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Abstract In this article, we present a detailed analysis of the global clustering coefficient
in scale-free graphs. Many observed real-world networks of diverse nature have a power-law
degree distribution. Moreover, the observed degree distribution usually has an infinite variance.
Therefore, we are especially interested in such degree distributions. In addition, we analyze the
clustering coefficient for both weighted and unweighted graphs.
There are two well-known definitions of the clustering coefficient of a graph: the global and
the average local clustering coefficients. There are several models proposed in the literature
for which the average local clustering coefficient tends to a positive constant as a graph grows.
However, there are no models of scale-free networks with an infinite variance of the degree
distribution and with an asymptotically constant global clustering coefficient. Models with
constant global clustering and finite variance were also proposed. Therefore, in this work we
focus only on the most interesting case: we analyze the global clustering coefficient for graphs
with an infinite variance of the degree distribution.
For unweighted graphs, we prove that the global clustering coefficient tends to zero with high
probability and we also estimate the largest possible clustering coefficient for such graphs. On
the contrary, for weighted graphs, the constant global clustering coefficient can be obtained
even for the case of an infinite variance of the degree distribution.

1. INTRODUCTION

In this study, we analyze the global clustering coefficient of graphs with a power-law
degree distribution. Namely, we consider a sequence of graphs with degree distributions
following a regularly varying distribution F . We assume that the degrees of the vertices are
randomly generated according to F . Then, for a given outcome of the degree sequence, a
graph can be built in any arbitrary way. Thus, there is no distribution on the graphs.

It was previously shown in [9] that if F has an infinite variance, then the global
clustering coefficient for any such sequence of graphs tends to zero with high probability.
Namely, an upper bound for the number of triangles is obtained [9]. Again, the argument
for the upper bound uses information only on the degree sequence and does not assume any
random graph model. In addition, the constructing procedure that allows us to obtain the
sequence of graphs with a superlinear number of triangles is presented in [9]. However, the
number of triangles in the constructed graphs grows slower than the upper bound obtained.
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In this study, we close this gap by improving the upper bound obtained in [9]. Moreover,
we also analyze graphs with multiple edges and show that weighted scale-free graphs with
asymptotically constant global clustering coefficient and with an infinite variance of the
degree distribution do exist.

The rest of this article is organized as follows. In the next section, we discuss several
definitions of the clustering coefficient for weighted and unweighted graphs. Then, in
Section 3, we formally define our restriction on a sequence of graphs. In Sections 5 and 6,
we analyze the global clustering coefficient for the unweighted and the weighted case,
respectively. Section 7 concludes the article.

2. CLUSTERING COEFFICIENTS

There are two well-known definitions of the clustering coefficient [2, 5] of an un-
weighted graph. The global clustering coefficient C1(Gn) is the ratio of three times the
number of triangles to the number of pairs of adjacent edges in Gn. The average local
clustering coefficient is defined as follows: C2(Gn) = 1

n

∑n
i=1 C(i), where C(i) is the local

clustering coefficient for a vertex i: C(i) = T i

P i
2
, where T i is the number of edges between

the neighbors of the vertex i and P i
2 is the number of pairs of neighbors. Note that both

clustering coefficients equal 1 for a complete graph.
It was mentioned in [2, 5] that in research papers, either the average local or the

global clustering coefficients are considered, and it is not always clear which definition is
used. However, these two clustering coefficients differ: e.g., it was demonstrated [7] that,
for networks based on the idea of preferential attachment, the difference between these two
clustering coefficients is crucial.

It is also reasonable to study the global clustering coefficient for graphs with multiple
edges. This agrees well with reality; for example, the Web host graph has many multiple
edges: there can be several edges between the pages of two hosts. And even in the Internet
graph (vertices are webpages and edges are links between them) multiple edges occur.

We refer to the study [6] for the definition of the global clustering coefficient for
weighted graphs. They propose the following generalization of the global clustering coef-
ficient to multigraphs:

C1(G) = total value of closed triplets

total value of triplets
.

A triplet is a group of three nodes u, v,w such that the pairs u, v, and u,w are connected.
A triplet is called closed if v and w are also connected. Note that every triangle consists of
three closed triplets. There are several ways to define the value of a triplet. First, the triplet
value can be defined as the arithmetic mean of the weights of two edges (u, v) and (u,w)
that make up the triplet. Second, it can be defined as the geometric mean of the weights of
the edges. Third, it can be defined as the maximum or minimum value of the weights of the
edges. In addition to these methods proposed in [6], we also propose the following natural
definition of the weight: the weight of a triplet is the product of the weights of the edges.
This definition agrees with the following property: the total value of all triplets located in
a vertex is close to its degree squared.

In Section 6 we consider graphs with multiple edges. In this case, the weight of an
edge is equal to its multiplicity.
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3. SCALE-FREE GRAPHS

We consider a sequence of graphs {Gn}. Each graph Gn has n vertices. As in [9],
we assume that the degrees of the vertices are independent random variables following a
regularly varying distribution with a cumulative distribution function F satisfying

1 − F (x) = L(x)x−γ , x > 0, (3.1)

where L(·) is a slowly varying function, that is, for any fixed constant t > 0

lim
x→∞

L(tx)

L(x)
= 1.

There is another obvious restriction on the function L(·): the function 1 − L(x)x−γ must
be a cumulative distribution function of a random variable taking positive integer values
with probability 1.

Note that (3.1) describes a broad class of heavy-tailed distributions without imposing
the rigid Pareto assumption. The power-law distribution with parameter γ + 1 corresponds
to the cumulative distribution 1 − F (x) = L(x)x−γ . Further, by ξ, ξ1, ξ2, . . . we denote
random variables with the distribution F . Note that for any α < γ , the moment Eξα is finite.

Models with γ > 2 and with the global clustering coefficient tending to some positive
constant were already proposed (see, e.g., [7]). Therefore, in this work we consider only
the case 1 < γ < 2.

One small problem remains: we can construct a graph with a given degree distribution
only if the sum of all degrees is even. This problem is easy to solve: we can either regenerate
the degrees until their sum is even or we can add 1 to the last variable if their sum is odd
[3]. For the sake of simplicity, we choose the second option, i.e., if

∑n
i=1 ξi is odd, then

we replace ξn by ξn + 1. It is easy to see that this modification does not change any of our
results, therefore, we do not focus on the evenness further.

In Sections 5 and 6 of this article, we state that some results hold with high probability.
Let us emphasize that the probability refers only to the randomness defining the degree
sequence, and the obtained bounds, e.g., O(n−α) with some α > 0, hold uniformly with
respect to any sequence of graphs {Gn} with the given degree sequence.

4. AUXILIARY RESULTS

In this section, we prove several auxiliary lemmas. These lemmas generalize several
results from [9]. In order to prove these lemmas we use the following theorem (see, e.g.,
[1]).

Theorem 4.1. (Karamata’s theorem.) Let L be slowly varying and locally bounded in
[x0,∞] for some x0 ≥ 0. Then

1. for α > −1 ∫ x

x0

tαL(t)dt = (1 + o(1))(α + 1)−1xα+1L(x), x → ∞ .

2. for α < −1 ∫ ∞

x

tαL(t)dt = −(1 + o(1))(α + 1)−1xα+1L(x), x → ∞ .



GLOBAL CLUSTERING COEFFICIENT 57

We also use the following known lemma (its proof can be found, e.g., in [8]).

Lemma 4.2. Let ξ1, . . . , ξn be mutually independent random variables, Eξi = 0, E|ξi |α <

∞, 1 ≤ α ≤ 2, then

E (|ξ1 + . . . + ξn|α) ≤ 2α (E (|ξ1|α) + . . . + E (|ξn|α)) .

We need the following notation:

Sn,c(x) =
n∑

i=1

ξ c
i I [ξi > x] , S̄n,c(x) =

n∑
i=1

ξ c
i I [ξi ≤ x] , here c, x ≥ 0.

Lemma 4.3. Fix any c such that 0 ≤ c < γ , any β such that 1 < β < γ/c and β ≤ 2,
and any ε > 0. Then, for any x = x(n) > 0 such that x(n) → ∞, we have

ESn,c(x) = γ

γ − c
n xc−γ L (x) (1 + o(1)), n → ∞,

P
(|Sn,c(x) − ESn,c(x)| > ε ESn,c(x)

) = O

((
xγ

nL (x)

)β−1
)

.

Proof. We now assume that c > 0.
First, we estimate the expectation of Sn,c(x):

ESn,c(x) = n

∫ ∞

x

tcdF (t) = −n

∫ ∞

x

tc d(1 − F (t)

= −n tc(1 − F (t))

∣∣∣∣
∞

x

+ n c

∫ ∞

x

tc−1(1 − F (t)) dt

= n xc−γ L (x) + n c

∫ ∞

x

tc−1−γ L(t) dt

∼ n xc−γ L (x) − n c(c − γ )−1xc−γ L (x) = γ

γ − c
n xc−γ L (x) .

Then, we estimate

E
(
ξ cI [ξ > x]

)β = 1

n
ESn,cβ (x) ∼ γ

γ − βc
xβc−γ L (x)

and get

P
(|Sn,c(x) − ESn,c(x)| > ε ESn,c(x)

) ≤ E|Sn,c(x) − ESn,c(x)|β
(ε ESn,c(x))β

= O

(
nE (ξ cI [ξ > x])β

(ESn,c(x))β

)
= O

(
n xβc−γ L (x)

nβxβ(c−γ ) (L (x))β

)

= O
(
n1−βx−(1−β)γ (L (x))1−β

)
.



58 OSTROUMOVA PROKHORENKOVA

Here we applied Lemma 4.2 in order to estimate E|Sn,c(x) − ESn,c(x)|β .
The case c = 0 can be considered similarly:

ESn,0(x) = nP(ξ > x) = n x−γ L (x) ,

P
(|Sn,0(x) − ESn,0(x)| > ε ESn,0(x)

) = O

(
nx−γ L (x)

(n x−γ L (x))β

)

= O

((
xγ

nL (x)

)β−1
)

.

Lemma 4.4. Fix any c such that c > γ and any ε > 0. Then, for any x = x(n) > 0 such
that x(n) → ∞, we have

ES̄n,c(x) = γ

c − γ
n xc−γ L (x) (1 + o(1)), n → ∞ ,

P
(|S̄n,c(x) − ES̄n,c(x)| > ε ES̄n,c(x)

) = O

(
xγ

nL (x)

)
.

Proof. Again, first we estimate the expectation of S̄n,c(x):

ES̄n,c(x) = n

∫ x

0
t cdF (t) = −n

∫ x

0
t c d(1 − F (t))

= −n tc(1 − F (t))

∣∣∣∣
x

0

+ n c

∫ x

0
t c−1(1 − F (t)) dt

= −n xc−γ L (x) + n c

∫ x

0
t c−1−γ L(t) dt

∼ −n xc−γ L (x) + n c(c − γ )−1xc−γ L (x) = γ

c − γ
n xc−γ L (x) .

Then, we estimate

E
(
ξ cI [ξ ≤ x]

)2 = 1

n
ES̄n,2c(x) ∼ γ

2c − γ
x2c−γ L (x)

and get

P
(|S̄n,c(x) − ES̄n,c(x)| > ε ES̄n,c(x)

) ≤ E|S̄n,c(x) − ES̄n,c(x)|2
(ε ES̄n,c(x))2

= O

(
nE (ξ cI [ξ ≤ x])2

(ES̄n,c(x))2

)
= O

(
n x2c−γ L (x)

n2x2(c−γ ) (L (x))2

)
= O

(
xγ

nL (x)

)
.

We prove two more lemmas. Put ξmax = max{ξ1, . . . , ξn}.
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Lemma 4.5. For any ε > 0 and any α > 0,

P
(
ξmax > n

1
γ
−ε
)

= 1 − O
(
n−α

)
.

Also, for any δ < γ ε

P
(
ξmax ≤ n

1
γ
+ε
)

= 1 − O
(
n−δ

)
.

Proof.

P
(
ξmax ≤ n

1
γ
−ε
)

=
[
P
(
ξ ≤ n

1
γ
−ε
)]n

= exp
(
n log

(
1 − P(ξ > n

1
γ
−ε)
))

= exp

(
n log

(
1 − L

(
n

1
γ
−ε
)

n
−γ

(
1
γ
−ε
)))

= exp

(
−nL

(
n

1
γ
−ε
)

n
−γ

(
1
γ
−ε
)
(1 + o(1))

)

= exp
(
−L

(
n

1
γ
−ε
)

nγε(1 + o(1))
)

= O
(
n−α

)
,

P(ξmax > n
1
γ
+ε) ≤ n P

(
ξ > n

1
γ
+ε
)

≤ nL
(
n

1
γ
+ε
)

n
−γ

(
1
γ
+ε
)

= O
(
n−δ

)
.

Lemma 4.6. For any ε > 0 and any δ <
γε

γ+2 ,

P
(
S̄n,2(∞) ≤ n

2
γ
+ε
)

= 1 − O
(
n−δ

)
.

Proof. Choose ϕ such that δ
γ

< ϕ < ε
γ+2 . From Lemma 4.5 we get

P(ξmax ≤ n
1
γ
+ϕ) = 1 − O

(
n−δ

)
.

From Lemma 4.3 and Lemma 4.4, with probability

1 − O

⎛
⎝ n

γ
(

1
γ
−ϕ

)

nL
(
n

1
γ
−ϕ
)
⎞
⎠ = 1 − O

(
n−δ

)
,

we have

S̄n,2

(
n

1
γ
−ϕ
)

≤ (1 + ε)
γ

2 − γ
n

2
γ
+ϕγ−2ϕ

L
(
n

1
γ
−ϕ
)

,

Sn,0

(
n

1
γ
−ϕ
)

≤ (1 + ε) nϕγ L
(
n

1
γ
−ϕ
)

.
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In this case,

S̄n,2

(
n

1
γ
+ϕ
)

≤ S̄n,2

(
n

1
γ
−ϕ
)

+ ξmax Sn,0

(
n

1
γ
−ϕ
)

≤ (1 + ε)
γ

2 − γ
n

2
γ
+ϕγ−2ϕ

L
(
n

1
γ
−ϕ
)

+ n
2
γ
+2ϕ(1 + ε) nϕγ L

(
n

1
γ
−ϕ
)

≤ n
2
γ
+ε

for large enough n. This concludes the proof.

Note that we estimated only the upper bound for S̄n,2(∞), because the lower bound can
be obtained using the lower bound for ξmax. Here, we may use the inequality S̄n,2(∞) ≥ ξ 2

max.

5. CLUSTERING IN UNWEIGHTED GRAPHS

5.1. Previous Results

The behavior of the global clustering coefficient in scale-free unweighted graphs was
considered in [9]. In the case of an infinite variance, the reasonable question is whether
there exists a simple graph (i.e., a graph without loops and multiple edges) with a given
degree distribution. The following theorem is proved in [9].

Theorem 5.1. With high probability there exists a simple graph on n vertices with the
degree distribution defined in Section 3.

So, with high probability such a graph exists and it is reasonable to discuss its global
clustering coefficient. The following upper bound on the global clustering coefficient is
obtained in [9].

Theorem 5.2. For any ε > 0, with high probability the global clustering coefficient
satisfies the following inequality

C1(Gn) ≤ n
− (γ−2)2

2γ
+ε

.

Taking small enough ε, one can see that with high probability C1(Gn) → 0 as n

grows.
In addition, using simulations and empirical observations, the authors of [9] claimed

that with high probability there exists a graph with ∼ n
3

γ+1 triangles and with the degree
distribution defined in Section 3, whereas the theoretical upper bound on the number of
triangles is n2− γ

2 . For the considered case 1 < γ < 2, we have 3
γ+1 < 2 − γ

2 , and there is
a gap between the number of constructed triangles and the obtained upper bound.

Further in this section we close this gap by improving the upper bound. We also
rigorously prove the lower bound.

5.2. Upper Bound

We prove the following theorem.
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Theorem 5.3. For any ε > 0 and any α such that 0 < α < 1
γ+1 , with probability

1 − O(n−α), the global clustering coefficient of Gn satisfies the following inequality

C1(Gn) ≤ n
− (2−γ )

γ (γ+1) +ε
.

Proof. The global clustering coefficient is

C1(Gn) = 3 · T (n)

P2(n)
,

where T (n) is the number of triangles and P2(n) is the number of pairs of adjacent edges
in Gn.

Note that P2(n) ≥ ξmax(ξmax − 1)/2. Therefore, from Lemma 4.5 we get that for any
δ > 0 with probability 1 − O

(
n−α

)
,

P2(n) > n
2
γ
−δ

.

It remains to estimate T (n). Obviously, for any x

T (n) ≤ |{i : ξi > x}|3 +
∑

i:ξi≤x

ξ 2
i . (5.1)

The first term in (5.1) is the upper bound for the number of triangles with all vertices among
the set {i : ξi > x}. The second term is the upper bound for the number of triangles with at
least one vertex among {i : ξi ≤ x}.

From Lemma 4.3 and Lemma 4.4 we get

|{i : ξi > x}| = Sn,0(x) ≤ (1 + ε)n x−γ L (x) ,∑
i:ξi≤x

ξ 2
i = S̄n,2(x) ≤ (1 + ε)

γ

2 − γ
n x2−γ L (x) ,

with probability 1 − O( xγ

nL(x) ).

Now we can fix x = n
1

γ+1 . So, with probability

1 − O

⎛
⎝ n

− 1
γ+1

L
(
n

1
γ+1

)
⎞
⎠ = 1 − O(n−α),

we have

T (n) ≤ n
3

γ+1 +δ

Taking small enough δ, we obtain

C1(Gn) ≤ n
ε− 2−γ

γ (γ+1) .

This concludes the proof.
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5.3. Lower Bound

We prove the following theorem.

Theorem 5.4. For any ε > 0 and any α such that 0 < α < min{ γ ε

γ+2 , 1
γ+1 , γ − 1},

with probability 1 − O(n−α), there exists a graph with the degree distribution defined in
Section 3 and the global clustering coefficient satisfying the following inequality

C1(Gn) ≥ n
− (2−γ )

γ (γ+1) −ε
.

Proof. Again,

C1(Gn) = 3 · T (n)

P2(n)
.

The upper bound for P2(n) follows from Lemma 4.6. Fix ε′ such that α(γ+2)
γ

< ε′ < ε.
Then,

P
(
P2(n) ≤ n

2
γ
+ε′) ≥ P

(
S̄n,2(∞) ≤ n

2
γ
+ε′) = 1 − O

(
n−α

)
.

Now, we present the lower bound for T (n). Fix any δ such that 0 < γδ < min{ 1
γ+1 −

α, ε−ε′
3 }. It follows from Lemma 4.3 that, with probability 1 − O(n−α),

Sn,0

(
n

1
γ+1 +δ

)
≤ (1 + ε) n

1
γ+1 −γ δ

L
(
n

1
γ+1 +δ

)
≤ n

1
γ+1 +δ

.

Let us denote by A the set of vertices whose degrees are greater than n
1

γ+1 +δ . The size of A

equals Sn,0

(
n

1
γ+1 +δ

)
. Because the number of vertices in A is not greater than the minimum

degree in A, a clique on A can be constructed. Therefore, with probability 1 − O
(
n−α

)
,

Sn,0

(
n

1
γ+1 +δ

)
≥ (1 − ε) n

1
γ+1 −γ δ

L
(
n

1
γ+1 +δ

)
and

3T (n) ≥ 3

(
Sn,0

(
n

1
γ+1 +δ

)
3

)
≥ n

3
γ+1 −(ε−ε′)

.

Finally, we get

C1(Gn) = 3 · T (n)

P2(n)
≥ n

3
γ+1 −(ε−ε′)

n
2
γ
+ε′ = n

− (2−γ )
γ (γ+1) −ε

.

It remains to be proven that after we constructed a clique on the set A, with high
probability we still can construct a graph without loops and multiple edges. This can be
easily proved similarly to Theorem 5.1. Namely, we use the following theorem by Erdős
and T. Gallai [4].
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Theorem 5.5. (Erdős–Gallai.) A sequence of nonnegative integers d1 ≥ . . . ≥ dn can
be represented as the degree sequence of a finite simple graph on n vertices if and only if

1. d1 + . . . + dn is even;
2.
∑k

i=1 di ≤ k(k − 1) +∑n
i=k+1 min(di, k) holds for 1 ≤ k ≤ n.

Let us order the realized values of the random variables ξ1, . . . , ξn and obtain the
ordered sequence d1 ≥ . . . ≥ dn. In order to apply the theorem of Erdős and Gallai, we
assume that the set A is now a single vertex with the degree

deg(A) = Sn,1

(
n

1
γ+1 +δ

)
− 2

(
Sn,0

(
n

1
γ+1 +δ

)
2

)
< Sn,1

(
n

1
γ+1 +δ

)
.

It is sufficient to prove that with probability 1 − O(n−α), the following condition is
satisfied

deg(A) +
k∑

i=|A|+1

di ≤ (k − |A|)(k − |A| + 1) +
n∑

i=k+1

min(di, k − |A| + 1) (5.2)

for all k ≥ |A|.
Let us now prove that with probability 1 − O(n−α), the condition (5.2) is satisfied.

For some large enough C if k > C
√

n, then

deg(A) +
k∑

i=|A|+1

di ≤ (k − |A|)(k − |A| + 1) .

This holds because with probability 1 − O(n−α),

|A| = Sn,0

(
n

1
γ+1 +δ

)
≤ (1 + ε)n

1
γ+1 −δ

L
(
n

1
γ+1 +δ

)
≤ n

1
γ+1 ,

and the sum of all degrees grows linearly with n:

P
(
|Sn,1(0) − nEξ | >

n

2
Eξ
)

≤ 4α+1n E|ξ − Eξ |α+1

nα+1(Eξ )α+1
= O

(
n−α

)
.

Here, we used that α + 1 < γ .
Finally, consider the case k ≤ C

√
n. Note that min(di, k − |A| + 1) > 1, so

n∑
i=k+1

min(di, k − |A| + 1) ≥ n − C
√

n .

It remains to show that with probability 1 − O(n−α),

deg(A) +
k∑

i=|A|+1

di ≤ n − C
√

n .
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It is sufficient to show that

	C√
n
∑

i=1

di ≤ n − C
√

n .

This inequality is easy to prove using Lemma 4.3. For any 1
3γ

< δ < 1
2γ

, with

probability 1 − O(n−1/2), we have

Sn,0
(
nδ
)

> C
√

n

and

Sn,1
(
nδ
) ≤ n

2γ+1
3γ ≤ n − C

√
n .

Therefore, the condition (5.2) is satisfied.

6. CLUSTERING IN WEIGHTED GRAPHS

In this section, we analyze the global clustering coefficient of graphs with multiple
edges. First, let us note that the case when we allow both loops and multiple edges is not
very interesting: we can get a high clustering coefficient just by avoiding triplets. Namely,
we can construct several triangles and then just create loops in all vertices. Then, we can
connect the remaining half-edges for the vertices with odd degrees. Therefore, we assume
that loops are not allowed. We show that even with this restriction it is possible to obtain a
constant global clustering coefficient.

Several definitions of the global clustering coefficient for graphs with multiple edges
are presented in Section 2. The following theorem holds for any definition of the global
clustering coefficient C1(Gn).

Theorem 6.1. Fix any δ > 0. For any α such that 0 < α <
γ−1
γ+1 , with probability

1 − O
(
n−α

)
, there exists a loopless multigraph with the degree distribution defined in

Section 3 and the global clustering coefficient satisfying the following inequality

C1(Gn) ≥ 2 − γ

2 + γ
− δ .

Proof. Fix some ε > 0. From Lemma 4.3, with c = 0 it follows that with probability

1 − O
(

xγ

n L(x)

)
(1 − ε) n x−γ L (x) ≤ Sn,0(x) ≤ (1 + ε) n x−γ L (x) . (6.1)

Let us prove that, for large enough n, there always exists such x0 that

(1 + ε) n x
−γ

0 L (x0) ≤ x0 ≤ (1 + 2ε) n x
−γ

0 L (x0) . (6.2)

In other words, we want to find such x0 that

1

(1 + 2ε) n
≤ x

−γ

0 L (x0)

x0
≤ 1

(1 + ε) n
.
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Recall that x−γ L(x) = 1 − F (x), where F (x) is a cumulative distribution function. There-
fore, f (x) = x−γ L(x)

x
monotonically decreases to zero on (0,∞). The only problem is that

f (x) is a discontinuous function. In order to guarantee the existence of the required value x0,
we have to prove that (for large enough n) if f (x) < 1

n
, then f (x+)−f (x−) < ε

(1+ε)(1+2ε)n
1.

This can be proved as follows. For the function F (x) it is obvious that if 1 − F (x) < 1
n

,
then |F (x+) − F (x−)| < 1

n
. Therefore, in this case, |f (x+) − f (x−)| < 1

x n
. For large

enough n (and this leads to large enough x), we have 1
x n

≤ ε
(1+ε)(1+2ε)n . This concludes the

proof of the fact that the required x0 exists.
We take any value that satisfies (6.2) and further denote it by x0. Note that, up to a

slowly varying multiplier, x0 is of order n
1

γ+1 . Therefore, O( x
γ

0
nL(x0) ) = O(n−α). From (6.1)

and (6.2) it follows that with probability 1 − O( x
γ

0
nL(x0) ), the number of vertices with degree

greater than x0 (i.e., Sn,0(x0)) is not larger than x0. Denote this set of vertices by Ax0 . In
this case, a clique on Ax0 can be constructed.

In addition, we want all vertices from the set Ax0 to be connected only to each other.
This can be possible, because multiple edges are allowed (the proof of the fact that it is
actually possible is given later in the text). If the sum of degrees in Ax0 is odd, then we
allow one edge (from the vertex with the smallest degree in Ax0 ) to go outside this set.

We are ready to estimate the global clustering coefficient:

C1(Gn) = total value of closed triplets

total value of triplets
.

The total value of closed triplets is at least 3
(
Sn,0(x0)

3

)
regardless of the definition of the value

of a triplet. With probability 1 − O( x
γ

0
n L(x0) ),

3

(
Sn,0(x0)

3

)
≥ 1

2
(1 − ε)3 n3 x

−3γ

0 L3(x0).

The total value of all triplets includes:

• The total value of closed triplets on Ax0 estimated above,
• The total value of triplets on the remaining vertices, which is not greater than S̄n,2(x0),
• (optionally) Some unclosed triplets on the vertex with the smallest degree in Ax0 , if the

sum of degrees in Ax0 is odd.

Because the smallest degree in the set Ax0 is of order x0, we can estimate the last two
summands in the total value of triplets by

S̄n,2(x0) + O
(
x2

0

) ≤ (1 + ε)
γ

2 − γ
n x

2−γ

0 L (x0) .

By Lemma 4.4, this holds with probability 1 − O( x
γ

0
nL(x0) ).

1f (x+) = limy→x+ f (y), f (x−) = limy→x− f (y).
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Finally, with probability 1 − O( x
γ

0
n L(x0) ), we have

C1(Gn) ≥
1
2 (1 − ε)3 n3 x

−3γ

0 L3 (x0)
1
2 (1 − ε)3 n3 x

−3γ

0 L3 (x0) + (1 + ε) γ

2−γ
n x

2−γ

0 L (x0)

≥
1
2 (1 − ε)3 n2 x

−2γ

0 L2 (x0)
1
2 (1 − ε)3 n2 x

−2γ

0 L2 (x0) + (1 + ε) γ

2−γ
(1 + 2ε)2 n2 x

−2γ

0 L2 (x0)

=
1
2 (1 − ε)3

1
2 (1 − ε)3 + (1 + ε) γ

2−γ
(1 + 2ε)2

≥ 2 − γ

2 + γ
− δ .

for sufficiently small ε. Here, in the second inequality we used (6.2).
Recall that the loops are not allowed. Therefore, it remains to prove that (1) a

multiclique on Ax0 can be constructed; (2) a graph on the remaining vertices can be
constructed. Note that a multigraph without loops can always be constructed if the maximum
degree is not larger than the sum of the other degrees.

A multiclique on Ax0 can be constructed if

ξmax ≤ Sn,1(x0) − ξmax − x2
0 . (6.3)

Here, x2
0 is the upper bound for the number of half edges already involved in the required

clique. From Lemma 4.3, with probability 1 − O
(
n−α

)
,

Sn,1(x0) > (1 − ε)
γ

γ − 1
n x

1−γ

0 L (xo) . (6.4)

Fix some ε′ such that 0 < ε′ < 1
γ

(
γ−1
γ+1 − α

)
. In this case we have α <

γ−1
γ+1 − ε′γ ,

therefore, Lemma 4.5 gives that

P
(
ξmax ≤ n

2
γ+1 −ε′) = P

(
ξmax ≤ n

1
γ
+ γ−1

γ (γ+1) −ε′) = 1 − O
(
n−α

)
. (6.5)

Now (6.3) follows immediately from (6.4), (6.5), and the fact that x0 is of order n
1

γ+1 .
Similarly, it is easy to show that the graph on the remaining vertices can be con-

structed:

x0 ≤ S̄n,1(x0) − x0

because S̄n,1(x0) = Sn,1(0) − Sn,1(x0) grows linearly with n.

7. CONCLUSION

In this study, we fully analyzed the behavior of the global clustering coefficient in
scale-free graphs with an infinite variance of the degree distribution. We considered both
unweighted graphs and graphs with multiple edges. For the unweighted case, we first
obtained the upper bound for the global clustering coefficient. In particular, we proved that
the global clustering coefficient tends to zero with high probability. We also presented the
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constructing procedure that allows us to reach the obtained upper bound. The situation turns
out to be different for graphs with multiple edges. In this case, it is possible to construct a
sequence of graphs with an asymptotically constant clustering coefficient.
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