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ABSTRACT

Gene regulatory networks (GRNs) play a central role in sustaining complex biological
systems in cells. Although we can construct GRNs by integrating biological interactions that
have been recorded in literature, they can include suspicious data and a lack of information.
Therefore, there has been an urgent need for an approach by which the validity of con-
structed networks can be evaluated; simulation-based methods have been applied in which
biological observational data are assimilated. However, these methods apply nonlinear
models that require high computational power to evaluate even one network consisting of
only several genes. Therefore, to explore candidate networks whose simulation models can
better predict the data by modifying and extending literature-based GRNs, an efficient and
versatile method is urgently required. We applied a combinatorial transcription model,
which can represent combinatorial regulatory effects of genes, as a biological simulation
model, to reproduce the dynamic behavior of gene expressions within a state space model.
Under the model, we applied the unscented Kalman filter to obtain the approximate pos-
terior probability distribution of the hidden state to efficiently estimate parameter values
maximizing prediction ability for observational data by the EM-algorithm. Utilizing the
method, we propose a novel algorithm to modify GRNs reported in the literature so that
their simulation models become consistent with observed data. The effectiveness of our
approach was validated through comparison analysis to the previous methods using syn-
thetic networks. Finally, as an application example, a Kyoto Encyclopedia of Genes and
Genomes (KEGG)-based yeast cell cycle network was extended with additional candidate
genes to better predict the real mRNA expressions data using the proposed method.

Key words: biological simulation, gene regulatory networks inference, time-series analysis.

1. INTRODUCTION

Intracellular systems in cells consist of many genetic and chemical interactions, and gene regu-

latory networks (GRNs) play a crucial role in sustaining such systems. Although comprehensive
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understanding of GRNs is still lacking, much data have been recorded in the literature following recent

advances in biotechnology, for example, microarray and Chip-Seq. Thus, by integrating these findings, we

may be able to reconstruct GRNs and understand the dynamic behavior of gene expression through mathe-

matical simulation models. However, since some unverified interactions are present in the literature, sim-

ulation results may not match the observed data, for example, microarray expression data. In this respect,

a method for finding candidate networks that are consistent with the data by improving and extending

literature-based models is needed to elucidate GRNs (Hasegawa et al., 2011, 2014; Nakajima et al., 2012).

In order to construct simulation models of GRNs, interactions between biomolecules, for example,

mRNA and proteins, are firstly collected from the literature and are integrated to construct the networks.

Then, mathematical differential or difference equations are given to the constructed networks to simu-

late the dynamic behavior of these biomolecules. Thus, biologically reliable models, for example, the

Michaelis-Menten model (Savageau, 1969) and S-system (Savageau and Voit, 1987), described by dif-

ferential equations, have been applied in dealing with the limited number of genes (Murtuza Baker et al.,

2013; Hasegawa et al., 2011; Liu and Niranjan, 2012; Rogers et al., 2007; Quach et al., 2007). In these

approaches, a simulation-based methodology, called data assimilation, was employed for estimating pa-

rameter values and evaluating such simulation models (Nagasaki et al., 2006; Nakamura et al., 2009).

However, although simulation results generated from these models can be biologically reasonable, eval-

uation of even one simulation model with estimating optimal parameter values is computationally de-

manding since parameter estimation must rely on a type of Monte Carlo methodology (Murtuza Baker

et al., 2013; Julier and Uhlmann, 1997; Kitagawa, 1998; Koh et al., 2010). Therefore, it is computationally

implausible to find appropriate models from a large number of candidate models.

In contrast to such approaches, in order to cope with the computational burden known as the curse of

dimensionality in applying mathematical models to elucidate GRNs, there exists the other approach to use

linear models for dealing with more than a hundred genes. In this approach, many effective methods have been

developed, for example, state space models (Beal et al., 2005; Hirose et al., 2008; Rangel et al., 2004) and

Bayesian inference (Friedman et al., 2007; Mahdi et al., 2012; Watanabe et al., 2012). For restoring literature-

based GRNs, a concept, called network completion, has also been developed (Akutsu et al., 2009; Nakajima

et al., 2012). However, these methods could fail in some cases, for example, handling non-equally spaced time-

point data, because of simplified abstractions of biological systems. Thus, since these models cannot adequately

represent the dynamics of gene expression due to simplified abstractions of biological systems, biologically

invalid results might often be obtained. For improving and extending literature-based GRNs, these models are

not sufficient because the number of genes is limited and their regulatory relationships are mostly reliable.

Here, applied simulation models should maximally emulate reliable biological dynamics under the

constraint that their parameter values can be efficiently estimated. To satisfy the requirements, we de-

veloped a new data assimilation schema that applies a simple nonlinear simulation model, termed the

combinatorial transcription model (Opper and Sanguinetti, 2010; Wang et al., 2005). As a part of this

schema, we applied the unscented Kalman filter ( Julier and Uhlmann, 1997, 2004; Chow et al., 2007) to

obtain approximate posterior probability distributions of the hidden state and estimated parameter values

maximizing prediction ability for observational data by means of EM-algorithm. Then, a novel algorithm

was developed to efficiently select and evaluate a candidate network to obtain a network that can best

predict the data within a framework of the nonlinear state space model.

To show the effectiveness of the proposed method, we performed a comparison using artificial data in

regard to a previously proposed network completion method (Nakajima et al., 2012). For the comparison,

synthetic data with equally and non-equally spaced time-points were generated from WNT5A (Kim et al.,

2002) and a yeast cell cycle network (Kanehisa et al., 2012). Next, as real data experiments, a yeast cell-

cycle network from KEGG database (Kanehisa et al., 2012) and candidate genes from The Saccharomyces

Genome Database (SGD) (Cherry et al., 2012), which can have functions related to this network, were

integrated to extend the network using real mRNA expression data (Spellman et al., 1998).

2. METHOD

2.1. Combinatorial model for gene regulatory networks

Let xi(t) be the abundance of the ith (i = 1‚ . . . ‚ p) gene as a function of time t. As a gene regulatory

model, we assume a system in which each gene undergoes synthesis and degradation processes, and its
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expression value can be controlled through regulations of its synthesis process by other genes. Thus, xi(t) is

determined by

dxi(t)

dt
= fi(x(t)‚ h) � ui - xi(t) � di + vi‚ t‚ (1)

where fi is a function of the regulatory effect on the ith gene, x(t) = (x1(t)‚ . . . ‚ xp(t))0, h is a tuning

parameter, ui is synthesis coefficient, di is a degradation coefficient, and vi,t is a system noise at time t.

Typically, fi is represented by a hill function, such as the Michaelis-Menten model (Savageau, 1969).

Due to its heavy computational cost to estimate parameter values maximizing prediction ability for data,

Equation (1) is often approximated as a difference equation. Then, we apply the combinatorial transcription

model (Opper and Sanguinetti, 2010; Wang et al., 2005) as

xi‚ t +Dt = xi‚ t +
X
j2Ai

ai‚ j � xj‚ t +
X
j2Ai

X
k2Ainj

bi‚ (j‚ k) � xj‚ t � xk‚ t + ui - xi‚ t � di + vi‚ t

0
@

1
A � Dt‚ (2)

where xi,t is the amount of the ith gene at time t, ai,j is an individual effect of the jth gene on the ith gene,

bi,(j,k) is a combinatorial effect from the jth and the kth genes to the ith gene, Ai is an active set of genes

regulating the ith gene, and Dt is a minute displacement. Here, we set Dt = 1 (:a minimum observational

interval) for simplicity. Figure 1 exemplifies this model.

In order to assimilate a simulation model and observational data, we apply a nonlinear state space model

(Asif and Sanguinetti, 2011; Hirose et al., 2008; Kojima et al., 2010; Lillacci and Khammash, 2010; Quach

et al., 2007). Let xt = (x1‚ t‚ . . . ‚ xp‚ t)
0 be the vector of hidden variables and yt be the observational data at

time t. A state space representation of Equation (2) is given by

xt + 1 = Axt + Bvec(xtx
0
t) + u + vt‚ (3)

yt = xt + wt‚ (4)

where A 2 Rp · p is a linear effect matrix, B 2 Rp · p2

is a combinatorial effect matrix, vec($) is a transformation

function (Rp · p ! Rp2

), u = (u1‚ . . . ‚ up)0, vt * N(0, Q), and wt * N(0, R) are system noise and observational

noise with diagonal covariance matrices, respectively. Note that A and B should be sparse matrices according

toAi, and that di is included in A. We define an entire set of time points T = f1‚ . . . ‚ Tg and the observed time

set T obs (T obs � T ):

2.2. Unscented Kalman filter

In Equations (3) and (4), conditional probability densities P(xtjYt - 1), P(xtjYt), and P(xtjYT) can be non-

Gaussian forms, where Yt = (y1‚ . . . ‚ yt). Therefore, we applied the unscented Kalman filter (UKF) ( Julier

and Uhlmann, 1997, 2004; Chow et al., 2007) to approximately obtain these conditional probability

densities. The procedure is explained below.

2.2.1. Prediction and filtering steps. Let xtjs and Vtjs be the expectation and the covariance matrix,

given observational data Ys at time t. For t = 0‚ . . . ‚ T - 1,

1. Select sigma points x
(n)
tjt (n = 0‚ . . . ‚ 2p) as

x
(n)
tjt = xtjt‚ (n = 0)‚ (5)

x
(n)
tjt = xtjt +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(p + k)S(n)

tjt

q
‚ (n = 1‚ . . . ‚ p)‚ (6)

Synthesis Degradation

Gene i

Gene j Gene k

a a

b

i, j i, k

i,(j, k)

u i d i
FIG. 1. An example of the combinatorial transcription model regarding

the ith gene. A gene undergoes synthesis and degradation processes, and its

synthesis process is regulated through individual effects ai,j,ai,k, and a

combinatorial effect bi,(j,k).
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x
(n)
tjt = xtjt -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(p + k)S(n - p)

tjt

q
‚ (n = p + 1‚ . . . ‚ 2p)‚ (7)

where S(n)
tjt is the nth column vector of Stjt and k = a2( p + j) - p. Here, a2 = 3/10 and j = 0 were

applied to set p + k = 3 ( Julier et al., 2000).

2. Predict the next state of the generated sigma points x
(n)
tjt as x

(n)
t + 1jt using the system equation of Equation

(3) without adding the system noise.

3. Calculate xt + 1jt and Vt + 1jt as

xt + 1jt =
X2p

n = 0

W(n)
1 x

(n)
t + 1jt‚ (8)

St + 1jt =
X2p

n = 0

W(n)
2 (x(n)

t + 1jt - xt + 1jt)(x
(n)
t + 1jt - xt + 1jt)

0 + Q‚ (9)

W(0)
1 =

k
p + k

‚ (10)

W(0)
2 =

k
p + k

+ 1 - a2 + b‚ (11)

W(n)
1 =W(n)

2 =
1

2(p + k)
‚ (n = 1‚ . . . ‚ 2p)‚ (12)

where b is set 2 ( Julier, 2002).

4. In the combinatorial model, the observational equation of Equation (4) is a linear function. Then, we

can apply the general Kalman filter algorithm (Kojima et al., 2010; Kalman, 1960) to obtain the

optimal conditional expectation and covariance matrix as follows

xt + 1jt + 1 = xt + 1jt +St + 1jt + 1R - 1(yt + 1 - xt + 1jt)‚ (13)

St + 1jt + 1 = (R - 1 +S- 1
t + 1jt)

- 1: (14)

More details can be referred to in Julier and Uhlmann (1997, 2004).

2.2.2. Smoothing step. In order to obtain the conditional expectation and covariance matrix of the

hidden state given full observational data Y T, we apply the Rauch-Tung-Striebel (RTS) smoother for UKF

(Sarkka, 2008). The formulation of the RTS smoother is described as follows:

xtjT = xtjt + Kt(xt + 1jT - xt + 1jt - 1)‚ (15)

StjT =Stjt + Kt(St + 1jT -St + 1jt - 1)K 0t ‚ (16)

Kt = CtS - 1
t + 1jt‚ (17)

Ct =
X2p

n = 0

W(n)
2 (x(n)

tjt - 1
- xtjt - 1)(x(n)

t + 1jt - xt + 1jt)
0: (18)

Since we have xTjT and STjT after prediction and filtering steps, the above equations are recursively applied

for t = T - 1‚ . . . ‚ 0.

2.3. Parameter estimation using EM-algorithm

Let XT = fx0‚ . . . ‚ xTg be the set of state variables, and h = {A, B, u, Q, R, l0} be the parameter vector.

The log-likelihood of observational data is given by

log L = log

Z
P(x0)

Y
t2T

P(xtjxt - 1)
Y

t2T obs

P(ytjxt)dx1 . . . dxT ‚ (19)
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where P(x0) is a probability density of N-dimensional Gaussian distributions N(l0, S0), P(xtjxt - 1) and

P(ytjxt) can be probability densities of N-dimensional non-Gaussian distributions approximated by Equa-

tions (3) and (4) in section 2.1 and the unscented transformation in section 2.2.

In this article, we attempted to estimate the parameter vector h by maximizing Equation (19) using the

EM-algorithm (Dempster et al., 1977). Thus, the conditional expectation of the joint log-likelihood of the

complete data (XT,YT) at the lth iteration,

q(hjhl) = E[ log P(YT ‚ XT jh)jYT ‚ hl]‚ (20)

is iteratively maximized with respect to h until convergence.

In the expectation step, set conditional expectations of xt as

Vt =
X
t2T

X2p

n = 0

W(n)
2 x

(n)
tjT x

(n)0

tjT ‚ (21)

Vlag =
X
t2T

X2p

n = 0

W(n)
2 x

(n)
tjT x

(n)0

t - 1jT ‚ (22)

Vt - 1 =
X
t2T

X2p

n = 0

W(n)
2 x

(n)
t - 1jT x

(n)0

t - 1jT ‚ (23)

Flag =
X
t2T

X2p

n = 0

W(n)
2 x

(n)
tjT vec(x(n)

t - 1jT x
(n)0

t - 1jT )0‚ (24)

Ft - 1 =
X
t2T

X2p

n = 0

W(n)
2 x

(n)
t - 1jT vec(x(n)

t - 1jT x
(n)0

t - 1jT )0‚ (25)

Ct - 1 =
X
t2T

X2p

n = 0

W(n)
2 vec(x(n)

t - 1jT x
(n)0

t - 1jT )vec(x(n)
t - 1jT x

(n)0

t - 1jT )0; (26)

st =
X
t2T

X2p

n = 0

W(n)
1 x

(n)
tjT ‚ (27)

st - 1 =
X
t2T

X2p

n = 0

W(n)
1 x

(n)
t - 1jT ‚ (28)

s2
t - 1 =

X
t2T

X2p

n = 0

W(n)
1 vec(x(n)

t - 1jT x
(n)0

t - 1jT )0: (29)

In the maximization step, hl is updated to hl + 1 = arg maxhq(hjhl). Let vlag,i, /lag,i, and /t-1,i be a

transpose of the ith row vector of Vlag, Flag, and Ft - 1, respectively. Then, h is updated as

aAi = VA
- 1

t - 1 (vAlag‚ i - /A ·B
t - 1 bBi - uis

A
t - 1)‚ (30)

bBi =CB
- 1

t - 1(/Blag‚ i - /A ·B0
t - 1 aAi - uis

2B )‚ (31)

u =
st - Ast - 1 - Bs2

T
‚ (32)

Q =
1

T

XT

t = 1

E[(xt - Axt - 1 - Bvec(xt - 1x0t - 1) - u) � (xt - Axt - 1 - Bvec(xt - 1x0t - 1) - u0jYT ]‚ (33)

l0 = x0jT ‚ (34)

R =
1

T

X
t2T obs

f(yt - xtjT )(yt - xtjT )0 +StjTg‚ (35)
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where A and B are active sets of elements for A and B, respectively. For example, aAi is an jAj-dimensional

vector consisting of elements regulating the ith gene.

2.4. Network restoration algorithm

When an original gene regulatory networkMoriginal is given, the purpose is to find the modelMbest that

can best predict observational data. Here, the prediction ability of a model M is evaluated using the

Bayesian information criterion (BIC) (Schwarz, 1978) described by

BIC = 2 log L - D log �‚ (36)

where D and m are the number of samples and the nonzero parameters, respectively. Because of the high

computational cost involved in estimating the values of the parameters h for M, we can not evaluate all

candidate models. Therefore, starting from Moriginal, one strategy is to sequentially evaluate candidate

models that are constructed by changing a part of the regulatory structure of the current modelMcurrent of

which prediction ability is the best among evaluated ones. In this paradigm, we consider three operations,

that is, adding, deleting, and replacing a regulation, which are shown in Figure 2, and the constraints addmax

and delmax, which restrict the number of additional and deleted regulations fromMoriginal. Then, we propose

a novel algorithm, which can efficiently evaluate only highly possible candidates, for improving and ex-

tending GRNs to obtainMbest as concluded in Algorithms 1–3 (2 and 3 are sub-algorithms for Algorithm 1).

In these algorithms, we consider a function for measuring the possibility of the model M that added or

deleted a regulation to the ith gene from Mcurrent as

e(M‚ i) = a0iVt - 1ai - 2vlag‚ iai + 2b0i/
0
t - 1ai + 2uis

0
t - 1ai: (37)

Add Edge Delete Edge Replace Edge

Current Network

FIG. 2. The operations of changing the current network. We consider the three types of operations for an im-

provement of gene regulatory network (GRN), that is, ‘‘Add Edge’’ (adding), ‘‘Delete Edge’’ (deleting), and ‘‘Replace

Edge’’ (replacing). Under the constraints of addmax and delmax, these operations are recursively executed until the

network cannot be changed through these operations to decrease the Bayesian information criterion (BIC) score.
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Algorithm 1. The proposed algorithm for improving GRNs based on the approximate posterior probability

1: Set r;
2: add ) 0; del ) 0; flag ) 0
3: BICcurrent ) the BIC score of the original model;
4: Mcurrent)Moriginal;
5: while flag < N2 do
6: for i = 1 to N do
7: for j = 1 to N do
8: if Ai,j of Mcurrent = 0 then
9: changed ) Execute subalgorithm 1;

10: else
11: changed ) Execute subalgorithm 2;
12: end if
13: if changed then
14: flag ) 0;
15: else
16: flag ) flag + 1;
17: end if
18: if flag > = N2 then
19: break;
20: end if
21: end for
22: if flag > = N2 then
23: break;
24: end if
25: end for
26: end while

Algorithm 2. Subalgorithm 1

1: changed ) FALSE;
2: ConsiderMcandidate that is constructed fromMcandidate by setting a regulation to the ith gene by the jth gene as an

active element;
3: Estimate the parameter values and obtain the BIC score BICcandidate by the UKF and the EM-algorithm;
4: if BICcurrent > BICcandidate and addmax > add then
5: Set Mcandidate as Mcurrent; BICcandidate ) BICcurrent;
6: changed ) TRUE;
7: else
8: for i = 1 to N do
9: for k = 1 to r do

10: j ) the kth minimum element with respect to e(i‚ jcol) (jcol = 1‚ . . . ‚ N) of Mcandidate;
11: if Ai,j of Mcandidate is 0 then
12: continue;
13: end if
14: if Ai,j of Moriginal is 1 or addmax > add then
15: continue;
16: end if
17: ConsiderMcandidate2 that is constructed fromMcandidate by setting a regulation to the ith gene by the jth gene

as a nonactive set;
18: Estimate the parameter values and obtain the BIC score by the UKF and the EM-algorithm;
19: end for
20: end for
21: if BICcurrent > the minimum BIC score among models calculated above then
22: Set Mcurrent and BICcurrent as those of the minimum one;
23: changed ) TRUE;
24: end if
25: end if
26: Set add and del as those of the Mcurrent;
27: return changed;
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Algorithm 3. Subalgorithm 2

1: changed ) FALSE;
2: Consider Mcandidate that is constructed from Mcandidate by setting a regulation to the ith gene by the jth gene as a

non-active element;
3: Estimate the parameter values and obtain the BIC score BICcandidate by the UKF and the EM-algorithm;
4: if BICcurrent > BICcandidate and delmax > del then
5: Set Mcandidate as Mcurrent; BICcandidate ) BICcurrent;
6: changed ) TRUE;
7: else
8: for i = 1 to N do
9: for k = 1 to r do

10: j ) the kth minimum element with respect to e(i‚ jcol) (jcol = 1‚ . . . ‚ N) of Mcandidate;
11: if Ai,j of Mcandidate is 1 then
12: continue;
13: end if
14: if Ai,j of Moriginal is 0 or adddel > del then
15: continue;
16: end if
17: ConsiderMcandidate2 that is constructed fromMcandidate by setting a regulation to the ith gene by the jth gene

as an active set;
18: Estimate the parameter values and obtain the BIC score by the UKF and the EM-algorithm;
19: end for
20: end for
21: if BICcurrent > the minimum BIC score among models calculated above then
22: Set Mcurrent and BICcurrent as those of the minimum one;
23: changed ) TRUE;
24: end if
25: end if
26: Set add and del as those of the Mcurrent;
27: return changed;

To measure the effectiveness of the candidate models when changing active sets, Equation (37), of which

active sets are changed as those of the next candidate, is calculated. Then, only for r top models with

respect to - e(M‚ i) for each i, the BIC scores are evaluated by estimating the parameter values maxi-

mizing prediction ability for observational data using UKF and the EM-algorithm. This procedure is shown

in Figure 3. Note that e(M‚ i) can be derived when calculating arg arg maxai
q(hjhl).

3. RESULTS

3.1. Comparison analysis using synthetic data of WNT5A and yeast network

To show the effectiveness of the proposed algorithm, we used artificial time-course gene expression data

from two synthetic networks of WNT5A (Kim et al., 2002) and a yeast cell cycle network (Kanehisa et al.,

2012) as illustrated in Figures 4 and 5, respectively. For each network, we generated two time-courses

consisting of T = f1‚ 2‚ . . . ‚ 30g and f1‚ 2‚ . . . ‚ 10‚ 12‚ . . . ‚ 30g by using Equations (3) and (4). For

Equation (3), the values of the parameters were determined between 0 and 1, and the system noise was

according to Gaussian distribution with a mean of 0 and a variance of 0.1. In Equation (4), Gaussian

observational noise with a mean of 0 and a variance of 0.3 were added to these artificial data. Note that the

networks were used for the performance comparison in the previous study (Nakajima et al., 2012).

For this comparison, we applied (a) the proposed method, (b) a regression-based method (DPLSQ)

(Nakajima et al., 2012), (c) DPLSQ with BIC (Schwarz, 1978), and (d) Akaike information criterion

(AIC) (Akaike, 1974) to the data sets. Here, since DPLSQ is based only on the least-square errors, it

may infer many false positives. Then, we modified the algorithm to use BIC and AIC; r in the proposed

algorithm is set 3.

For each data set, 10 trials were executed, for each of which the true network of Figures 4 and 5 is

randomly modified and given as an original network. Thus, a network obtained by adding and deleting five

edges from the true network was given as an original network and then (a)–(d) were applied to obtain the
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true network. We evaluated the average performance of true positive (TP), false positive (FP), true negative

(TN), false negative (FN), precision rate (PR = TP
TP + FP

), recall rate (RR = TP
TP + FN

), and F-measure ( = 2PR�RR
PR + RR

)

over 10 trials for each set of data. In contrast to the usual way, we counted TP when an altered edge was

successfully improved as the true model, FN when an altered edge was not improved, and FP when an edge

in the true model was changed in the improved model. The results of using the four time-courses are

summarized in Tables 1–4 (the proposed method is noted as ‘‘UKF-Completion’’), respectively. These

results clearly show that the proposed algorithm has the highest performance as compared to the other

methods for all data sets. In particular, for non-equally spaced time-point data, the proposed method could

better infer true regulations than the previous methods since our approach utilizes the hidden state and can

handle nonobservational time points.

3.2. Real data analysis using the yeast cell cycle network

As an application example of improving and extending literature-based networks, we dealt with a yeast

cell-cycle network from KEGG (Kanehisa et al., 2012) and used the corresponding observational data

(Spellman et al., 1998). By using time-course data including 25 genes of which regulatory relationships are

Current Network

e(M ,i) = -10.22 e(M ,i) = -14.52 e(M ,i) = -15.12

Candidate M Candidate M Candidate M 321

321

Estimate parameter values and the BIC score. 

Rank Candidates Regulating i th gene 

Select r  Top Candidates

i

iii

FIG. 3. A cartoon figure of the proposed algorithm. For the current network, the proposed algorithm constructs

candidate networks by adding, deleting, and replacing edges, and ranks them using e(M‚ i). Then, only r top networks

with respect to - e(M‚ i) are evaluated with the BIC score by estimating the parameter values.
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represented as red arrows in Figure 6, and considering this as an original network, we attempted to improve

the network. However, since the network is classical and highly reliable in KEGG database, we focused on

the extension of the network using additional genes. Thus, we considered the network consisting of these 25

genes and 38 additional candidate genes, which can have functions related to a yeast cell cycle pathway,

from the Saccharomyces Genome Database (SGD) (Cherry et al., 2012). We did not set prior regulatory

structure to these 38 genes and extended the KEGG-based network consisting of 25 genes by adding

regulations to these 38 genes (delmax = 0).

Consequently, 38 candidate genes were integrated in the KEGG-based yeast cell cycle network as

illustrated in Figure 6. In this figure, the KEGG-based regulatory network consisting of 25 genes was drawn

as rectangles (gene) and red arrows (regulation), and newly estimated relationships were drawn as circles

(gene) and black chained arrows (regulation). Interestingly, there exist many combinatorial regulations of

which regulated genes have more than two regulations. Since these regulations can have nonzero values of

the combinatorial effect bi,(j,k), the results may not be obtained by linear models. Furthermore, some genes,

such as YOX1 and Cdc6, become hub genes regulating many other genes, and they are known as upper

stream genes regulating downstream genes on the KEGG database. These results show the possibility of the

causal relationships between them.

WNT5A

Pirin

MART-1

Synuclein

PHO-C

STC2

S100P

RET-1

MMP3

HADHB

FIG. 4. A real biological network, termed WNT5A network (Kim et al., 2002), used for the comparison analysis.

Based on the network, the original networks are generated by randomly adding and deleting five edges.
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4. CONCLUSION

We proposed a genomic data assimilation schema using a nonlinear simulation model for improving and

extending literature-based networks. The method can efficiently estimate parameter values of a simulation model

by using the EM-algorithm with UKF. Furthermore, the proposed algorithm avoids evaluating all possible

YOX1

MCM1

CLN3

YHP1

CDC28

SWI6

SWI4

CLN1

CLB5

MBP1

FIG. 5. A real biological network of yeast cell cycle from the KEGG database (Nakajima et al., 2012; Kanehisa et al.,

2012) used for comparison analysis. Based on the network, the original networks are generated by randomly adding and

deleting five edges.

Table 1. Comparison of the Proposed Method and DPLSQ Using Equally Spaced

Artificial Data from WNT5A Network

PR RR F-measure TP FP TN FN

DPLSQ 0.580 0.290 0.386 2.9 2.1 87.9 7.1

DPLSQ (BIC) 0.677 0.670 0.673 6.7 3.2 86.8 3.3

DPLSQ (AIC) 0.700 0.650 0.673 6.5 2.8 87.2 3.5

UKF-Completion 0.760 0.760 0.760 7.6 2.4 87.6 2.4

PR, precision rate; RR, recall rate; TP, true positive; FP, false positive; TN, true negative; FN, false negative; BIC, Bayesian

information criterion; AIC, Akaike information criterion; UKF, unscented Kalman filter.
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Table 2. Comparison of the Proposed Method and DPLSQ Using Non-equally

Spaced Artificial Data from WNT5A Network

PR RR F-measure TP FP TN FN

DPLSQ 0.540 0.270 0.360 2.7 2.3 87.7 7.3

DPLSQ (BIC) 0.520 0.520 0.520 5.2 4.8 85.2 4.8

DPLSQ (AIC) 0.523 0.49 0.506 4.9 4.5 85.5 5.1

UKF-Completion 0.720 0.720 0.720 7.2 2.8 87.2 2.8

Table 3. Comparison of the Proposed Method and DPLSQ Using Equally

Spaced Artificial Data from a Yeast Cell Cycle Network

PR RR F-measure TP FP TN FN

DPLSQ 0.600 0.300 0.400 3.0 2.0 88.0 7.0

DPLSQ (BIC) 0.597 0.590 0.593 5.9 4.0 86.0 4.1

DPLSQ (AIC) 0.600 0.600 0.600 6.0 4.0 86.0 4.0

UKF-completion 0.650 0.650 0.650 6.5 3.5 86.5 3.5

Table 4. Comparison of the Proposed Method and DPLSQ Using Non-equally

Spaced Artificial Data from a Yeast Cell Cycle Network

PR RR F-measure TP FP TN FN

DPLSQ 0.475 0.238 0.317 2.4 2.6 87.4 7.6

DPLSQ (BIC) 0.413 0.413 0.413 4.1 5.9 84.1 5.9

DPLSQ (AIC) 0.413 0.413 0.413 4.1 5.9 84.1 5.9

UKF-Completion 0.588 0.588 0.588 5.9 4.1 85.9 4.1
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FIG. 6. A part of a yeast cell cycle network, and candidate genes for extending the network. The KEGG-based

regulatory network consisting of 25 genes is drawn as rectangles (gene) and red arrows (regulation), and newly

estimated relationships are drawn as circles (gene) and black chained arrows (regulation).
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candidates that are constructed by modifying the original network and selects only plausible ones through

measuring the effectiveness when modifying the regulation of the current network for the data. Therefore, this

schema makes it possible to deal with many candidate networks and finds better networks for the data.

The performance of this approach was demonstrated by implementing artificial simulation data from real

biological networks termed WNT5A and a yeast cell cycle network. Consequently, our proposed method can

evaluate GRNs more accurately than could a previously developed method (DPLSQ). In particular, since our

method is based on the state space representation using the hidden state for representing gene regulatory

dynamics, the flexibility for the observational data, that is, which can handle observational data with non-

equally spaced time points, can be ensured. These results indicated the high performance and adaptability of

the proposed method to improve and extend the original network using time-course observational data. As

an application example, using a part of a well-investigated yeast cell-cycle network from KEGG, we applied

the proposed method to extend the network by integrating additional candidate genes from SGD (Cherry

et al., 2012). Interestingly, we found hub genes regulating candidate genes that are indicated as upstream

genes in KEGG database. Since these are biologically related candidates of the original networks, these

extensions might be true regulations and thus should be confirmed by biological experiments.
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