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Abstract	
	
The	T-cell	receptor	is	responsible	for	recognizing	potentially	harmful	epitopes	presented	on	cell	
surfaces.	 The	 binding	 rules	 that	 govern	 this	 recognition	 between	 receptor	 and	 epitope	 is	
currently	an	unsolved	problem,	yet	one	of	great	 interest.	Several	methods	have	been	proposed	
recently	 to	 perform	 supervised	 classification	 of	 T-cell	 receptor	 sequences,	 but	 this	 requires	
known	examples	of	T-cell	sequences	for	a	given	epitope.	Here	we	study	the	viability	of	various	
methods	to	perform	unsupervised	clustering	of	distinct	T-cell	receptor	sequences	and	how	these	
clusters	relate	to	their	target	epitope.	The	goal	is	to	provide	an	overview	of	the	performance	of	
various	 distance	 metrics	 on	 two	 large	 independent	 T-cell	 receptor	 sequence	 data	 sets.	 Our	
results	confirm	the	presence	of	structural	distinct	T-cell	groups	that	target	identical	epitopes.	In	
addition,	 we	 put	 forward	 several	 recommendations	 to	 perform	 T-cell	 receptor	 sequence	
clustering.	
	
Background	
	
T-cells	constitute	an	important	part	of	the	adaptive	immune	system	against	invasive	pathogens	
and	pathological	 cells.	 These	T-cells	 are	 capable	 of	 identifying	 self	 from	non-self	 antigens	and	
triggering	the	adaptive	immune	response.	At	a	molecular	 level,	T-cells	carry	a	protein	complex	
called	 a	 T-cell	 receptor	 (TCR)	 on	 their	 cell	 surface,	 which	 is	 able	 to	 bind	 antigen	 epitopes	
presented	by	the	major	histocompatibility	complex	(MHC)	molecules	on	host	cells.	Two	types	of	
MHC	molecules	 exist,	 namely	 class	 I	MHC	 and	 class	 II	MHC	molecules.	 Class	 I	MHC	molecules	
typically	 bind	 shorter	 epitope	 peptides	 that	 originate	 from	 within	 the	 cell.	 The	 Class	 I	 MHC	
molecules	are	recognized	by	CD8+	T-cells,	the	so-called	cytotoxic	T-cells.	Broadly	these	cytotoxic	
T-cells	will	 target	cells	that	are	presenting	non-self	peptides	which	may	be	indicative	of	a	viral	
infection	within	 the	cell	or	a	 tumor	cell.	 	Class	II	MHC	molecules	bind	 longer	epitopes	 that	are	
typically	 considered	 to	 be	 extracellular	 in	 origin,	 which	 are	 bound	 by	 CD4+	 T-cells.	 The	 TCR	
complex	on	these	CD4+	or	CD8+	T-cells	itself	is	composed	of	two	protein	chains,	an	alpha	chain	
and	a	beta	chain.	Each	chain	is	the	result	of	a	recombination	event	during	the	maturation	of	the	
T-cell	 in	 the	 thymus	 (Bassing	 et	 al.,	 2002).	 This	 features	 a	 somatic	 rearrangement	 of	
noncontiguous	variable	(V),	diversity	(D),	and	joining	(J)	region	gene	segments	for	the	beta	chain,	
and	V	and	J	segments	for	the	alpha	chain,	supplemented	by	the	random	addition	or	removal	of	
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nucleotides	 at	 the	 joints.	 This	 creates	 a	 highly	 variable	 receptor	 that	 is	 unique	 to	 each	 T-cell	
clone.	The	region	of	highest	variability	is	the	third	complementarity-determining	region	(CDR3)	
region,	which	is	also	the	primary	region	for	binding,	and	therefore	recognizing,	epitope	peptides.	
A	 large	 number	 of	 potential	 combinations	 is	 possible,	 allowing	 the	 body	 to	 create	T-cells	 that	
recognize	 a	 large	 number	 of	 different	 epitopes,	 and	 in	 turn	 a	 large	 number	 of	 pathogens	 and	
malignant	cells	(Robins	et	al.,	2010).	
Recent	 technical	 improvements	within	 high-throughput	 sequencing	 technologies	 have	 created	
several	 experimental	 methods	 to	 perform	 so-called	 TCR	 sequencing	 (Robins	 et	 al.,	 2009).	
Through	 this	 technique,	 fixed	 primers	 can	 be	 used	 to	 selectively	 sequence	 the	 variable	 CDR3	
region	within	the	TCR	RNA	or	DNA	for	an	entire	sample	of	T-cells.	The	fact	that	the	primers	are	
specific	for	T-cells	with	recombined	TCR	sequences	means	that	purification	from	whole	blood	is	
not	strictly	necessary.	TCR	sequencing	now	enables	us	to	acquire	an	overview	of	an	individual’s	
entire	 repertoire,	providing	an	overview	of	 the	millions	of	different	TCR	sequences	composing	
this	part	of	the	adaptive	immune	system.	Several	tools	exist	to	process	raw	TCR	sequencing	data	
into	 a	 quantitative	 list	 of	 TCR	 sequences	 with	 their	 likely	 VDJ	 recombination	 events	 typed	
(Alamyar	 et	 al.,	 2012;	 Gerritsen	 et	 al.,	 2016;	 Bolotin	 et	 al.,	 2015;	 Thomas	 et	 al.,	 2013).	 It	 has	
already	 been	 shown	 that	 TCR	 sequence	 data	 is	 sufficient	 to	 predict	 cytomegalovirus	
seropositivity	with	high	accuracy	 (Emerson	et	al.,	2017;	De	Neuter,	Bartholomeus,	et	al.,	2018;	
Pogorelyy	et	al.,	2018).		There	is	thus	a	vested	interest	within	the	scientific	community	to	further	
develop	these	techniques	and	analyse	methods	to	process	TCR	data	(Miho	et	al.,	2018).	
One	key	remaining	question	concerns	how	the	epitope	recognition	of	the	TCR	complex	works	on	
a	 molecular	 level.	 In	 the	 past	 year,	 three	 methods	 have	 been	 published	 that	 created	 a	
computational	model	to	predict	binding	between	an	epitope	and	a	TCR	sequence	based	on	a	set	
of	 known	 interactions	 (De	 Neuter,	 Bittremieux,	 et	 al.,	 2018;	 Dash	 et	 al.,	 2017;	 Glanville	 et	 al.,	
2017).	All	three	approaches	work	in	a	supervised	fashion.	A	training	data	set	with	TCR	sequences	
known	to	bind	a	specific	epitope	is	supplied	and	the	model	attempts	to	predict	which	other	TCR	
sequences	 may	 bind	 the	 same	 epitope.	 Each	 of	 these	 methods	 independently	 reported	 high	
performance,	 but	 as	 they	 were	 all	 published	 within	 the	 same	 time	 window,	 they	 were	 not	
compared.	 Moreover,	 each	 of	 these	 approaches	 relies	 on	 known	 TCR	 sequences	 for	 a	 given	
epitope.	 Despite	 ongoing	 curation	 and	 collection	 efforts	 (Shugay	 et	 al.,	 2017),	 high	 quality	
epitope-specific	TCR	sequences	remain	rare,	as	they	require	costly	experiments	often	involving	
dedicated	MHC	tetramers	for	each	epitope	under	investigation.	Thus,	there	is	only	TCR	data	for	a	
few	hundred	epitopes,	while	the	real	epitope	space	potentially	contains	every	peptide	sequence	
from	length	seven	until	thirty.	Furthermore,	the	majority	of	TCR	data	that	is	currently	available	
are	repertoire-wide	screens	at	an	individual	level.	These	are	tens	of	thousands	of	TCR	sequences	
without	 any	 knowledge	 of	 the	 specific	 epitope	 that	 they	 target,	 and	 only	 some	 information	
regarding	the	individual	of	origin.	There	is	thus	a	clear	need	for	an	unsupervised	approach	that	
can	group	TCR	sequences	binding	the	same,	unknown,	epitope.	In	addition,	the	majority	of	TCR	
sequencing	 studies	 currently	 being	 published	 are	 focused	 on	 the	 TCR	 beta	 chain.	 It	 is	 a	 non-
trivial	problem	to	sequence	both	the	alpha	chain	and	the	beta	chain	of	the	TCR	in	such	a	manner	
that	 they	 can	 be	 assigned	 together	 as	 originating	 from	 a	 single	 T-cell	 clone.	 Several	 solutions	
exist,	 including	 single	 T-cell	 receptor	 sequencing,	 but	 they	 remain	 far	 from	 commonplace	
(Redmond	et	al.,	 2016;	 Stubbington	 et	al.,	 2016).	 Finally,	many	 fundamental	 questions	 remain	
regarding	the	binding	between	a	TCR	and	its	epitope.	Reason	and	research	indicates	that	similar	
TCR	 sequences	 should	 recognize	 similar	 or	 the	 same	 epitopes.	 However,	 how	 dissimilar	 TCR	
sequences	can	be	before	this	is	no	longer	the	case	is	not	known.	Moreover,	there	is	no	consensus	
on	how	to	define	the	similarity	between	two	short	TCR	CDR3	amino	acid	sequences.	
In	this	paper,	we	compare	several	unsupervised	approaches	to	cluster	TCR	sequences	based	on	
their	 similarity.	 In	 particular,	 unsupervised	 versions	 of	 the	 supervised	 techniques	 that	 have	
proven	successful	in	recent	publications	are	included.	The	idea	is	that	the	features	used	by	these	
methods	should	have	captured	important	properties	of	the	TCR	if	they	have	high	performance	in	
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the	 supervised	 approach.	 In	 this	 manner,	 we	 evaluate	 the	 clustering	 of	 epitope-specific	 TCR	
sequences	based	only	on	the	beta	chain	sequence	features.	
	
Methods	
	
Data	
	
Only	human	TCR	data	was	considered	for	these	analyses.	While	there	is	also	a	wealth	of	mice	TCR	
data,	 distinguishing	 TCRs	 from	 different	 species	 was	 not	 a	 goal	 of	 this	 study.	 We	 used	 two	
datasets:	 a	 smaller	 dataset	 from	a	 single	 study	where	all	 TCRs	 originate	 from	a	 limited	 set	 of	
individuals	 and	 a	 larger	 dataset	 from	 the	 curated	 VDJdb,	 which	 collects	 TCR	 data	 from	many	
different	 studies	 and	 therefore	 the	 TCR	 sequences	 originate	 from	many	 different	 individuals	
(Shugay	et	al.,	2017).	 In	both	cases,	only	 the	V-region,	 J-region	and	CDR3	amino	acid	sequence	
was	used	of	each	TCR	beta	sequence.	
The	smaller	dataset	contains	TCR	sequences	targeting	one	of	three	epitopes	originating	from	an	
infectious	disease,	namely	the	influenza	M1	epitope,	the	Epstein-Barr	virus	BMLF	epitope	and	the	
CMV	pp65	epitope.	We	term	this	dataset	the	“Dash	dataset”	and	it	contains	a	total	of	412	unique	
TCR	beta-chain	sequences.	Note	that	this	is	also	the	dataset	for	which	the	supervised	version	of	
the	GapAlign	method	was	designed	(Dash	et	al.,	2017).	
The	larger	dataset	was	downloaded	from	the	VDJ	database	on	the	14th	of	September	2017.		Only	
TCR	 sequence	 –	 epitope	 relationships	 were	 considered	 with	 a	 vdj.score	 higher	 than	 0,	 thus	
removing	those	deemed	by	the	VDJ	database	as	unreliable.	This	dataset	contained	2065	TCR	beta	
sequences	with	100	unique	epitopes	presented	on	20	unique	MHC	molecules	 (17	MHC-I	and	3	
MHC-II).	
	
Distance	measures	
	
1.	Length-based	distance.	The	distance	between	two	TCR	sequences	is	defined	as	the	difference	
in	number	of	amino	acid	in	the	CDR3	region	between	them,	where	the	CDR3	region	is	defined	as	
the	 amino	 acids	 flanked	 by	 and	 including	 the	 104C	 and	 118F	 residues,	 as	 per	 IMGT	 notation	
(Lefranc	and	Lefranc,	2002).	This	distance	measure	is	solely	used	as	a	comparative	baseline.	As	
we	will	 show,	 the	TCR	 length	 is	a	confounding	factor	within	many	distance	measures.	 In	some	
cases,	 grouping	TCR	 sequences	 based	 on	 length	may	 already	provide	 viable	 clusters	 targeting	
specific	epitopes.		
	
2.	GapAlign	score.	This	distance	measure	is	derived	from	the	supervised	approach	used	in	(Dash	
et	al.,	 2017).	 It	 is	 based	 on	 a	 sequence	alignment	 problem	where	 a	 single	gap	 is	 allowed.	 The	
sequence	scores	are	derived	from	a	flattened	BLOSUM90	matrix.	The	original	use	was	within	a	k-
nearest	 neighbour	 approach	 and	 thus	 the	 same	 scoring	 scheme	 can	 be	 readily	 adapted	 for	
unsupervised	use.	To	allow	comparison,	the	original	code	published	by	Dash	et	al.	was	used	to	
generate	the	scores.	In	this	case	only	the	beta-chain	CDR3	scoring	scheme	was	used,	 instead	of	
the	combination	of	both	the	alpha	and	beta	chains.	The	default	scoring	scheme	was	applied,	thus	
gap	penalties	 are	 set	 to	 8.	 The	 code	was	 updated	 from	python	2.7	 to	 python	3	 for	 integrative	
purposes.	
	
3.	Profile	score.	This	distance	measure	is	based	on	the	physicochemical	differences	between	two	
TCR	sequences	and	is	derived	from	the	approach	taken	by	(De	Neuter,	Bittremieux,	et	al.,	2018).	
The	basicity,	helicity	and	hydrophobicity	values	for	each	amino	acid	are	Z-normalized	and	used	
to	construct	a	profile	of	the	full	TCR	beta	CDR3	sequence.	The	longest	TCR	sequence	is	truncated	
along	either	side	to	match	the	shortest	sequence.	The	distance	between	the	two	profiles	is	then	
calculated	by	the	weighted	Euclidean	distance,	with	a	higher	weight	for	the	central	positions	and	
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decreasing	in	a	linear	fashion	to	the	edges	of	the	CDR3	profile.	The	final	score	is	then	the	sum	of	
the	distances	for	each	of	the	three	physicochemical	profiles.	
	
4.	Trimer	score.	This	distance	measure	calculates	 the	percentage	of	 similar	amino	acid	 trimers	
between	 two	 TCR	 sequences	 and	 is	 derived	 from	 the	 approach	 by	 (Glanville	 et	 al.,	 2017).	 In	
addition,	this	 is	similar	to	other	trimer-based	methods,	such	as	(Thomas	et	al.,	2014).	As	TCRb	
CDR3	sequences	often	start	with	CAS	and	end	with	YFF,	some	trimers	are	more	informative	then	
others.	 Therefore,	 a	 weighting	 scheme	 was	 introduced.	 This	 is	 also	 in	 line	 with	 the	 original	
supervised	approach	where	trimers	were	used	which	were	statistically	overrepresented	in	a	TCR	
data	set	 targeting	a	 specific	epitope	or	antigen,	versus	one	 that	did	not	 (Glanville	et	al.,	2017).	
The	weighting	scheme	was	based	on	the	combined	CD8+	TCR	repertoires	of	all	the	data	collected	
within	the	study	of	(Ogunjimi	et	al.,	2017).	These	were	full	repertoires	without	any	prefiltering	
on	epitope	preferences	and	can	therefore	be	considered	as	representing	the	modal	TCR	diversity.	
The	occurrence	fraction	of	each	trimer	was	calculated.	Each	trimer	is	then	assigned	a	score	of	1	
subtracted	by	this	fraction.	Thus,	an	unseen	trimer	is	assigned	a	value	of	1,	while	the	common	
CAS	trimer	only	receives	a	score	of	0.17.	The	score	of	each	shared	trimer	is	summed	between	the	
two	TCR	sequences.	As	distance	measures	have	to	be	lower	for	more	similar	samples,	this	score	
was	normalized	for	the	number	of	trimers	in	the	shortest	sequence	and	this	sum	was	subtract	
from	1.	In	this	manner	if	two	TCR	sequences	share	rare	trimers	the	distance	score	will	be	smaller	
than	if	they	share	more	common	variants.	
	
5.	Dimer	score.	This	score	is	equivalent	to	the	trimer	score	but	uses	amino	acid	dimers	instead	of	
trimers.		
	
6.	Levenshtein	distance	score.	This	score	is	defined	as	the	Levenshtein	distance	(also	known	as	
the	edit	distance)	between	the	TCRb	CDR3	amino	acid	sequences.	The	score	corresponds	to	the	
minimum	number	of	mutations,	deletions	and	insertions	needed	to	transform	the	first	sequence	
into	 the	second	sequence.	This	distance	has	been	used	on	several	occasions	 for	clustering	TCR	
sequences	(Tickotsky	et	al.,	2017;	Madi	et	al.,	2017).	
	
7.	VJ	edit	distance.	This	score	represents	the	similarity	of	the	V-	and	J-region	used	to	assemble	the	
TCR	beta-chain.	 This	 score	 is	 the	Levenshtein	 distance	between	 the	amino	 acid	content	 of	 the	
original	 V-region	 sequence	 and	 original	 J-region	 sequence	 summed.	 This	 is	 the	 only	 distance	
measure	within	this	study	that	is	not	only	based	on	the	TCR	CDR3	amino	acid	sequence	and	can	
be	considered	as	complementary	to	each	of	the	other	approaches.	
	
Clustering	algorithm	
	
The	DBSCAN	algorithm	from	the	python	scikit-learn	library	(0.19.0)	was	used	to	cluster	the	TCR	
sequences	 based	 on	 the	 generated	 distances	measures.	 The	minimum	amount	 of	 samples	 per	
cluster	was	set	to	two.	The	advantage	of	the	DBSCAN	algorithm	is	that	it	does	not	require	one	to	
specify	 the	 number	 of	 clusters	 in	 advance.	 Thus,	 we	 do	 not	 need	 to	 introduce	 any	 prior	
knowledge	on	the	number	of	clusters	that	may	be	presented	in	the	dataset.	This	is	comparable	to	
the	real-life	case	where	we	are	given	a	dataset	of	TCR	sequences	without	any	known	epitopes.	
DBSCAN	will	group	samples	based	on	a	fixed	distance,	defined	in	advance.	This	allows	us	to	try	
different	 similarity	 thresholds	 on	 the	 TCR	 sequences	 and	 evaluate	 their	 use.	 In	 addition,	 this	
makes	 the	 algorithm	 particularly	 robust	 against	 outliers,	 which	 can	 be	 expected	 to	 be	 very	
common	in	TCR	data.	The	used	threshold	is	based	on	a	fixed	point	within	the	distribution	of	each	
distance	measure.	It	is	allowed	to	vary	between	0.1%	of	the	lowest	reported	distances	to	40%	of	
the	lowest	reported	distance	to	establish	a	wide	range	of	potential	clustering	solutions.		
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Note	 that	 the	 length-based	 distance	 can	 only	 work	 with	 the	 DBSCAN	 algorithm	 on	 a	 single	
threshold,	namely	a	value	between	0	and	1.	Higher	 than	 this	value	 the	DBSCAN	algorithm	will	
create	a	single	cluster	as	there	is	a	TCR	sequence	of	every	length	between	10	and	20	contained	in	
both	datasets.	
	
Clustering	performance	measures	
	
Evaluating	 the	quality	of	an	unsupervised	clustering	approach	 is	a	non-trivial	problem,	even	 if	
the	ground	truth	is	known.	Especially	for	the	DBSCAN	approach,	which	allows	samples	to	be	left	
unassigned	to	any	cluster	and	have	clusters	of	different	sizes.	We	define	the	following	commonly	
used	supervised	performance	metrics	for	use	within	this	setting,	illustrated	in	figure	1:	
	
1.	Accuracy.	In	this	instance,	accuracy	is	defined	as	the	fraction	of	TCR	sequences	recognizing	the	
same	epitope	that	are	assigned	to	a	single	cluster.	If	two	or	more	clusters	contain	TCR	sequences	
assigned	to	that	epitope,	only	the	cluster	containing	the	most	is	counted	as	being	the	true	cluster	
for	 that	 epitope.	 If	 two	 epitopes	 end	 up	with	 the	 same	 true	 cluster,	 those	with	 the	most	 TCR	
sequence	is	given	preference	and	the	other	epitope	is	assigned	to	the	next	cluster	in	line.	In	this	
manner	 there	 is	 only	 a	 single	 cluster	 assigned	 to	 each	 epitope.	 This	 measure	 is	 therefore	
equivalent	to	the	supervised	accuracy	as	it	determines	how	many	TCR	sequences	are	assigned	to	
the	true	cluster	determined	for	their	epitope.	This	measure	provides	an	indication	for	how	well	a	
method	can	place	all	TCR	sequences	targeting	the	same	epitope	in	a	single	cluster.	
	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
∑ |𝑒𝑝𝑖𝑡𝑜𝑝𝑒(𝑇𝐶𝑅	 ∈ 𝑐) = 𝑒𝑝𝑖𝑡𝑜𝑝𝑒6789(:)|

|𝑇𝐶𝑅| 	

	
2.	 Recall.	 In	 this	 instance,	 recall	 is	 defined	 as	 the	 fraction	 of	 TCR	 sequences	 that	 have	 been	
assigned	 to	a	cluster.	This	measure	gives	us	an	 indication	on	 the	percentage	of	TCR	sequences	
that	can	be	grouped	together	given	a	certain	clustering	threshold.	
	

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
∑ |𝑇𝐶𝑅	 ∈ 𝑐|

|𝑇𝐶𝑅| 	

	
3.	Precision.	In	this	instance,	precision	is	defined	as	the	fraction	of	TCR	sequences	within	a	single	
cluster	to	be	targeting	the	same	epitope.	The	most	common	epitope	is	considered	to	determine	
the	fraction.	In	this	case,	multiple	clusters	can	be	evaluated	on	the	same	epitope.	This	measure	
therefore	provides	an	indication	of	the	purity	of	each	cluster,	 i.e.	 if	TCR	sequences	are	grouped	
together	how	likely	they	are	to	all	recognize	the	same	epitope.	
	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
∑ |𝑒𝑝𝑖𝑡𝑜𝑝𝑒(𝑇𝐶𝑅	 ∈ 𝑐) = 𝑒𝑝𝑖𝑡𝑜𝑝𝑒?@A(:)|

∑ |𝑇𝐶𝑅	 ∈ 𝑐| 	
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Figure	1:	Illustrated	example	of	possible	grouping	results	for	15	TCR	sequences	known	to	bind	three	different	epitopes	
(circles,	squares	and	stars)	in	 four	different	clusters	(A,	B,	C	and	D).	The	different	metrics	will	then	have	the	following	
outcomes.	Recall:	the	percentage	of	TCR	sequences	assigned	to	a	cluster.	Only	two	are	not	in	a	cluster,	thus	the	recall	will	
be	equal	to	13/15.	Accuracy:	each	epitope	is	assigned	a	true	cluster.	In	this	case,	cluster	A	for	the	circles,	cluster	B	for	the	
squares	and	cluster	C	 for	 the	 stars.	There	are	 equal	amounts	of	 squares	 in	cluster	A	 and	B,	but	 preference	 is	 given	 to	
cluster	B	for	the	squares	as	cluster	A	has	more	circles.	Cluster	D	is	considered	as	a	false	positive	cluster	as	cluster	A	has	
the	most	circles	and	is	therefore	assumed	to	be	the	true	cluster	where	all	circles	should	be	grouped.	The	accuracy	is	then	
(3	+	2	+	4)	/	15,	based	respectively	on	the	number	of	correct	assignments	in	clusters	A	(3),	B	(2)	and	C	(4).	Precision:	for	
each	cluster,	 the	most	common	epitope	 is	considered	a	true	positive	irrespective	of	its	co-occurrence	in	other	clusters.	
This	sum	is	then	divided	by	the	amount	of	TCR	sequences	that	are	assigned	to	a	cluster.	The	precision	will	then	be	3	+	2	+	
4	+	2	/	13,	based	on	the	circles	in	cluster	A	(3),	the	squares	in	B	(2),	the	stars	in	C	(4)	and	the	circles	in	D	(2).	
		
However,	 as	 the	 used	 datasets	 are	 unevenly	 balanced	 with	 respect	 to	 the	 number	 of	 TCR	
sequences	 for	 each	 epitope,	 it	 is	 important	 to	 establish	 a	 comparative	 baseline.	 For	 example,	
imagine	 a	 dataset	 where	 90%	 of	 the	 TCR	 sequences	 bind	 the	 same	 epitope.	 Any	 random	
configuration	of	clusters	will	have	an	average	of	90%	sequences	binding	the	same	epitope.	Any	
method	 will	 report	 high	 accuracy	 and	 precision	 on	 this	 dataset	 even	 if	 it	 is	 not	 better	 than	
random.	Therefore,	after	every	clustering	step,	we	randomize	the	group	assignments	fifty	times	
to	create	a	baseline	for	comparison.	Note	that	this	may	differ	from	method	to	method	as	some	
methods	result	in	many	smaller	clusters	while	others	have	fewer	larger	clusters.		
	
All	code,	both	for	the	generation	of	the	distance	measures	and	the	calculation	of	the	performance	
metrics,	is	available	on	github:	
https://github.com/pmeysman/TCRclusteringPaper	
The	scripts	are	designed	so	that	they	can	be	readily	extended	with	new	distance	measures,	which	
can	then	be	applied	to	the	same	datasets	and	compared	to	the	ones	described	in	this	study.	
	
Results	and	discussion	
	
CDR3	length	is	a	confounding	factor	in	many	TCR	sequence	distance	measures	
	
We	first	applied	the	six	distance	measures	to	the	Dash	dataset	containing	412	TCR	sequences.	A	
distance	 score	 is	assigned	 to	each	 possible	 pair	 of	 TCR	 sequences,	which	 results	 in	a	 distance	
matrix	of	412	x	412	for	each	measure.	Prior	to	applying	the	clustering	algorithm	to	these	distance	
matrices,	we	investigated	the	relationships	that	exist	within	the	distance	scores	themselves.	All	
distance	scores	were	concatenated	into	a	single	vector	and	compared	with	a	principle	component	
analysis,	 whose	 results	 can	 be	 found	 in	 figure	 2A.	 As	 expected	 the	 VJ	 edit	 distance	 is	 a	 clear	
outlier	and	is	independent	from	the	other	measures	as	it	is	based	mostly	on	a	different	part	of	the	
TCR	sequence.	The	loadings	assigned	to	all	other	measures,	including	the	TCR	sequence	length,	
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cluster	closely	together.	This	indicates	that	a	 large	distance	in	one	score	corresponds	to	a	 large	
distance	 for	 another	 as	 well.	 The	 analysis	 was	 therefore	 rerun	 without	 the	 VJedit	 measure,	
resulting	in	figure	2B.	In	this	 instance,	there	is	a	clear	grouping	between	the	Dimer	and	Trimer	
distance	measure,	which	can	be	expected	as	common	 trimers	are	 intrinsically	made	up	of	 two	
common	dimers.	The	GapAlign,	Levenshtein	and	Profile	methods	are	also	suggested	to	be	related.	
These	methods	can	be	considered	as	variants	of	sequence	alignment	on	the	full	CDR3	sequence	
and	therefore	likely	provide	similar	scores.	The	Length	measure	is	less	grouped	with	the	others	
compared	 to	 the	 case	 when	 the	 VJedit	 measure	 was	 included.	 This	 suggests	 that	 there	 is	
information	 captured	 by	 the	 various	 distance	 measures	 that	 is	 independent	 from	 the	 CDR3	
Length	difference.	

	
Figure	2:	PCA	loading	plots	for	the	concatenated	distances	matrices	for	the	different	distance	measures.	A.	With	the	VJedit	
distance.	B.	Without	the	VJedit	distance.	
	
The	VDJdb	dataset	contains	2065	TCR	sequences	and	with	this	larger	set,	we	can	explore	if	there	
are	 any	 natural	 groupings	 within	 the	 TCR	 beta	 chain	 sequences	 that	 are	 highlighted	 by	 the	
different	 distance	 measures.	 The	 results	 from	 PCAs	 applied	 on	 the	 distance	 matrix	 of	 each	
measure	can	be	found	in	figure	3.	The	length	distance	measure	exists	as	a	gradient	from	longer	to	
shorter	CDR3	sequences.	As	made	clear	from	the	PCA	score	plots,	the	length	is	unable	to	make	a	
distinction	between	CDR3	sequences	of	the	same	size.	The	GapAlign	distance	measure	presents	
as	a	dense	cloud.	However,	the	first	principle	component	matches	strongly	with	the	CDR3	amino	
acid	length.	This	is	the	result	of	the	introduced	gap	penalty,	as	a	sequence	that	is	longer	by	one	
amino	acid	will	be	punished	worse	than	a	sequence	that	has	the	worst	possible	single	amino	acid	
substitution.	This	is	a	common	aspect	of	any	alignment	approach,	and	removal	of	the	gap	penalty	
is	not	a	viable	option	due	to	the	differences	in	TCR	CDR3	length.	The	Profile	distance	measure	is	
also	influenced	by	the	sequence	length,	but	as	suggested	by	the	PCA	score	plot,	to	a	lesser	degree.	
This	is	likely	as	each	CDR3	sequence	is	centred	on	the	central	amino	acid	and	additional	amino	
acids	 are	 not	 considered	 of	 the	 sequences	 differ	 in	 length.	 However,	 there	 are	 two	 clear	
groupings	within	the	Profile	PCA	score	plot.	Closer	investigation	reveals	that	these	are	the	CDR3	
sequence	 with	 an	 even	 and	 an	 uneven	 length.	 As	 the	 central	 position	 is	 shared	 for	 even	
sequences	 but	 not	 for	 the	 uneven	 sequences,	 the	 alignment	 and	 the	 scoring	 has	 to	work	 in	 a	
different	fashion.	This	 results	 in	a	 split	along	 the	second	principle	component.	The	Trimer	and	
Dimer	 distance	 measures	 feature	 similar	 PCA	 score	 plots.	 Each	 of	 the	 two	 first	 principle	
components	 has	an	 independent	 high	 scoring	 group	 and	 the	 remainder	 has	a	 score	 of	around	
zero.	 Each	 high	 scoring	 group	 is	 typed	 by	 a	 common	 pentamer	 or	 hexamer	 at	 the	 end.	 For	
example,	high	scores	are	assigned	in	PC1	of	the	trimer	distances	to	short	CDR3	sequences	that	
end	 in	 SYEQYF.	 This	 corresponds	 to	 the	 start	 of	 the	 TRBJ2-7*01	 sequence.	 These	 are	 thus	 all	
sequences	that	are	derived	from	this	specific	J	gene,	without	removal	of	any	nucleotides	during	
the	recombination	event.	 In	 the	same	way	high	scores	 in	PC2	are	assigned	 to	CDR3	sequences	
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ending	in	YNEQFF,	corresponding	to	the	start	of	the	TRBJ2-1*01	gene.	The	Levenshtein	distance	
has	similar	trends	to	the	aforementioned	measures.	There	is	a	clear	trend	along	PC1	related	to	
the	length	of	the	CDR3	sequence.	In	addition,	PC2	seems	to	divide	the	TCR	sequences	into	three	
groups.	 These	 three	groups	 correspond	 to	 three	 common	 J-genes,	 namely	TRBJ2-1*01,	 TRBJ2-
2*01,	 TRBJ2-3*01	 from	 top	 to	 bottom.	The	VJedit	 distance	 features	a	 large	 number	 of	 smaller	
groupings,	corresponding	to	common	V	or	J	gene	combinations.	
	

Figure	3:	PCA	score	plots	for	each	distance	measure,	with	the	first	principle	component	(PC1)	as	the	horizontal	axis	and	
the	second	principle	component	(PC2)	as	the	second	axis.	Each	point	is	a	single	TCR	sequences	from	the	VDJdb	dataset.	
Colors	represent	the	length	of	the	TCR,	with	red	as	the	longest	and	purple	as	the	shortest.		
	
	
Most	methods	establish	a	high	precision	but	struggle	with	high	accuracy	
	
While	we	have	 uncovered	 several	 relationships	 that	 exist	within	 each	 distance	measure,	 none	
provide	any	indication	on	which	distance	measure	performs	best	at	grouping	TCR	sequences	that	
target	 the	same	epitope.	 Indeed,	 scores	 that	 indicate	strong	similarity	between	TCR	sequences	
that	have	the	same	length	or	are	derived	of	the	same	J	gene,	may	provide	strong	performance	as	
they	are	still	grouping	highly	similar	TCR	sequences	together.		
As	a	first	test,	a	ROC	plot	can	be	used	to	visualize	the	likelihood	that	two	TCR	sequences	that	bind	
the	same	epitope	will	receive	a	higher	score	than	two	TCR	sequences	that	do	not.	This	is	possible	
in	this	unsupervised	context	since	we	know	the	ground	truth	for	each	of	the	TCR	sequences.	In	
this	 case,	 the	 true	 positive	 rate	 (TPR)	 is	 the	 fraction	 of	 TCR	 sequences	 that	 receive	 a	 distance	
score	below	a	given	 threshold	 that	bind	 the	same	epitope.	The	 false	positive	 rate	 (FPR)	 is	 the	
fraction	of	those	that	do	not.	From	figure	4,	it	is	clear	that	the	TCR	sequences	from	Dash	dataset	
are	easier	to	group	based	on	their	epitope	than	the	TCR	sequences	of	the	VDJdb	dataset.	As	the	
TPR	and	FPR	are	independent	from	the	size	of	the	dataset	and	the	negative/positive	fraction,	this	
is	not	due	to	the	larger	size	of	the	VDJdb	dataset.	The	reason	for	this	different	performance	may	
be	due	to	the	fact	that	the	VDJdb	dataset	is	derived	from	a	more	diverse	group	of	individuals	or	
the	 assignments	 may	 be	 of	 a	 lower	 quality	 as	 only	 the	 most	 unreliable	 assignments	 were	
excluded.	 	For	 the	Dash	dataset,	 it	 is	 clear	 that	all	methods	are	able	 to	provide	better	distance	
scores	 to	TCR	 sequences	 that	 bind	 the	 same	epitope	 than	would	 be	expected	at	 random.	This	
includes	both	the	Length	and	VJedit	distance	measures.	Thus,	in	this	dataset,	TCR	sequences	with	
similar	 CDR3	 length	 or	 V/J	 assignments	 bind	 similar	 epitopes.	 Furthermore,	 the	 GapAlign,	
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Levenshtein	 and	 Profile	 methods	 are	 able	 to	 achieve	 around	 40%	 TPR	 without	 any	 false	
positives.	 The	Trimer	 and	Dimer	methods	also	 perform	 strongly	 and	 exceed	 the	GapAlign	 and	
Profile	methods	 at	 higher	 FPR	 values.	 The	 ROC	 curve	 seems	 to	 indicate	 that	 the	 Trimer	 and	
Dimer	methods	 are	 less	 stringent	 for	 exact	matches	 but	may	 be	more	 capable	 to	 group	 very	
distant	TCR	sequences	that	do	still	bind	the	same	epitope.	For	the	VDJdb	dataset,	all	methods	do	
perform	 better	 than	 random,	 except	 for	 the	 VJedit	 distance,	 which	 runs	 along	 the	 diagonal.	
However,	the	performance	of	each	method	does	not	seem	very	viable	for	actual	usage.	For	any	
method	at	any	threshold,	we	can	expect	a	high	number	of	false	positives.	
	

	
Figure	 4:	 ROC	 plots	 for	 each	 of	 the	 six	 distance	measures	 for	 the	Dash	 dataset	 (A)	 and	 the	 VDJdb	 dataset	 (B).	 A	 low	
distance	score	for	two	TCR	sequences	that	bind	the	same	epitope	is	considered	a	true	positive.	A	low	distance	score	for	
two	TCR	sequences	that	do	not	bind	the	same	epitope	is	then	a	false	positive.	
	
In	 a	 second	 analysis,	 we	 use	 the	 five	 distance	 measures	 as	 input	 for	 the	 DBSCAN	 clustering	
algorithm	and	evaluate	the	quality	of	the	clusters	at	different	thresholds.	As	can	be	seen	in	figure	
5A,	all	methods	have	a	strong	performance	on	the	Dash	dataset.	However,	the	random	baseline	is	
also	high,	 since	 the	majority	 (66.6%)	of	TCR	sequences	bind	 the	same	epitope,	namely	 the	M1	
influenza	 epitope.	 Compared	 to	 this	 baseline,	 all	 methods	 feature	 a	 higher	 precision	 at	 most	
thresholds	 than	 random,	 except	 for	 the	 VJedit	 distance,	 which	 performs	 worse	 than	 random.	
Indeed,	if	half	of	the	TCR	sequences	are	grouped	in	a	cluster	(50%	recall),	all	methods	report	that	
the	 clusters	 only	 consist	 of	 TCR	 sequences	 that	 bind	 the	 same	 epitope	 (100%	precision).	 The	
accuracy,	while	high,	is	not	as	distinct	from	the	random	baseline	for	each	method.	This	indicates	
that	each	method	underperforms	when	having	 to	group	all	TCR	sequences	 that	bind	 the	same	
epitope	into	a	single	cluster.	This	suggests	that	each	epitope	has	several	groups	of	TCR	sequences	
that	 are	 internally	 very	 similar	 and	are	easy	 to	 group	with	any	distance	measure.	However,	 it	
seems	much	harder	to	bring	together	those	different	groups	that	target	the	same	epitope.	
The	 VDJdb	 dataset	 reports	 similar	 trends	 as	 can	 be	 seen	 in	 figure	 5B.	 In	 this	 case,	 there	 is	 a	
stronger	 distinction	 between	 the	 different	methods.	 Furthermore,	 the	 precision	 at	 the	 highest	
recall	 drops	 down	 to	 10%	 for	 all	 methods.	 The	 VJedit	 distance	 again	 performs	 worse	 than	
random.	The	GapAlign	method	performs	best	at	 the	most	 stringent	 thresholds,	where	few	TCR	
sequences	are	clustered	but	those	that	are	clustered	typically	all	bind	the	same	epitope.	At	80%	
precision,	 we	 can	 expect	 on	 average	 that	 for	 each	 cluster	 there	 will	 be	 one	 out	 of	 five	 TCR	
sequences	that	do	not	bind	the	same	epitope	as	the	others.	The	Levenshtein	and	Profile	methods	
follow	very	similar	trends	to	the	GapAlign	method.	However,	the	Profile	method	is	worse	at	the	
most	stringent	clustering	cut-offs	but	achieves	its	highest	performance	at	a	slightly	higher	recall.	
The	Trimer	and	Dimer	methods	follow	the	previously	reported	trend	from	the	ROC	curves,	where	
they	achieve	 their	best	performance	when	 the	cut-offs	are	 less	 stringent.	There	 is	 thus	a	clear	
decreasing	stringency	progression	starting	from	GapAlign/Levenshtein,	to	Profile,	to	Trimer,	to	
the	Dimer	method	finally.	In	this	manner,	GapAlign	is	better	for	grouping	the	most	similar	TCR	

A. Dash dataset B. VDJdb dataset
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sequences	 together	 with	 high	 precision,	 Dimer	 is	 better	 at	 grouping	 very	 dissimilar	 TCR	
sequences	with	poor	precision.	

	
Figure	5:	Accuracy-recall	and	precision-recall	plots	for	each	of	the	six	distance	measures	for	the	Dash	dataset	(A)	and	the	
VDJdb	dataset	(B).	The	dotted	lines	denote	the	random	baseline	generated	from	50	random	permutations.	
	
Clustering	thresholds	are	transferable	between	datasets	
	
In	 the	 previous	 section,	 we	 screened	 the	 datasets	 for	 a	 large	 number	 of	 different	 clustering	
thresholds.	However,	in	most	practical	applications,	only	one	threshold	will	be	used.	As	we	have	
two	datasets,	we	can	use	one	to	determine	an	optimal	threshold	and	apply	it	 to	the	other.	The	
Dash	dataset	displayed	high	precision	for	all	methods	with	a	high	recall.	Thus,	we	selected	the	
highest	threshold	for	each	method	with	the	best	precision	for	the	Dash	dataset	and	applied	this	
threshold	to	the	VDJdb	dataset.	The	results	can	be	found	in	table	1.	For	comparative	purposes,	we	
included	 the	 Length	measure	with	 a	 distance	 less	 than	 1	 so	 that	 all	 TCR	 sequences	would	 be	
grouped	by	CDR3	 length.	As	expected,	 the	Length	distance	measure	has	a	high	recall	as	 it	 can	
cluster	 all	 the	TCR	 sequences	without	 outliers,	 but	 has	 a	 poor	 accuracy	 and	precision.	On	 the	
other	 hand,	 the	 GapAlign,	 Profile,	 and	 Trimer	 measures	 all	 achieve	 high	 precision	 while	
clustering	 around	 a	 third	 of	 the	 dataset.	 This	 signifies	 that	 thresholds	 for	 these	 distance	
measures	 can	 be	 easily	 transposed	 between	 datasets,	 even	 if	 they	 have	 different	 sizes	 and	
densities.	In	addition,	the	most	optimal	threshold	for	the	Levenshtein	measure	is	a	value	of	one,	
signifying	a	single	amino	acid	change.	This	Levenshtein	threshold	value	resulted	in	a	quarter	of	
the	dataset	being	clustered,	with	the	highest	reported	precision	of	all	methods.	Thus,	the	noted	
groups	 of	 similar	 TCR	 sequences	 that	 target	 the	 same	epitope	 typically	 differ	 only	 by	 a	 single	
amino	acid	 in	 their	CDR3	sequence.	The	other	methods	are	able	 to	group	a	 large	subset	of	 the	
available	TCR	sequences	but	only	at	the	cost	of	 lower	precision,	thus	more	TCR	sequences	that	
target	different	epitopes	within	a	single	group.	
	
Table	1:	Clustering	statistics	on	the	VDJdb	with	a	fixed	threshold	

A. Dash dataset

B. VDJdb dataset
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Method	 Threshold	 Recall	 Accuracy	 Precision	
Length	 0.5	 100%	 14.7%	 15.2%	
Levenshtein	 1	 24.8%	 7.7%	 80.6%	
GapAlign	 18	 30.7%	 9.4%	 77.6%	
Profile	 1	 28.3%	 7.6%	 76.1%	
Trimer	 0.34	 34.1%	 7.9%	 65.4%	
Dimer	 0.23	 52.0%	 9.9%	 49.2%	
VJedit	 0.408	 69.4%	 10.2%	 19.0%	
	
Similar	longer	TCR	sequences	are	more	likely	to	bind	the	same	epitope	
	
A	 precision	 of	 75%	 indicates	 that	 on	 average	 each	 cluster	 contains	 three	 out	 of	 four	 TCR	
sequences	 that	 bind	 the	 same	 epitope.	 However	 as	 this	 is	 an	 average,	 it	 is	 worthwhile	
investigating	if	this	is	uniform	across	all	clusters	or	if	there	are	some	clusters	with	high	precision	
and	others	with	low	precision.	For	the	purposes	of	this	analysis,	we	used	the	GapAlign	method	as	
this	distance	measure	has	been	established	as	one	of	the	most	stringent.	At	the	set	threshold	of	
18,	we	divided	the	found	TCR	sequence	clusters	into	a	so-called	‘good’	group	and	a	so-called	‘bad’	
group.	The	‘good’	group	are	those	clusters	where	all	the	TCR	sequences	target	the	same	epitope.	
An	 example	 of	a	 good	 cluster	can	 be	 found	 in	 table	 2.	The	 ‘bad’	 group	 are	 those	 clusters	 that	
remain,	thus	where	at	least	one	TCR	sequence	recognizes	other	epitopes	than	the	remainder.	An	
example	of	a	bad	cluster	can	be	found	in	table	3.	Through	this	division,	we	found	that	indeed	the	
majority	of	the	clusters	have	a	high	precision	and	thus	fall	 in	the	 ‘good’	category.	A	minority	of	
the	clusters	fall	in	the	‘bad’	category	and	have	a	very	poor	precision.	The	precision	distribution	is	
thus	bimodal,	as	shown	in	figure	6.	The	question	then	becomes:	“What	makes	a	cluster	 ‘bad’?”.	
There	 is	a	 clear	 set	 of	TCR	 sequences	 that	 despite	 being	 highly	 similar,	 bind	entirely	 different	
epitopes.	
	
Table	2:	Example	of	a	‘good’	cluster	
TCRb	CDR3	Sequence	 Epitope	sequence	
CASSEGRVSPGELFF	 GLCTLVAML	
CASSTGQVSPGELFF	 GLCTLVAML	
CASSEGQVSPGELFF	 GLCTLVAML	
CASSAGRVSPGELFF	 GLCTLVAML	
CASSEGRVLPGELFF	 GLCTLVAML	
CASSEGRISPGELFF	 GLCTLVAML	
CASSTGRVAPGELFF	 GLCTLVAML	
CASSEGRVLSGELFF	 GLCTLVAML	
	
Table	3:	Example	of	a	bad	cluster	
TCRb	CDR3	Sequence	 Epitope	sequence	
CASRPGQGNNEQFF	 KRWIILGLNK	
CASRPGQGSHEQFF	 KRWIILGLNK	
CASRPGQGSHEQFF	 KRWIIMGLNK	
CASSPGQGPYEQYF	 LLWNGPMAV	
CASRPGQGSHEQYF	 KRWIILGLNK	
CASSPGQGGYEQYF	 KAFSPEVIPMF	
CASRPGQGGYEQYF	 ISPRTLNAW	
	
The	properties	 of	 the	 CDR3	 sequence	 of	 the	TCR	beta-chain	within	 each	cluster	with	 both	 the	
good	and	bad	groups	were	investigated.		In	this	instance,	we	investigated	the	length	of	the	CDR3	
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amino	 acid	 sequence,	 the	 percentage	 of	 hydrophobic	 residues	 and	 the	 percentage	 of	 charged	
residues.	The	physicochemical	properties	seemed	especially	relevant	as	it	can	be	supposed	that	
the	 CDR3	 region	 needs	 to	 make	 contact	 with	 the	 epitope’s	 amino	 acids	 to	 facilitate	 the	
recognition,	which	can	be	aided	by	specific	residues.	However,	we	found	no	detectable	difference	
in	this	frequency	within	the	central	CDR3	region	(charged	residue	P-value:	1.00	&	hydrophobic	
residue	P-value:	0.85).	A	large	difference	was	noted	based	on	CDR3	amino	acid	length,	as	can	be	
seen	 in	 figure	6.	Shorter	TCRb	CDR3	sequences	were	more	common	 in	 the	 ‘bad’	 clusters.	This	
indicates	 that	 if	 the	sequence	is	 short,	 there	may	not	be	sufficient	 information	for	 the	distance	
measures	to	separate	those	that	bind	different	epitopes.	In	the	same	manner,	clusters	with	long	
TCRb	CDR3	sequences	always	concern	a	single	epitope.	Whether	this	is	an	artefact	of	the	VDJdb	
dataset	or	represents	a	true	biological	division	cannot	be	answered	at	this	time.	
	

	
Figure	6:	Left:	Density	plot	of	the	precision	for	 the	GapAlign	clusters	found	using	DBSCAN	at	the	fixed	 threshold	of	18.	
Right:	Violin	plot	of	the	TCRb	CDR3	sequences	lengths	of	the	‘bad’	clusters	and	the	‘good’	clusters.	Each	point	represents	a	
single	cluster.	A	bad	cluster	is	defined	as	containing	at	least	one	TCR	sequence	that	binds	a	different	epitope	than	all	the	
others.	
	
TCR	distance	does	not	represent	epitope	distance	
	
T-cell	receptor	recognition	is	known	to	have	a	high	degeneracy	as	one	TCR	can	recognise	a	large	
number	of	similar	epitope	peptides.		This	may	be	problematic	for	the	evaluation	of	our	clusters	as	
thus	far	we	have	only	considered	TCR	sequences	that	bind	exactly	the	same	epitope.	It	may	be	
the	 case	 that	 similar	TCRs	 that	are	grouped	bind	 very	similar	 epitopes,	 but	 not	 the	 same	one.	
Furthermore,	the	question	can	be	raised	that	if	similar	TCRs	bind	similar	epitopes,	do	dissimilar	
TCRs	bind	dissimilar	epitopes.	To	this	end,	we	plotted	the	distance	between	two	TCR	groups	that	
bind	 two	 different	 epitopes	 against	 the	 distance	 between	 the	 epitopes	 themselves.	 For	
comparative	purposes,	we	use	the	GapAlign	method	to	calculate	distances	between	the	epitopes	
as	it	is	closely	related	to	traditional	sequence	alignment	and	the	other	methods	cannot	be	readily	
transposed	to	the	epitope	space.		As	can	be	seen	in	figure	7,	the	overall	correlation	between	the	
TCR	sequence	distance	and	the	epitope	distance	is	low.	In	fact	in	most	cases,	it	is	even	negative.	
This	seems	to	suggest	that	TCR	sequences	binding	more	similar	epitopes	have	less	similar	TCR	
sequences.		
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Figure	7:	Scatter	plots	representing	the	relationship	between	TCR	sequence	distance	and	epitope	sequence	distance.	Each	
point	represents	the	comparison	between	a	group	of	TCR	sequences	binding	one	epitope	and	a	group	of	TCR	sequences	
binding	another	epitope.	On	 the	y-axis	the	median	distance	between	all	TCR	sequences	from	one	group	 to	the	other	is	
reported	based	on	the	specified	distance	measure.	On	the	x-axis	is	the	distance	between	the	two	epitopes.		Reported	are	
the	Spearman	correlations	between	the	two	measures.	The	colors	indicate	density	at	a	given	location	in	the	plot,	with	the	
yellow	color	indicating	higher	density.	
	
Furthermore,	 there	 are	 several	 epitope	 distances	 greater	 than	 a	 score	 of	 120.	 These	 very	
dissimilar	epitopes	are	 those	 that	 originate	 from	different	MHC	 classes	 as	 they	 typically	 differ	
greatly	 in	 length	 (9.2	 amino	 acids	mean	 for	MHC	 class	 I	 and	15.6	 for	MHC	 class	 II	 in	 the	VDJ	
dataset).	 Thus,	 these	 represent	 comparisons	 between	 TCR	 sequences	 targeting	 a	MHC	 class	 I	
epitope	and	TCR	sequences	targeting	a	MHC	class	II	epitope.	It	is	interesting	to	see	that	none	of	
the	 distance	measures	 provides	 large	 distances	 for	 TCR	 sequence	 groups	 that	 target	 different	
MHC	classes.	This	signifies	that	using	the	definitions	from	these	distance	measures,	there	is	no	
intrinsic	 difference	 in	 TCRs	 with	 different	 MHC	 class	 binding,	 despite	 the	 large	 epitope	
dissimilarity.	 	This	 is	unexpected	as	prior	work	has	indicated	significant	differences	within	 the	
CDR3	region	between	CD8+	and	CD4+	T-cells	(Li	et	al.,	2016).	Comparing	the	TCR	CDR3	amino	
acid	 lengths	 assigned	 to	 either	 a	 peptide	 bound	 by	 MHC	 class	 I	 or	 MHC	 class	 I	 reveals	 no	
statistically	 significant	difference	 (P-value=	0.49).	This	may	be	due	 to	 the	much	smaller	 size	of	
this	dataset	compared	to	those	used	in	the	past.	
	
However,	 for	 all	 distance	measures,	 except	 for	 the	VJedit,	 there	are	 some	 comparisons	with	a	
median	 distance	 of	 0,	 i.e.	 identical	 CDR3	 sequences,	 and	 these	 typically	 target	 very	 similar	
epitopes.	This	may	represent	 the	degeneracy	of	 the	TCR,	but	 they	remain	 the	exception	rather	
than	the	rule.	Detailed	inspection	reveals	that	the	largest	differences	between	TCR	sequences	are	
reported	for	those	epitopes	for	which	a	large	number	of	associated	TCRs	have	been	reported.	In	
fact,	 the	number	of	TCR	sequences	is	a	much	better	indication	of	the	median	distance	than	the	
epitope	dissimilarity,	as	can	be	seen	in	figure	8.	For	example,	the	found	Spearman	correlation	in	
the	case	of	 the	Trimer	distance	measure	 is	0.27	 (P-value	=	1.99e-123)	between	 the	number	of	
TCR	sequences	in	the	largest	group	and	the	overall	median	distance	score.	This	again	supports	
the	 presence	 of	 different	 dissimilar	 TCR	 groups	 that	 bind	 the	 same	 epitope.	 In	 addition,	 this	
suggests	that	epitopes	with	more	known	TCR	sequences	have	a	large	diversity	of	such	sequences.	
This	 may	 be	 due	 to	 data	 itself,	 where	 more	 sequences	 allow	 for	 large	 variation	 or	 these	
sequences	are	derived	from	distinct	studies	and	populations,	 increasing	variability.	 It	may	also	
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have	a	biological	reason,	as	epitopes	that	are	more	easily	recognized	by	a	large	diversity	of	TCR	
molecules	 will	 have	 a	 much	 larger	 set	 of	 known	 TCR	 sequences	 revealed	 through	 tetramer	
staining	followed	by	TCR	sequencing.		
	

	
Figure	8:	Scatter	plots	representing	the	relationship	between	TCR	sequence	distance	and	the	number	of	TCR	sequences	
associated	 with	 the	 epitope.	 Each	 point	 represents	 the	 comparison	 between	 a	 group	 of	 TCR	 sequences	 binding	 one	
epitope	 and	 a	 group	 of	 TCR	 sequences	 binding	 another	 epitope.	 On	 the	 y-axis	 the	 median	 distance	 between	 all	 TCR	
sequences	from	one	group	to	the	other	is	reported	based	on	the	specified	distance	measure.	On	the	x-axis	is	the	number	
of	associated	TCR	sequences	for	the	biggest	group.		Reported	are	the	Spearman	correlations	between	the	two	measures.	
The	colors	indicate	density	at	a	given	location	in	the	plot,	with	the	yellow	color	indicating	higher	density.	
	
Conclusions	
	
In	 this	 study,	 we	 investigated	 the	 performance	 of	 various	 unsupervised	 distance	measures	 to	
group	the	beta-chain	CDR3	amino	acid	sequence	of	TCR	proteins	with	the	aim	to	group	those	that	
recognize	the	same	epitope.	From	our	results,	we	can	conclude	that	all	distance	measures	using	
only	the	CDR3	region	outperform	random	clustering,	however	none	are	able	to	perform	perfect	
clustering	of	the	entire	dataset.	Each	measure	had	its	own	distinct	advantages	and	disadvantages,	
but	all	performed	comparably.	A	finding	of	interest	in	this	manner	was	that	a	simple	Levenshtein	
distance	with	a	threshold	of	one	was	already	highly	performant	and	equivalent	to	many	of	the	
more	 advanced	 measures	 explored.	 Thus,	 one	 can	 achieve	 reasonable	 clustering	 of	 epitope-
specific	TCR	sequences	based	on	three	simple	criteria:	1)	 if	 they	have	identical	 length,	2)	if	 the	
CDR3	amino	sequence	is	sufficiently	long	and	3)	if	they	differ	by	at	most	one	amino	acid.	
Clustering	all	TCR	CDR3	amino	acids	 targeting	 the	same	epitope	 is	a	much	harder	problem	as	
they	often	end	up	 in	different	distant	clusters.	 Indeed,	all	distance	measures	agreed	 that	 there	
could	be	as	much	dissimilarity	between	two	TCR	CDR3	sequences	targeting	the	same	epitope,	as	
two	TCR	CDR3	sequences	targeting	widely	different	epitopes	presented	by	a	different	MHC	class.	
Thus	very	different	CDR3	beta-chain	sequences	can	be	associated	with	the	same	epitope,	highly	
complicating	 any	 unsupervised	 or	 even	 a	 supervised	 approach.	 This	 suggests	 that	 despite	 the	
early	 successes	 with	 supervised	 methods,	 current	 techniques	 fall	 short	 of	 clustering	 all	 TCR	
sequences	with	 the	same	unknown	epitope	preference	in	a	 robust	and	complete	manner.	Such	
techniques	 would	 however	 be	 useful	 to	 investigate	 naively	 sequenced	 repertoires,	 or	 T-cell	
collections	 where	 only	 the	 antigen	 protein	 is	 known.	 However,	 it	 should	 be	 noted	 that	 all	



	 15	

conclusions	in	this	study	are	highly	dependent	on	the	available	dataset.	There	is	no	doubt	that	
the	 future	 will	 see	 an	 expansion	 of	 TCR	 sequencing	 data	 along	 with	 novel	 experimental	 and	
computational	 techniques	 to	 process	 them.	 Finally,	 it	 should	 be	 noted	 that	 only	 the	 TCR	 beta	
sequence	 was	 used	 as	 input	 for	 the	 distance	 measures.	 Using	 both	 alpha-	 and	 beta-chain	
information	may	provide	far	superior	performance,	but	there	is	still	a	substantial	lack	of	this	type	
of	data	within	the	scientific	literature	to	evaluate	this	in	a	thorough	manner.	
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