut-generating func-
tions in the Gomory—Johnson model algorithmic. For the 1-row case, the focus lies on
Z-periodic piecewise linear functions 7w, which have an obvious finite representation in
the computer. It is an easy observation that the conditions for minimality are finitely
checkable for such functions: Consider a Z2-periodic polyhedral complex AP on R? such
that the subadditivity slack An(z,y) = 7(x) + w(y) — 7(z + y) is a linear function on
the relative interior of each face of AP. Then, in the continuous case, it suffices to check
subadditivity (i.e., nonnegativity of Ax) on the vertices (0-dimensional faces) of this com-
plex. In the discontinuous case, one additionally has to consider finitely many directional
limits to the vertices.

In contrast to minimality, testing extremality is much more subtle. Making it algo-
rithmic for various classes of functions is the main technical contribution of the present
series of papers. In this project, the study of spaces of perturbation functions takes a
central role.

A proof of extremality from the published literature follows a standard pattern, which
can be phrased in terms of perturbation functions as follows. Take an effective perturba-
tion function 7; the goal is to show that 7 = 0. Whenever An(z,y) = 0 (additivity) holds
for some z, y, the same is true for 7. By applying reasoning from functional equations, in
particular variants of the Gomory—Johnson Interval Lemma, to these additivity relations,
one infers that 7 is linear on certain intervals. If the intervals of linearity, which we refer
to as covered intervals, cover the domain of 7, then 7 belongs to a finite-dimensional
space of piecewise linear perturbation functions. In this case, a matrix computation suf-
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fices to decide whether 7 = 0. However, it remained unclear whether these tools and this
proof pattern were sufficient for deciding extremality in all cases.

In the first paper in the present series, Basu et al. [3], focusing on the 1-row Gomory—
Johnson model, developed additional tools for piecewise linear functions with rational
breakpoints and showed that a finite number of applications of these tools suffice for
deciding extremality in the case of piecewise linear (possibly discontinuous) minimal valid
functions with rational breakpoints. Thus, Basu et al. [3] obtained the first algorithm for
testing extremality of a minimal valid function within this class.

This algorithm from [3] works using the grid %Z, where ¢ is the least common multiple
of all breakpoint denominators. In contrast, our software implements a grid-free variant.
In the present paper, we provide a number of new results that underly the grid-free ex-
tremality test; they are generalizations of results from the literature. A practical benefit
of our grid-free variant is that its empirical running time does not strongly depend on g.
Moreover, it paves the way to computations with functions that have irrational break-
points; this topic is further developed in [I7, 21]. It is also the basis for computational
investigations with parametric families of extreme functions in [23].

Our software is a tool that enables mathematical exploration and research in the do-
main of cut-generating functions. It can also be used in an educational setting, where it
enables hands-on teaching about modern cutting plane theory based on cut-generating
functions. It removes the limitations of hand-written proofs, which would be dominated
by tedious case analysis.

Our software is written in Python, making use of the convenient and popular framework
of the open-source computer algebra system SageMath. We begin our article with a brief
overview about this system .

Next, in[section 3] we describe the anatomy of our main objects, the Z-periodic, possibly
discontinuous piecewise linear functions 7: R — R, connecting the notation from the
literature to relevant Python functions and methods. We also introduce the electronic
compendium [20] of extreme functions found in the literature.

The algorithmic minimality and extremality tests make use of certain 2-dimensional
diagrams, associated with the polyhedral complex AP, which record the subadditivity
and additivity properties of a given function 7. In we give a definition of this
complex and introduce these diagrams. Then, in we describe the details of the
automatic minimality test. In we explain the computation of the covered inter-
vals for a given minimal valid function. This is one of the ingredients of the extremality
test, which we explain in

In sections [§] and [0} we describe transformations that can be applied to extreme func-
tions and functionality of our software for the closely related finite group relaxation
model. We end our article with some comments regarding the documentation and test
suite of our software (section 10)).

The first version of our software [18] was written by the first author, C. Y. Hong,
during a Research Experience for Undergraduates in summer 2013. It was later revised
and extended by M. Koppe and again by Y. Zhou. The latter added the electronic
compendium and code that handles the case of discontinuous functions. Version 0.9 of
our software was released in 2014 to accompany the survey [4,[5]; the software has received
continuous updates by the second and third authors since. Two further undergraduate
students contributed to our software. P. Xiao contributed some documentation and tests.
M. Sugiyama contributed additional functions to the compendium, and added code for
superadditive lifting functions.



2. About SageMath as a research and education platform in optimization

Our software is written in Python, making use of the convenient framework of the open-
source computer algebra system SageMath [28]. It can be run on a local installation of
SageMath, or online via SageMathCloud.

We briefly explain what sets SageMath apart from other computer algebra systems,
making it suitable as a research platform in optimization. First, its surface language is the
popular programming language Python, altered only in a minimal way by the SageMath
pre-parser to provide some syntactic sugar for mathematical notation. This in contrast
to systems such as Maple and Mathematica, which have their own idiosyncratic surface
languages. Second, while SageMath itself is written in Python and Cython, it interfaces
to a large number of open-source and commercial software packages, and as a principle
delegates all computations to a state-of-the-art library when possible, rather than using
its own implementation. Relevant features for research and education in optimization are
the following:

e the interfaces to major numerical mixed-integer linear optimization solvers, CPLEX,
Gurobi, COIN-OR CBC, in addition to GLPK, which is used as the default solver, as
well as an interface to the convex optimization solver CVXOPT;

e an interface to the exact (rational arithmetic) mixed integer linear optimization solver
in the Parma Polyhedra Library;

e a didactical implementation of the simplex method that is able to work over general
ordered fields, with a didactical implementation of cutting-plane methods [I, #18805]
in development[}

e a textbook view on the numerical solvers [1, #18804] in development;

e interfaces to state-of-the-art polyhedral computation software, including the Parma
Polyhedra Library, cddlib, TOPCOM, Normaliz, and polymake, as well as an imple-
mentation of polyhedral computation methods for general ordered fields;

e interfaces to state-of-the-art lattice-point computation software, LattE integrale, 4ti2,
and Normaliz, as well as its own implementation of lattice-point enumeration.

3. Continuous and discontinuous piecewise linear Z-periodic functions

The main objects of our code are the Z-periodic functions 7: R — R. Our code is limited
to the case of piecewise linear functions, which are allowed to be discontinuous; see the
definition below. In our code, the periodicity of the functions is implicit; the functions
are represented by their restriction to the interval [0, I]EI They can be constructed in
various ways using Python functions named piecewise_function_from_breakpoints_
and_values etc.

Our software includes an electronic compendium, which is up-to-date with our knowl-
edge on extreme functions. It is accessible by the Python module named extreme_
functions. One can use the help system of Sage, by typing the name of an extreme
function followed by a question mark, to access the documentation string of the function,
which provides a discussion of parameters, bibliographic information, etc.; see
shows the source code of gmic in the electronic compendium. It constructs the

'n the development of SageMath, each code addition and change is subject to (non-blind) peer review, using the
ticket system Trac [1].

2The functions are instances of the class FastPiecewise, which extends an existing SageMath class for piecewise
linear functions.



Table 1. The construction of the gmic function in the compendium.

def gmic(f=4/5, field=None, conditioncheck=True):
"(docstring elided to save space)"
if conditioncheck and not bool(0 < f < 1):
raise ValueError, "Bad parameters. Unable to construct the function."
gmi_bkpt = [0,f,1]
gmi_values = [0,1,0]
return piecewise_fu.nction_from_breakpoints_and_values(g‘mi_bkpt, gmi_values, field=field)

piecewise linear extreme function from the breakpoints and the values at the breakpoints.
This function is the cut-generating function of the famous Gomory mixed-integer cut [12].

The source code of the electronic compendium provides many other examples of con-
structions of functions. An early version of the electronic compendium has been described
in the paper [20]. The reader may also refer to the survey [4, Tables 1-4], which shows the
graphs of these functions for default parameters next to their names. Since the publication
of [4, 20], additional extreme functions have been implemented in the compendium. They
include the family of extreme functions with an arbitrary number of slopes (extreme_
functions.bcdsp_arbitrary_slope) that was recently constructed by Basu—Conforti—
Di Summa-Paat [§], the family of CPL3 functions (mlr_cpl3_...) that was obtained
by Miller-Li—Richard [25] from an approximate lifting of superadditive functions, and
new parametric families and sporadic extreme functions (kzh_...) that were found by
Képpe—Zhou [22, 23] using computer-based search.

A piecewise linear function 7 can be plotted using the standard SageMath function
plot (), or using our function plot_with_colored_slopes(w), which assigns a differ-
ent color to each different slope value that a linear piece takesE]

Random piecewise linear functions can be generated by calling the Python function
named random_piecewise_function. By specifying the parameters, one obtains random
continuous or discontinuous piecewise linear functions with prescribed properties, which
could be useful to experimentation and exploration. [Figure I}-right shows a random
discontinuous function generated by

h = random_piecewise_function(xgrid=5, ygrid=5, continuous_proba=1/3, symmetry=True).

This particular discontinuous function can also be set up by either of the following
commands.

h = piecewise_function_from_breakpoints_and_limits(bkpt=[0, 1/5, 2/5, 3/5, 4/5, 1],
limits=[(0, 0, 0), (1, 1, 1), (2/5, 2/5, 0), (1/2, 3/5, 2/5), (3/5, 1, 3/6), (0, 0, O)1)

=2
1]

piecewise_function_from_breakpoints_and_limits(bkpt=[0, 1/5, 2/5, 3/5, 4/5, 11,
limits=[{-1:0, 0:0, 1:0}, {-1:1, 0:1, 1:1}, {-1:0, 0:2/5, 1:2/5},
{-1:2/5, 0:1/2, 1:3/5}, {-1:3/5, 0:3/5, 1:1}, {-1:0, 0:0, 1:0}1)

In the following, we connect to the systematic notation introduced in [3], section 2.1];
see also [4, 5]. We suppress the details of the internal representation of a Z-periodic
piecewise linear function 7 in our code; instead we explain the main ways in which the
data of the function are accessed; see for a sample Sage session.

m.end_points() isalist 0 =2 < x1 < -+ < xp_1 < &, = 1 of possible breakpointsﬁ
of the function in [0, 1]. In the notation from [3H5], these endpoints are extended

3See also our function number_of_slopes. We refer the reader to [4, section 2.4] for a discussion of the number of
slopes of extreme functions, and [§] and bcdsp_arbitrary_slope for the latest developments in this direction.
41f the function 7 has been constructed with merge=True (the default), then it is guaranteed that all end points
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Figure 1. Two piecewise linear functions, as plotted by the command plot_with_colored_slopes(h). Left, con-
tinuous extreme function h = gmic(). Right, random discontinuous function h = equivb_random_discont_1(),
generated by random_piecewise_function(xgrid=5, ygrid=5, continuous_proba=1/3, symmetry=True).

periodically as B = {xo + t,x1 + t,...,xp—1 +t : t € Z}. Then the set of
O-dimensional faces is defined to be the collection of singletons, {{x} T €
B }, and the set of one-dimensional faces to be the collection of closed intervals,
{ [z +t,zi01+t]:1=0,...,n—1and t € Z}. Together, we obtain P = Pp, a
locally finite polyhedral complex, periodic modulo Z.

m.values_at_end_points() is a list of the function values 7(x;), i = 0,...,n. This list
is most useful for continuous piecewise linear functions, as indicated by m.is_
continuous(), in which case the function is defined on the intervals [z;, z;11] by
linear interpolation.

m.limits_at_end_points() provides data for the general, possibly discontinuous case
in the form of a list 1imits of 3-tuples, with

limits[4] [0] = m(x;

limits[[][1] = n(z]) = lim  «(z)
T—T;, L>T;
limits[F]1 [-1] = 7(z; ) = lim  7(x).

T—x;,r<T;

The function is defined on the open intervals (z;, x;+1) by linear interpolation of
the limit values m(z;"), 7(z; ).

m(x) and 7.limits(x) evaluate the function at x and provide the 3-tuple of its limits
at x, respectively.

m.which_function(z) returns a linear function, denoted 77: R — R in [3H5], where I
is the smallest face of P containing z, so 7(z) = my(x) for = € relint(]).

4. The diagrams of the decorated 2-dimensional polyhedral complex AP

We now describe certain 2-dimensional diagrams which record the subadditivity and
additivity properties of a given function. These diagrams, in the continuous case, have
appeared extensively in [4, B, 20]. An example for the discontinuous case appeared in
[20]. We have engineered these diagrams from earlier forms that can be found in [16] (for
the discussion of the merit_index) and in [3], to become power tools for the modern
cutgeneratingfunctionologist. Not only is the minimality of a given function immediately
apparent on the diagram, but also the extremality proof for a given class of piecewise

x;, with the possible exception of 0 and 1, are actual breakpoints of the Z-periodic function 7.



Table 2. A sample Sage session, illustrating the basic use of a piecewise linear function and the help system.

## First load the code.
sage: import igp; from igp import *
INFO: 2016-08-08 16:49:21,594 Welcome to the infinite-group-relaxation-code. DON’T PANIC. See demo.sage for instructioms.

## The documentation string of each function reveals its optional arguments, usage examples, and bibliographic information.
sage: gmic?
[...]
Signature: gmic(f=4/5, field=None, conditioncheck=True)
Docstring:
Summary :
* Name: GMIC (Gomory mixed integer cut);

* Infinite (or Finite); Dim = 1; Slopes = 2; Continuous; Analysis of subadditive polytope method;

* Discovered [55] p.7-8, Eq.8;

* Proven extreme (for infinite group) [60] p.377, thm.3.3; (finite group) [67] p.514, Appendix 3.

* (Although only extremality has been established in literature, the same proof shows that) gmic is a facet.

Parameters:
f (real) in (0,1).

Examples:
[61] p.343, Fig. 1, Example 1

sage: logging.disable(logging.INF0) # Suppress output in automatic tests.
sage: h = gmic(4/5)

sage: extremality_test(h, False)

True

Reference:
[55]: R.E. Gomory, An algorithm for the mixed integer problem, Tech. Report RM-2597, RAND Corporation, 1960.

[57]: R.E. Gomory, Some polyhedra related to combinatorial problems, Linear Algebra and its Application 2 (1969) 451-558.

[60]: R.E. Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra, part II,
Mathematical Programming 3 (1972) 359-389.

[61]: R.E. Gomory and E.L. Johnson, T-space and cutting planes, Mathematical Programming 96 (2003) 341-375.

## We load the GMIC function and store it in variable h.
sage: h = gmic()
INFO: 2016-08-08 16:51:31,048 Rational case.

## We query the data of the GMIC function.
sage: h.end_points()

o, 4/5, 1]

sage: h.values_at_end_points()

[0, 1, 0]

sage: h(4/5)

1

sage: h.which_function(1/2)
<FastLinearFunction 5/4*x>

## Plot the function.
sage: plot_with_colored_slopes(h)

## Next, we construct a discontinuous piecewise linear function and query its data.
sage: h = piecewise_function_from_breakpoints_and_limits(bkpt=[0, 1/5, 2/5, 3/5, 4/5, 1],
limits=[(0, 0, 0), (1, 1, 1), (2/5, 2/5, 0), (1/2, 3/5, 2/5), (3/5, 1, 3/5), (0, 0, 0)1)
sage: h.limits_at_end_points()
o, o, o1,
[1, 1, 11,
[2/5, 2/5, 0],
[1/2, 3/5, 2/51,
[3/5, 1, 3/5],
[0, 0, 011

minimal valid functions follows a standard pattern that draws from these diagrams. See
[0, prelude] and 20} sections 2 and 4] for examples of such proofs.

4.1 The polyhedral complex and its faces

Following [3-5], we introduce the function

AT:RxR—>R, An(z,y)=n(z)+n(y) — n(z+vy),



0.8 |- \

0.6 |-

0.4

0.2 |-

I L I
0.2 0.4 0.6 0.8 1

Figure 2. An example of a face F = F(I,J, K) of the 2-dimensional polyhedral complex AP, set up by F =
Face([[0.2, 0.3], [0.75, 0.85], [1, 1.211). It has vertices (blue) (0.2,0.85), (0.3,0.75), (0.3,0.85), (0.2,0.8),
(0.25,0.75), whereas the other basic solutions (red) (0.2,0.75), (0.2,1), (0.3,0.9), (0.35,0.85), (0.45,0.75) are filtered
out because they are infeasible. The face F' has projections (gray shadows) I’ = pi(F) = [0.2,0.3] (top border),
J' = pa(F) =1[0.75,0.85] (left border), and K’ = p3(F) = [1,1.15] (right border). Note that K/ C K.

which measures the slack in the subadditivity conditionﬁ Thus, if An(z,y) < 0, subaddi-
tivity is violated at (z,y); if An(x,y) = 0, additivity holds at (x,y); and if An(x,y) > 0,
we have strict subadditivity at (x,y). The piecewise linearity of 7(x) induces piecewise
linearity of Arw(x,y). To express the domains of linearity of A7 (x,y), and thus domains
of additivity and strict subadditivity, we introduce the two-dimensional polyhedral com-
plex AP. The faces F of the complex are defined as follows. Let I, J, K € P, so each
of I, J, K is either a breakpoint of m or a closed interval delimited by two consecutive
breakpoints. Then

F=FI,JJK)={(z,y) eRxR:zecl,yeJ z+yec K}.

In our code, a face is represented by an instance of the class Face. It is constructed from
I,J, K and is represented by the list of vertices of F' and its projections I’ = p;(F),
J' = po(F), K' = p3(F), where p1,p2,p3: R Xx R — R are defined as p;(z,y) = =,
p2(z,y) =y, ps(x,y) = z +y. The vertices vert(F') are obtained by first listing the basic
solutions (z,y) where z, y, and = + y are fixed to endpoints of I, J, and K, respectively,
and then filtering the feasible solutions. The three projections are then computed from
the list of Verticesﬁ Due to the Z-periodicity of 7, we can represent a face as a subset of
[0,1] x [0,1]. See for an example. Because of the importance of the projection
ps(x,y) = x4y, it is convenient to imagine a third, (z + y)-axis in addition to the z-axis
and the y-axis, which traces the bottom border for 0 < x + y < 1 and then the right
border for 1 < z + y < 2. To make room for this new axis, the z-axis should be drawn
on the top border of the diagram.

5Tt is available in the code as delta_pi(m, x, y);in [I4], it was called V(zx,y).
5We do not use the formulas for the projections given by [6, Proposition 3.3], [4, equation (3.11)].
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Figure 3. Two diagrams of functions and their polyhedral complexes AP with colored cones at vert(AP), as
plotted by the command plot_2d_diagram_with_cones(h). Left, continuous function h = not_minimal_2(). Right,
random discontinuous function h = equiv5_random_discont_1().

4.2 plot_2d_diagram_with_cones

We now explain the first version of the 2-dimensional diagrams, plotted by the function
plot_2d_diagram_with_cones(w); see At the border of these diagrams, the
function 7 is shown twice (blue), along the z-axis (top border) and along the y-axis (left
border). The solid grid lines in the diagrams are determined by the breakpoints of 7:
vertical, horizontal and diagonal grid lines correspond to values where z, y and x + y are
breakpoints of 7, respectively. The vertices of the complex AP are the intersections of
these grid lines.

In the continuous case, we indicate the sign of An(z,y) for all vertices by col-
ored dots on the diagram: red indicates An(x,y) < 0 (subadditivity is violated); green
indicates Am(z,y) = 0 (additivity holds).

EXAMPLE 4.1 In (left), showing the 2-dimensional diagram of the function 7 =

not_minimal_2(), the vertex (z,y) = (%, %) is marked green, since

Am(3:8) =n(3) +7(3) —7(3) = 5 +

(SIS

—-1=0.

In the discontinuous case, beside the subadditivity slack Az (z,y) at a vertex (z,y),
one also needs to study the limit value of A7 at the vertex (z,y) approaching from the
interior of a face F' € AP containing the vertex (x,y). This limit value is defined by

Arp(z,y) = ( %m% : Am(u,v), where F' € AP such that (z,y) € F.
u,v)—(x,
(u,v)GrelintZéF)

We indicate the sign of Amwp(x,y) by a colored cone inside F' pointed at the vertex (x,y)
on the diagram. There could be up to 12 such cones (including rays for one-dimensional
faces F') around a vertex (x,y).

EXAMPLE 4.2 In (right), showing the 2-dimensional diagram of the function

m = equiv5_random_discont_1(), the lower right corner (z,y) = (%, %) of the face
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Figure 4. Diagrams of AP of a continuous function h = example7slopecoarse2(), with (left) additive vertices
as plotted by the command plot_2d_diagram_with_cones(h); (right) maximal additive faces as plotted by the
command plot_2d_diagram(h).

F=F,J,K) with I = [}, 2], J=[2,1], K = [1, 8] is green, since

Anp(x,y) = lim An(u,v
F(@,y) o e ) (u,v)
(u,v)€relint(F)
= lim #w(u)+ lm =w(v)— lim =w(w)
u—)%,u<% v—>§,v>% w—)%,w<g

=73 ) +m(3) —7(37) (asw(§7) =7(}) by periodicity)
=04+1-1=0.

The horizontal ray to the left of the same vertex (z,y) = (%, %) is red, because approach-

ing from the one-dimensional face F’ = F(I’, J', K') that contains (z,y), with I’ = [1, 2],

J'= {3}, K’ = [1,%], we have the limit value

Arp(x,y) = lim Am(u,v) = lim 7(u) + 7(3) — lim 7(w) =0+ 2 —1<0.
(u,v)%(%,%) u%% w%%
(u,v)€relint(F") u<2 w<s

4.3 plot_2d_diagram and additive faces

Now assume that 7 is a subadditive function. Then there are no red dots or cones on the
above diagram of the complex AP. See[Figure 4] (left) and (left) for illustrations
of the continuous and discontinuous cases.

For a continuous subadditive function 7, we say that a face F € AP is additive
if Am =0 over all F'. Note that A is affine linear over F', and so the face F' is additive
if and only if An(x,y) = 0 for all (z,y) € vert(F). It is clear that any subface E of an
additive face F' (E C F, E € AP) is still additive. Thus the additivity domain of 7 can
be represented by the list of inclusion-maximal additive faces of AP; see [4, Lemma 3.12].
This list is computed by generate_maximal_additive_faces(mw), whose algorithm will

be explained in

For a discontinuous subadditive function 7, we say that a face F' € AP is additive

10



S

Figure 5. Diagrams of AP of a discontinuous function h = hildebrand_discont_3_slope_1(), with (left) additive

limiting cones as plotted by the command plot_2d_diagram_with_cones(h); (right) additive faces as plotted by
the command plot_2d_diagram(h).

[ oo

if F is contained in a face F’ € AP such that Anp (z,y) = 0 for any (z,y) € FE] Since
Am is affine linear in the relative interiors of each face of AP, the last condition is
equivalent to Arp/ (z,y) = 0 for any (x,y) € vert(F'). Depending on the dimension of F,
we do the following.

(1) Let F be a two-dimensional face of AP. If Arp(z,y) = 0 for any (z,y) € vert(F),
then F' is additive. Visually on the 2d-diagram with cones, each vertex of F' has a
green cone sitting inside F.

(2) Let F be a one-dimensional face, i.e., an edge of AP. Let (z1,y1), (x2,y2) be its
vertices. Besides F' itself, there are two other faces Iy, Fy € AP that contain F. If
Arnp(x1,91) = Ampi(22,y2) = 0 for F' = F| Fy, or Fy, then the edge F is additive.

(3) Let F be a zero-dimensional face of AP, F' = {(z,y)}. If there is a face F’ € AP such
that (z,y) € F’ and Anp (z,y) = 0, then F is additive. Visually on the 2d-diagram
with cones, the vertex (z,y) is green or there is a green cone pointing at (z,y).

On the diagrams in (right) and (right), the additive faces are shaded

in green. The projections p;(F'), p2(F), and p3(F) of a two-dimensional additive face F
are shown as gray shadows on the z-, y- and (x 4 y)-axes of the diagram, respectively.
These projections become important in the computation of covered intervals
below).

The area of the additive faces of 7 is related to the notion of merit index defined by
Gomory and Johnson in [16]. For a minimal valid function 7, the merit index is defined
as twice the area of the additivity domain {(z,y) € [0,1]?: An(z,y) = 0} of m. This
index, available as merit_index in our code, was proposed as a quantitative measure
of strength of minimal valid functions. For example, the merit index of 7 = gmic(f) is
2f2 —2f + 1.

7“Summarizing the detailed additivity and additivity-in-the-limit situation of the function using the notion of
additive faces is justified by [heorem 6.2 and [Theorem 6.3}

11



5. Minimality test

The Python function minimality_test(w, f) implements a fully automatic test
whether a given function is a minimal valid function, using the information that the
described 2-dimensional diagrams visualize. The algorithm is equivalent to the one
described, in the setting of discontinuous pseudo-periodic superadditive functions, in
Richard, Li, and Miller [27, Theorem 22].

Let m be a piecewise linear Z-periodic function and let f € [0,1]. The command
minimality_test(m, f) verifies the characterization of minimal functions by Gomory—
Johnson [14] that we mentioned in the introduction, returning True if and only if the
conditions (2aH2d)) are satisfied.

Note that because the given function 7 is piecewise linear and Z-periodic, the conditions
(2b)) and only need to be checked on the breakpoints (including the limits) of 7 in
[0,1], namely, for z € {zo,21,...,2n, 28,25, ..., 2}, 25,27 ,..., 2, }. In regards to the
subadditivity condition (2d)), it suffices to check Am(z,y) > 0 at the vertices (z,y) of
the 2-dimensional polyhedral complex AP of 7, including the limit values Anp(x,y)
when 7 is a discontinuous function. The sign of Ax is indicated by colors on the diagram
plot_2d_diagram_with_cones(w): if the diagram does not contain anything in red,
then 7 satisfies the subadditivity condition . One can further restrict to the upper-
left triangular part of AP where x <y, since An(z,y) = An(y,z) for any z,y € R.

It is clear that a minimal valid function 7 satisfies 7(f) = 1. If the value of the optional
argument f is not provided, then minimality_test(m) uses f = find_f (), which
returns the first breakpoint x; € [0, 1] of 7 such that 7(z;) = 1. Note that if a minimal
valid function 7 has distinct breakpoints x;, z; € [0, 1] such that w(x;) = 7(z;) = 1, then
by the symmetry condition (2d), there exists b € (0,1) such that m(b) = 0. In this case,
the following lemma implies that 7 is actually a éZ—periodic function. Therefore, one can

set f to the first x; with 7w(x;) = 1 without loss of generality.

LEMMA 5.1 Let m be a piecewise linear Z-periodic function that is minimal valid. If
7w(b) =0 for some b & Z, then b € Q and 7 is %Z—periodic, where q denotes the positive
denominator of b written as an irreducible fraction.

Proof. Since the function 7 is non-negative and subadditive, one can show by induction
that m(nb) = 0 for any integer n. Suppose that b ¢ Q. The minimal valid function =
is 0 on the set bZ and is 1 on the set f — bZ, where both sets are dense in R/Z. This
contradicts the piecewise linearity of m. Therefore, b € Q. Let p € Z and ¢ € Z, such
that ged(p,q) = 1 and b = %. There exists r € Zy such that rp = 1 (mod ¢). We have
that 0 = r(b) > w(rb) = W(%), and hence 7'('(%) = 0. Similarly, we have that W(—é) =0.
Let € R. By subadditivity, n(x) + W(é) > mw(x + %) and 7(x + %) + 77(—%) > 7(x).
Therefore, 7(z) = 7(z + %) We conclude that the function 7 is %Z—periodic. [ |

If the minimality_test is called with the optional argument show_plots=True (de-

fault: False), then it shows the diagram of AP illustrating the sign of Anw(x,y) by
colors.

6. Connected components of covered intervals

An additive face implies, among other things, the important covering (affine imposing in
the terminology of [3]) property that we outline in this section. The actual use of such
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covering property in our code enables a grid-free variant of the algorithmic results in [3]
Theorem 1.5].

Recall that a minimal valid function 7 is said to be extreme if it cannot be written as a
convex combination of two other minimal valid functions. We say that a function 7 is an
effective perturbation function for the minimal valid function 7, denoted 7 € ﬁ”(R, Z),
if there exists € > 0 such that 7w £ e are minimal valid functionsﬁ Thus a minimal
valid function 7 is extreme if and only if no non-zero effective perturbation # € II" (R, Z)
exists.

The key technique for studying the space of effective perturbations is to analyze the
additivity relations. The foundation of the technique is the following lemma, which shows
that all subadditivity conditions that are tight (satisfied with equality) for 7 are also tight
for an effective perturbation 7. This includes additivity in the limit.

LEMMA 6.1 ([3, Lemma 2.7]) Let m be a minimal valid function that is piecewise linear
over P. Let F be a face of AP and let (u,v) € F. If Anp(u,v) =0, then Atp(u,v) =0

for any effective perturbation function 7 € II" (R, Z).

Proof. Let € > 0 such that 77 = m+e7 and 7~ = m—e7 are minimal valid functions. Since
7t and 7~ are subadditive, we have A7t > 0 and so € |A7p(u,v)| < Anp(u,v) = 0.
Thus we have A7p(u,v) = 0. [ |

We first make use of the additivity relations that are captured by the two-dimensional
additive faces F' of AP. Note that minimal valid functions m and effective perturbation
functions 7 € II"(R, Z) are bounded functions. As such, they satisfy the regularity as-
sumptions that rule out pathological solutions to Cauchy’s functional equation; see [4]
section 4.1]. Thus the following is an immediate corollary of the convex additivity domain
lemma [4, Theorem 4.3], a variant of the celebrated Gomory—-Johnson interval lemma.

THEOREM 6.2 Let m be a minimal valid function that is piecewise linear over P. Let F'
be a two-dimensional additive face of AP. Let 0 = 7 or @ = 7 € II"(R,7Z). Then 0 is
affine with the same slope over int(p1(F)), int(pa(F)), and int(ps(F))[]

In the situation of this result, we say that the intervals int(p;(F)), int(p2(F)), and
int(p3(F)) are (directly) covereﬂ and are in the same connected covered componen
If an interval is contained in a connected covered component, then all of its sub-intervals
are also contained in this connected covered component. In particular, any sub-interval
of a covered interval is also covered.

8The space ﬁ"r(R, 7)) of effective perturbation functions, should not be confounded with IT¥(R,Z), the space of
perturbation functions with prescribed additivities E, defined in [4] as

7?(0%:0

= ) 7(f)=0

M°(R,Z)= (%:R>R m(z)+7(y) =7(z+y) forall (z,y) € FE
T(z)=m(zr+t) forallzeR,t€Z

Let E = {(z,y) | An(z,y) = 0}. Then, by [4, Theorem 3.13], if 7 and 7 are continuous piecewise linear and
7 € IE(R,Z), then @ € [I™(R,Z). In general, II™ (R, Z) is a subspace of [1Z (R, Z).

91If the function 7 is continuous, then @ is affine with the same slope over the closed intervals p; (F), p2(F), and
p3(F), by [4, Corollary 4.9].

10Tn the terminology of [3], these intervals are said to be affine imposing.

M Connected covered components, extending the terminology of [3], are simply collections of intervals on which
an effective perturbation function is affine with the same slope. This notion of connectivity is unrelated to that
in the topology of the real line, but is understood in a graph-theoretic sense. In the grid-based algorithm in [3],
notation for an explicit graph whose nodes are the breakpoint intervals is introduced. In the present paper, we do
not introduce such a graph explicitly.

13



Now let F' be a one-dimensional additive face (edge) of AP. The edge F' can be
vertical, horizontal, or diagonal. Then two of the projections int(p;(F)),int(p2(F')) and
int(pg(F))E are one-dimensional (proper intervals), whereas the third projection is a
singleton. The following theorem holds, which is akin to [3, Lemma 4.5].

THEOREM 6.3 Let w be a minimal valid function that is piecewise linear over P. Assume
that  is at least one-sided continuous at the origmﬁ Let F' be a one-dimensional additive
face (edge) of AP. Let {i,j} C {1,2,3} such that p;(F') and p;(F) are proper intervals.
Let E C F be a sub-interval. For = 7 or 0 = 7 € II"(R,Z), if 0 is affine in I =
int(p;(E)), then 0 is affine in I' = int(p;(E)) as well with the same slope.

In the situation of the theorem, the two proper intervals p;(F') and p;(F) are said to
be connected through a translation (when F' is a vertical or horizontal edge) or through
a reflection (when F is a diagonal edge). An interval I’ that is connected to a covered
interval I said to be (indirectly) covered and in the same connected component as I.

Before proving[Theorem 6.3} we first discuss some important regularity results. Assume
that 7w is at least one-sided continuous at the origin, from the left or from the right.
Dey-Richard-Li-Miller [I1, Theorem 2] (see also [4, Lemma 2.11 (v)]) showed that any
effective perturbation function 7 € II"(R,Z) is continuous at all points at which = is
continuous. In fact, the result can be strengthened to Lipschitz continuous, as follows.

LEMMA 6.4 Let m be a piecewise linear minimal valid function that is continuous from
the right at O or continuous from the left at 1. If m is continuous on a proper interval
I C [0,1], then for any ®# € II"(R,Z) we have that T is Lipschitz continuous on the
interval I.

Proof. Without loss of generality, we assume that 7 is continuous from the right at 0.
Then, since 7 is also piecewise linear and 7(0) = 0, there exist positive s,b € R such that
m(z) = sx for = € [0,2b]. Let @ € TI™(R,Z) be an effective perturbation. By definition,
there exists € > 0 such that 77 = 7 + 7 and 7~ = 7 — €7 are minimal valid functions.
For all z,y € [0,b], we have that 7(z) + m(y) = m(z + y). Since the functions 7+ and
7~ are subadditive, 7(z) + 7(y) = 7(z + y) for all z,y € [0,b]. Note that 7(0) = 0.
By the Gomory—Johnson Interval Lemma [4, Lemma 4.1], there exists § € R such that
7i(z) = 8z for € [0,b]. Then 7 and 7~ have slopes st := s + €5 and s~ := s — €5 on
[0, b], respectively.

Let I C [0,1] be an interval where 7 is continuous. Let x,y € I such that x >
y. Then there exists s; € R such that w(x) — 7(y) > s;(x — y), since 7 is piecewise
linear and continuous on I. By subadditivity, we have 71 (z) — 77 (y) < s™(z — y) and
7 () — 7 (y) < s (x —y). It follows from ex = 7+ — 7 =7 — 7~ that (s; — s )(z —
y) < e(m(x) — 7(y)) < (s — sp)(z — y). Therefore, |7(x) — 7(y)| < C|x —y|, where
C = Lmax(|sT — s7|,|s~ — s7|) is a constant independent of x,y € I.

e
We conclude that 7 is Lipschitz continuous on the interval I. |

Since the function 7 is continuous on each interval (x;, z;1+1) between two consecutive

breakpoints, implies the important corollary below.

COROLLARY 6.5 Let m be a piecewise linear minimal valid function that is continuous
from the right at 0 or continuous from the left at 1. Let ® € II"(R,Z). Then the limit

12The closed intervals p1 (F), p2(F) and p3(F) are considered when 7 is a continuous function.

13Note that holds as well when the function 7 is two-sided discontinuous at the origin. If all the
breakpoints of m are rational numbers, it is justified by [3, Lemma 4.5]. In the general case, the proof of the
theorem needs a stronger regularity lemma than which we defer to the forthcoming paper [21].
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values T(x~) and 7(xt) are well defined for any x € [0,1].
We now provide a proof to

Proof of [Theorem 6.3 Assume that F is an horizontal additive edge of AP, with po(F) =
{t} and p1(F'),p3(F) being proper intervals There exists a face F' € AP containing F
such that Anp (z,t) =0 for any x € p1(F). Consider § = 7 or § = 7. By |L
Abp (z,t) = 0 for z € pi(F). By |Corollary 6.5 m the values 0(t),0(t1),0(t) are Well

defined, and hence the limit Value { = lim y—t O(y) exists. Assume that the
yerelint(p2(F"))
function 6 is affine in I = int(p;(E)) for some interval E C F' with slope ¢, i.e., §(z) =

cx+bfor x € I, where b, c € R. Then for any x € I C int(p1(F)), we have 0 = Abp: (x,t) =
O(x)+{—0(x+t). Denote z = x+t and I' = int(p3(FE)), then x € I for z € I'. Therefore,
0(2)=0(z—t)+L=c(z—1t)+ b+ for z € I'. We see that () is affine with the same
slope ¢ on the interval I’ as well. Now assume that 6(z) = ¢’z + V' for z € int(p3(E")),
where E/ C F and V/,¢ € R. Then by the same argument, 6(x) = /(x +t) + b — £ for
x € int(p1(E")), showing that 6 is affine in int(p1(E")) as well with the same slope.

If F' is an vertical additive edge of AP, the result follows from swapping x and .

Assume that F' is a diagonal additive edge of AP, with p3(F) = {r} and p;(F), p;(F)
({i,7} = {1,2}) being proper intervals. There exists a face F' € AP containing F, such
that Anp/(z,y) = 0 for any (z,y) € F. Consider § = 7 or § = 7. By
Abp (z,y) = 0 for (z,y) € F. implies that the values 0(r),0(r"),0(r™)

are well defined, and thus, £ := lim crel S (F)) 0(z) exists. We have that AOp (z,y) =
z€relint(ps

O(x) + 60(y) — £ =0, hence 6(z) + 0(y) = £ for (z,y) € relint(F). Therefore, if 0 is affine
in I = int(p;(E)) for some interval E C F, then 6 is affine also in I’ = int(p;(E)) with
the same slope. [ |

The connected components of covered intervals of m are computed in two phases,
by calling generate_covered_components(m). Recall that within a connected covered
component, the function 7, and any perturbation 7, is affine linear with the same slope.

In phase one, the program computes the connected components of directly covered
intervals of m according to using the two-dimensional additive faces of AP.
Let F' € AP be a two-dimensional additive face. Then the intervals int(p; (F')), int(p2(F'))
and int(p3(F')) mod 1 are in the same connected covered component C = int(p;(F)) U
int(p2(F)) U (int(p3(F)) mod 1). (Consider C = p1(F) Up2(F) U (p3(F) mod 1) instead,
when 7 is a continuous function.) If another connected covered component C’ satisfies
that int(C) Nint(C’) # (), then the program merges C' into C to form a large connected
covered component Cpew < CUC’, and sets C' < 0.

EXAMPLE 6.6 shows the computation for 7 = gj_2_slope(3/5,1/3) step by
step, where colors indicate membership to connected covered components. In

(1), the additive face Fy with pi(Fy) = [35, 2], pa(F1) = [0, 5] and p3(F1) = [35, 3] is
considered. Its three projections (indicated by yellow strips on AP) are directly covered

(indicated by red color on the function graphs), and they form the connected covered
component C; = [0, 5] U [35,2]. In (2), the connected covered component

Co = [370, 30} Hg, 1] (with light blue color) is formed by considering the additive face Fy =
F([£,1), [55, &1, [g, 1]). In (3), the additive face F3 with p(F3) = pa(F3) =
ps(F3) mod 1 = [2,1] is considered, and the connected covered component C3 = [2,1] is

formed. Since Cs and Cy overlap, they are merged into one large connected component
Chlue = C2 U C3. Therefore, all intervals are covered, and the connected components are

Crea = [07 370] [il))(l)’ %] and Cplye = [%7 %] U [%7 1]
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Figure 6. Compute the (directly) covered intervals for m = gj_2_slope(3/5,1/3).

In phase two, the program computes indirectly covered intervals and merges connected
covered components according to [Theorem 6.3 using one-dimensional additive faces of
AP, until no further change is possible. We explain this process by the example below.

S

I f) 3 1 T 3 ) 7
! 8 H H i ! 8 5 H 3 !

Figure 7. Compute the (directly and indirectly) covered intervals for 7 = hildebrand_discont_3_slope_1()

EXAMPLE 6.7 illustrates the computation of connected covered components
for the discontinuous function 7 = hildebrand_discont_3_slope_1(). In (1)
to (3), the directly covered intervals are computed. They form the connected components
Crea = (0, %) U (%a %)’Cblue = (%: 4‘11) U (7117 %) and Cgreen = (%» %) U (%a %) In (4)’
the (light blue) vertical additive edge F({2},[%, 1], [3,3]) is considered. Its projections
int(pa(F)) = (L,1) and int(p3(F)) = (3, 3) are connected through a translation. Since

81 2’8
the interval (

—~

,%) was covered in the second sub-figure (as indicated by blue color),

ool
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the other interval (3, 2) which was previously uncovered (as indicated by black color in

Figure 7/-(3)), becomes (indirectly) covered (as indicated by blue color in (4)).
Therefore, the connected covered component Cpiye grows to (g,5) U (5,2) U (3, 2). In
Figure 71-(5), the (light blue) diagonal additive edge F([%, 1], [%, 1],{2}) is considered,
and the interval (%, 1) is indirectly covered (as indicated by blue color). This concludes

I)U

the computation of the connected covered components of 7. They are Creq = (0, g

(%7 %)>Cblue = (%a i) U (%7 %) U (%7 g) U (%7 1) and Cgreen = (27 %) U (%7 %)

The computation of connected components of covered intervals terminates in a finite
number of steps for a piecewise linear function 7 with rational breakpoints. For functions
with irrational breakpoints, the finiteness of the procedure remains an open question.

7. Extremality test

The command extremality_test(w) implements a grid-free generalization of the au-
tomatic extremality test from [3], which is suitable also for piecewise linear functions
with rational breakpoints that have huge denominators. Its support for functions with
algebraic irrational breakpoints such as bhk_irrational [3| section 5] will be described
in the papers [17, 21].

Given a Z-periodic piecewise linear function 7 with rational breakpoints, extremality_
test(m) first checks whether the conditions for minimality are satisfied, by calling
minimality_test(m). If m is not minimal valid, then extremality_test(w) returns
False. Otherwise it proceeds, using the following theorem.

THEOREM 7.1 (rephrased from [3l Lemma 4.8]) Let m be a piecewise linear minimal
valid function with rational breakpoints. If w is an extreme function, then the union of
closures of the covered intervals of w is equal to the whole interval [0,1].

Assume that the function 7 is minimal valid. The command extremality_test ()
first checks whether the whole interval [0, 1] is covered by the union of closures of the con-
nected covered components returned by generate_covered_intervals(m). If there is
an uncovered interval, then, assuming that m be a piecewise linear function with rational
breakpoints, the extremality test returns False, which is justified by [Theorem 7.1} Our
code also constructs an effective perturbation 7 in this case. However, we defer an expla-
nation of the construction of this “equivariant” [3] perturbation, as well the discussion
of the case of functions with irrational breakpoints, to the paper [17].

In the following, we assume that there is no uncovered interval. Let Cy,Ca,...,Cy be
the connected covered components of w. Let 7 € II"(R,Z) be an effective perturbation
function. Then 7 is affine linear with the same slope, say s;, on the ¢-th connected covered
component C; for i = 1,2,..., k. We also assume that 7 is at least one-sided continuous
at the origin. Then by the perturbation 7 can only be discontinuous at
the points where 7 is discontinuous. Let the variables d; (j = 1,2,...,m) denote the
changes of the value of 7 at the m discontinuity points of 7. In other words, the variables
dj denote jumps 7(z) — 7(z~) when 7 is discontinuous at = on the left, or 7(z*) — 7(z)
when 7 is discontinuous at z on the right, where 7(2~) and 7(z™) are well defined by
Since Ule cl(C;) = [0,1], we have that 7 is a piecewise linear function
with breakpoints in {zg,z1,...,2,}, which can be considered as a symbolic function
over the slope parameters s; (i = 1,2,...,k) and jump parameters d; (j = 1,2,...,m).
In fact for any x € [0,1], the value 7(x) is linearly determined by the variables s; and
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dj. We can define a vector-valued piecewise linear function g: [0,1] — R**™ so that
w(x) = g(z) - (s1,82,...,8k,d1,da,...,dy). This function g can be set up using the
command generate_symbolic in our code.

The perturbation 7 satisfies that 7(0) = 7(f) = 7(1) = 0, and all the additivity re-
lations (including additivity-in-the-limit) that = has, by Therefore, we have

a system of linear equations for the variables (si,so,...,Sk,d1,ds,...,dy), which ad-
mits a trivial solution (0,0,...,0). By [3, Theorem 4.11], we know that 7 is an extreme
function if and only if (0,0,...,0) is the unique solution to this system. The command

extremality_test (m) solves the above finite-dimensional linear system using linear al-
gebra. It returns True if the solution space has dimension 0 or False otherwise.

EXAMPLE 7.2 Let m = hildebrand_discont_3_slope_1() with f = % As computed

in the [Example 6.7, 7 has three connected covered components C; = (0, %) u(3 2 2) Co =
35U 3) UG UL 1) and C3 = (53,3) U (3,%). An effective perturbation 7 €
f[”(R,Z) is affine linear on C; (i = 1,2,3). Let s; denote the slope value of ™ on C;,

for i« = 1,2,3. The function 7 is discontinuous at the points %_, %Jr, %+ and 1. Let
~ - ~ 3+ ~ ~ ~
d = #(3) — 71, dp = #(3T) — #(L), dy = #(2T) — #(2) and ds = #(1) — (1),

We know that 7(0 ) = 0 7r( f) = 0 and 7(1) = 0. Define the piecewise linear function
g:[0,1] — R, such that

((1,0,0,0,0,0,0)x fo<z<i

(0,1,0,0,0,0,0)z + (3, -3,0,1,0,0,0) if{<a<?

1,0,0,0,0,0,0)x — (1,-1,0,-1,-1,0,0) ifd<z<i

4 4 8 2

g(z) =< (0,1,0,0,0,0,0)z + (1,-1,0,1,1,1,0) if i <2<

0,0,1,0,0,0,0)z + (1,2,-2,1,1,1,0 if2<ax<?

( 478 8 8 8

(0,1,0,0,0,0,0)z + (3, -3, 5,1,1,1,0) if f <az<1
(3,4,1,1,1,1,1) if z = 1.

This function g can be obtained by calling

h = hildebrand_discont_3_slope_1();
components = generate_covered_intervals(h);
g = generate_symbolic(h, components, field=QQ) .

Then 7(z) = g(x) - (s1, $2,83,d1,d2,ds3,dy), for 0 < z < 1. It follows from the sym-

metry condition that di = ds and dy = d4. By considering the additive limiting

cones on the diagram of AP (see MIG& ) and by m we obtain that
+ + N - - T -

W(é )+7T(% ) = 77(2 ), W(% )+7r(% ) = 77(471 ) and 7(0~ )+7r(é ) = 7['(% ). These

additivity relations, along with 7(f) = 0 and 7(1) = 0, imply the linear system

S1

O ONIRI—

|
ool—

w
N = = O ==

_ =0 = O = =

W= =00l O O =
=0l © O Owl— O

Ol 00|

The above system has the unique solution s; = so = s3 = d; = do = d3 = dy = 0.
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Table 3. A sample Sage session on the extremality test

## First we load a function and store it in variable h.
## We start with the easiest function, the GMIC.

sage: h = gmic()

INFO: 2016-08-08 16:51:31,048 Rational case.

## Test its extremality; this will create informative output and plots

sage: extremality_test(h, show_plots=True)

INFO: 2016-08-08 16:54:22,014 pi(0) = 0

INFO: 2016-08-08 16:54:22,016 pi is subadditive.

INFO: 2016-08-08 16:54:22,016 pi is symmetric.

INFO: 2016-08-08 16:54:22,018 Thus pi is minimal.

INFO: 2016-08-08 16:54:22,018 Plotting 2d diagram...

INFO: 2016-08-08 16:54:22,018 Computing maximal additive faces...

INFO: 2016-08-08 16:54:22,022 Computing maximal additive faces... done

Launched png viewer for Graphics object consisting of 25 graphics primitives

INFO: 2016-08-08 16:54:22,526 Plotting 2d diagram... done

INFO: 2016-08-08 16:54:22,526 Computing covered intervals...

INFO: 2016-08-08 16:54:22,527 Computing covered intervals... done

INFO: 2016-08-08 16:54:22,527 Plotting covered intervals...

Launched png viewer for Graphics object consisting of 2 graphics primitives

INFO: 2016-08-08 16:54:22,985 Plotting covered intervals... done

INFO: 2016-08-08 16:54:22,986 All intervals are covered (or connected-to-covered). 2 components.
INFO: 2016-08-08 16:54:23,035 Finite dimensional test: Solution space has dimension 0
INFO: 2016-08-08 16:54:23,035 Thus the function is extreme.

## The docstring tells us that we can set the ‘f’ value using an optional argument.
sage: h = gmic(1/5)

INFO: 2016-08-08 16:55:59,440 Rational case.

## 0f course, we know it will still be extreme; but let’s test it to

## see all the informative graphs.

sage: extremality_test(h, show_plots=True)

[...]

True

## Let’s try a different function from the compendium.

## We change the parameters a little bit, so that they do NOT satisfy the known
## sufficient conditions from the literature about this class of functions.
sage: h = drlm_backward_3_slope(f=1/12, bkpt=4/12)

INFO: 2016-08-08 17:03:20,438 Conditions for extremality are NOT satisfied.
INFO: 2016-08-08 17:03:20,439 Rational case.

## Let’s run the extremality test.
sage: extremality_test(h, show_plots=True)

INFO: 2016-08-08 17:03:44,796 Thus pi is minimal.
[...1 LN
INFO: 2016-08-08 17:03:46,417 Uncovered intervals: ([[5/12, 2/31],)

...

INFO: 2016-08-08 17:03:49,544 Plotting perturbation... done

INFO: 2016-08-08 17:03:49,545 Thus the function is NOT extreme.

False

## Indeed, it’s not extreme.

## We see a perturbation in magenta and the two perturbed functions in blue and red,
## whose average is the original function (black).

## Here’s the Gomory fractional cut.

sage: h = gomory_fractional()

## It is not even minimal:

sage: minimality_test(h, True)

INFO: 2016-08-08 17:06:33,647 pi(0) = 0

INFO: 2016-08-08 17:06:33,648 pi is not minimal because it does not stay in the range of [0, 1].
False

## There’s many more functions to explore. Use the Tab key on the next line to see a collection of those functions.

sage: extreme_functions. [tab]

Therefore, 7 is an extreme function.

8. Transformations of piecewise linear functions

The Python module named procedures gives access to the “procedures” that can trans-
form extreme functions. These procedures include the transformations between functions
for finite and infinite group problems that we will discuss in and other well-

known transformations; see [4, Table 5]. For instance, we have:
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multiplicative_homomorphism constructs the function z — m(Az) for a given piecewise
linear function 7, where A is a nonzero integer; see [26], sections 19.4.1, 19.5.2.1]. (The
use of the word “multiplicative homomorphism” for this operation comes from [26].)

automorphism is a special case of the above, where A is 41, so that  — Ax is an
automorphism of the group R/Z. If a different factor A is provided, an error is
signalled. Since A = —1 gives the only nontrivial automorphism, z — 7(—x), this is
the default. See [19] for a discussion.

projected_sequential_merge performs the one-dimensional projected sequential
merge, with operator ¢ (gmic), on an extreme function 7; see [10].

Newly discovered procedures since the publication of [4] have been implemented as well.

symmetric_2_slope_fill_in returns an extreme 2-slope function that approximates
the given continuous minimal valid function 7 with infinity norm distance less than
¢, under the assumption that f is a rational number; see [7].

symmetric_2_slope_fill_in_irrational is a variant, proposed by the third author,
Yuan Zhou (2015, unpublished), of the above procedure symmetric_2_slope_fill_
in, which removes the assumption f € Q.

9. Functionality for the finite (cyclic) group relaxation model

Let g be a positive integer and let f € éZ. A discrete function 7T|%ZZ éZ — R4 is minimal
valid for Gomory—Johnson'’s finite (cyclic) group relaxation model if and only if 7|1, is
Z-periodic, subadditive, m|1,(0) = 0, and satisfies the symmetry condition. A minimal
valid function 7T|§Z is extreme if it is not a proper convex combination of other minimal

valid functions.
In our code, a Z-periodic discrete function 7|1, can be set up using the Python function

named discrete_function_from_points_and_values(points, values), given two fi-
nite lists points and values which represent the domain of 7|1, restricted to the interval

[0,1] and the function values at these points, respectively.
Another important way to obtain a discrete function 7|1, is to restrict a piecewise lin-
q

ear function 7 for the infinite group problem to the cyclic group of given order ¢, by calling
the procedure restrict_to_finite_group. Conversely, the procedure interpolate_
to_infinite_group provides the piecewise linear interpolation m of a given discrete
function 7|14.
The functionalities plot_2d_diagram, minimality_test and extremality_test that
we described above also work for 7|1, in the finite group model.
q

The transformations (procedures) multiplicative_homomorphism and automorphism
described in are also available for the finite group case. The latter is more
interesting in the finite group case, because the cyclic group %Z/ Z has more nontrivial
automorphisms. Indeed, studying the action of the automorphisms was a major focus of
Gomory’s original paper [13]. The given factor A must be an integer coprime with the
group order ¢; see [26, section 19.5.2.1].

See for a sample Sage session on discrete functions for the finite group problem
and the related transformations.
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Table 4. A sample Sage session on discrete functions for the finite group problem.

## We load the GMIC function with f=4/5, and store it in variable h. plot_with_colored_slopes (h)
sage: h = gmic(£=4/5)
INFO: 2016-08-08 17:23:05,206 Rational case. S WA

## We can restrict to a finite group problem.

sage: restrict_to_finite_group?

Signature: restrict_to_finite_group(function, f=None, oversampling=None, order=None)
Docstring:

Restrict the given function to the cyclic group of given order.

If order is not given, it defaults to the group generated by the
breakpoints of function and f if these data are rational. However,
if oversampling is given, it must be a positive integer; then the
group generated by the breakpoints of function and f will be
refined by that factor.

If f is not provided, uses the one found by find_f.

plot_with_colored_slopes (hr)

Assume in the following that f and all breakpoints of function lie | R TR PP EEPEEEPEERE. TREPRE
in the cyclic group and that function is continuous.

Then the restriction is minimal valid if and only if function is minimal valid. !
The restriction is extreme if function is extreme. . .
L e

If, in addition oversampling >= 3, then the following holds: The : : : :
restriction is extreme if and only if function is extreme. This is %.........._ T
Theorem 1.5 in [IR2].

i i i i .
This oversampling factor of 3 is best possible, as demonstrated by 1 2 ES a 1
function kzh_2q_example_1 from [KZh2015a]. 5 5 5
[...]

sage: hr = restrict_to_finite_group(h)
INFO: 2016-08-08 17:26:36,047 Rational breakpoints and f;
using group generated by them, (1/5)Z T Ot

## This function can be set up by providing the breakpoints and the values.

sage: discrete_function_from_points_and_values(points=[0, 1/5, 2/5, 3/5, 4/5, 1], T
values=[0, 1/4, 1/2, 3/4, 1, 0]) == hr i : : :
INFO: 2016-08-8 17:26:37,190 Rational case. B el

True

## The restricted function is extreme for the finite group problem.
sage: extremality_test (hr)

INFO: 2016-08-8 17:26:38,121 pi(0) = 0

INFO: 2016-08-8 17:26:38,123 pi is subadditive.

INFO: 2016-08-8 17:26:38,123 pi is symmetric.

INFO: 2016-08-8 17:26:38,124 Thus pi is minimal.

INFO: 2016-08-8 17:26:38,124 Rational breakpoints and f;

using group generated by them, (1/5)Z plot_with_colored_slopes (hi)
INFO: 2016-08-8 17:26:38,158 Solution space has dimension O
INFO: 2016-08-8 17:26:38,158 Thus the function is extreme.
True

1

## For the finite group problems, automorphisms are interesting!
sage: ha = automorphism(hr, 2)

INFO: 2016-08-08 17:26:41,100 Rational breakpoints and f;

using group generated by them, (1/5)Z

## We can interpolate to get a function for the infinite group problem.
sage: hi = interpolate_to_infinite_group(ha)

10. Documentation and test suite

Following the standard conventions of Sage, the documentation strings contain usage
examples with their expected output. If Sage is invoked as

sage -t (filename).sage,

these examples are run and their results are compared to the expected results; if the
results differ, this is reported as a unit test failure. This helps to ensure the consistency
and correctness of the algorithms and of the compendium of extreme functions as we
continue developing the software. The command make check runs the tests for all files
of our software.

A substantial part of our software is concerned with plotting certain diagrams. Our
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code also contains a testsuite of diagrams that have been published in the survey [4, [5]
and in several research papers to ensure that these diagrams can still be reproduced with
new versions of our software. The testsuite, invoked by make check-graphics, produces
a multi-page PDF file which needs to be compared with a “good” copy of the PDF file
by visual inspection.

Finally, demo.sage demonstrates further functionality and the use of the help system.
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Appendix A. Enumerating the maximal additive faces of AP in the
continuous case

In this section, we explain the algorithm that the code generate_maximal_additive_
faces_continuous(mw) uses to enumerate the maximal additive faces for a continuous
subadditive function 7. For functions with many breakpoints, it pays off to avoid dupli-
cate computations that would arise from the fact that a given lower-dimensional face F’
of AP has many representations as F'(I, J, K) with I, J, K € P. The algorithm considers
the full-dimensional (two-dimensional) faces F' = F'(I, J, K) of AP in the lexicographic
order on (I, J, K), where I, J, K are proper intervals of P with I, J C [0, 1] and K C [0, 2],
and I < J,i.e., I is to the left of J on the real line. The algorithm has a fast path for dis-
carding faces F'(I,J, K) that are not full-dimensional. Lower-dimensional additive faces
will be considered as subfaces of full-dimensional faces as follows. The algorithm distin-
guishes the following four cases, depending on the number of additive vertices that each
full-dimensional F' has.

(1) If F has no additive vertex, then F' does not contain any maximal additive face of
AP (nothing is green in F). No recording is needed for this face F'.

(2) If F has only one additive vertex, denoted by (x, %), then this vertex could either be
a maximal additive face, or it could be a subface of a maximal additive face that is
not a subface of F. We maintain a hashed set of all vertices of maximal additive faces
that have already been recorded during the algorithm. We only process (z,y) when
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(a) b (b) ‘ F o N
(z,y) (z,y) \ (z,y)

Figure Al. An additive vertex (z,y) is processed when it arises as a subface of the last two-dimensional face
F = F(1,J, K) in the lexicographic order on (I, J, K) that contains (x,y). (a)  and y are the left endpoints of I
and J; (b) « and = + y are the left endpoints of I and K; (c) y and x + y are the left endpoints of J and K.

F
F

F/

o F
Fl
Figure A2. An additive edge E = F' N F with F/ < F in the lexicographic order on (I, J, K) is processed when
it arises as a subface of F’

F is the last two-dimensional face F(I,J, K) in the lexicographic order on (I, J, K)
that contains (z,y). This condition is easy to check; see for an illustration
of the cases. In that case, we record (z,y) as a maximal additive face of AP when
(x,y) is not a vertex of a maximal additive face that has already been recorded.

(3) If F has exactly two additive vertices, then they form an additive edge E. It cannot
lie in the interior of F', since otherwise Am = 0 holds over all F', contradicting
the assumption that only two vertices of the two-dimensional face F' are additive.
Therefore, this additive edge E is a subface of F', and hence a one-dimensional
additive face of AP. Again we only process F when F' is the last two-dimensional
face F'(I,J, K) in the lexicographic order on (I, J, K) that contains E. (There is only
one other face F’ containing F; see ) In that case, we record FE if F' was
not recorded as an additive face.

(4) If F has more than 2 additive vertices, then A7 = 0 holds over all F. The face F' is
recorded as a maximal additive face of AP.
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