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ABSTRACT

How to deliver best care in various clinical settings remains a vexing problem. All pertinent healthcare-related

questions have not, cannot, and will not be addressable with costly time- and resource-consuming controlled

clinical trials. At present, evidence-based guidelines can address only a small fraction of the types of care that

clinicians deliver. Furthermore, underserved areas rarely can access state-of-the-art evidence-based guidelines

in real-time, and often lack the wherewithal to implement advanced guidelines. Care providers in such settings

frequently do not have sufficient training to undertake advanced guideline implementation. Nevertheless, in ad-

vanced modern healthcare delivery environments, use of eActions (validated clinical decision support systems)

could help overcome the cognitive limitations of overburdened clinicians. Widespread use of eActions will re-

quire surmounting current healthcare technical and cultural barriers and installing clinical evidence/data cura-

tion systems. The authors expect that increased numbers of evidence-based guidelines will result from future

comparative effectiveness clinical research carried out during routine healthcare delivery within learning health-

care systems.

Key words: clinical, clinicians, computers, decision-support, automated clinical care, closed-loop
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INTRODUCTION

Evidence-based guidelines currently address a small fraction of the

patient care decision-making quandaries that clinicians encounter.

Overburdened, unfettered clinicians in the absence of guidelines de-

liver opinion-based care reflecting their variable levels of under-

standing, their biases, their backgrounds, and their personal foibles.

Clinician treatment decisions/actions vary widely.1–5 Even when rel-

evant best-of-care recommendations for patients do exist, unwar-

ranted variation in clinicians’ decisions and actions impair care

delivery,1,6–8 when they fail to use applicable guidelines.9,10 Patients

only receive recommended care about 50% of the time.5,11–13 This

can lead to costly inefficiencies in care delivery,14,15 delayed care,

and patient morbidity and mortality These, in part, reflect the dan-

gers of lack of standardization that characterize poor process con-

trol.16–18 Eliminating unwarranted deviations from evidence-based

care is thus a fundamental clinical challenge.

We recently discussed barriers (both technical and cultural) that

impede consistent evidence-based care delivery and reviewed

obstacles to the implementation of learning healthcare systems.19

We concluded that replicable expert clinical decision-support sys-

tems (CDSS) called “eActions,” based on either physiological mod-

els or production rules, were a desirable solution.19 While the

previous publication described CDSS that can produce replicable cli-

nician actions (eActions), it did not forcefully advocate for automat-

ing personalized clinical care (precision medicine20) with eActions.19

This manuscript presents the case for the adoption of eActions to au-

tomate care where possible.

Well-designed CDSS can improve both the safety and efficiency

of care and patient outcomes, but they are not widely used, even

though electronic health record (EHR)-based automation of some

tasks21–30 can unburden clinicians by diminishing their workloads.31

Challenges to their use include economic, cultural, and technical

impediments.32–35 Two critical objectives for improving care involve

(1) increasing adherence to relevant guidelines and best evidence

when they are available and (2) developing additional guidelines for

clinical situations not yet adequately addressed.

RATIONALE FOR ADOPTION OF eActions

In situations where established guidelines and a useful evidence base

do not exist, carefully reasoned, mindful clinician variation can con-

tribute new insights. Examples of this occurred during the coronavi-

rus disease 2019 (COVID-19) pandemic.36 However, individual

clinician decision-making is commonly associated with mindless32,36

or unwarranted variation (deviations from best practice, not based

on evidence or patient preference),37,38 and associated with waste,

morbidity, and mortality.2,39–45 Even specialists claiming to follow

the best evidence do not consistently do what they say.46–51 Unwar-

ranted variation introduces noise, both random and systematic, into

EHR system data. Regardless of its source, variations in clinical

practice contribute to EHR data that can appear erratic (“noisy”)

when viewed in aggregate. Such noise can impair the ability of mod-

ern information systems to generate high-quality data capable of

supporting clinical investigations and improvements in clinical prac-

tice, and impairs our ability to achieve a learning healthcare system.

EHR noise is produced by corrupt, inaccurate, outdated, or bi-

ased data that commonly exhibit unexplainable and unwarranted

variation3–5,19,37,38,52 reducing the signal-to-noise ratio for impor-

tant clinical data and events.53–55 Noisy EHR data result not only

from clinician performance (unwarranted,2–5,32,36–39,41–45,52,56–60 or

mindless,32,61 in contrast to mindful19,32,36,62,63 variation) but also

from clinical information systems designed without due consider-

ation for the downstream dependencies of CDSS. Unwarranted vari-

ation in clinician decisions and actions can be produced by

conflicting clinician opinions or biases, inaccurate laboratory data,

vague interpretations of images, and other sources. Both “big data”

and “deep learning” have been proposed as solutions to this chal-

lenge.31,64–69 However, data quality is often more important than

data quantity.70,71 The validity of machine learning, including deep

learning, is limited by the validity of the learning data it uses.71–73

While machine learning has been successful in multiple applica-

tions,74,75 it has not yet realized its clinical potential.31,69,71–73,76–81

Some of its most successful applications are in image interpretation

(see Appendix in Ref.76) but even imaging results can be misleading

due to data noise.71 In certain contexts, machine learning models

currently return only approximate results that are often reasonable.

Importantly, approximate results, whether from clinical guideline

applications or image interpretations, are not adequately detailed to

provide personalized clinical care (or precision medicine20) CDSS

instructions.74,77,79 Accordingly, any CDSS produced by machine

learning can reflect random and systematic EHR noise,3,4,19,37,38,52

in part due to poor clinical process control16–18 induced by unwar-

ranted clinician variation. This noise may be subtle and difficult to

identify.71 Successful applications of machine learning CDSS have

used population predictive analytics for condition surveillance cou-

pled with careful incorporation into clinical workflows. These

efforts rely heavily on frequently overburdened clinicians to deter-

mine appropriate courses of action after being alerted by the CDSS

model output.74,77,82 This differs from replicable, closed-loop sys-

tems that provide specific personalized care for individual patients

and simultaneously unburden clinicians.21,23–25,83–98 Promising re-

cent reports highlighted the potential value of techniques such as re-

inforcement learning to create closed-loop CDSS. These approaches

still await rigorous prospective clinical trial evaluation.99,100

We characterize eActions as complex, highly evolved, and vali-

dated expert systems that manage a specific clinical task or condition.

eActions generate multiple, replicable, decisions based on relevant

data inputs. We chose the name eActions to emphasize replicable clini-

cian actions. We contrast patient-specific replicable actions with deci-

sion aids (common clinical guidelines, protocols, and machine

learning) that merely deliver replicable generic messages to clinicians,

such as “give influenza vaccine to eligible patients each September.”

Clinicians considering such general, “high-level” recommendations

must often collect and consider additional patient-specific information

and introduce additional logic before deciding upon a specific action

for each patient. Replicability occurs when the decision-making pro-

cess leads different clinicians to take the same actions for different

patients whenever the patients’ contexts and clinical information

match.101–113 To test if a clinical care or research method is replicable,

one can ask, “Is the advice from the decision-support tool theoretically

capable of being executed automatically?” If not, it requires supple-

mental clinician judgment (additional input data or CDSS logic) at the

point of decision-making and will not lead to replicable clinician

actions because of unwarranted variation among healthcare decision-

makers.2–5,32,36–39,41–45,52,56–60

Specifically, eActions return detailed, personalized clinical care

(precision medicine20) recommendations for individual patients. By

contrast, other types of CDSS tools provide often reasonable but

only approximate recommendations that do not lead to replicable

personalized care decisions and actions. We summarize the contrast-

ing attributes of different clinical decision support systems (CDSS)
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in Table 1. While not a comprehensive literature review, Table 1

should help clarify important distinctions between eActions that re-

turn detailed personalized clinical care (precision medicine20) deci-

sions and actions for individual patients, from other CDSS tools that

cannot do so. Replicability of clinician actions (interventions)

enhances the scientific validity of both experimental and observa-

tional studies.

Two modes of eActions implementation exist. In the first, open-

loop eActions present each decision to clinicians for ap-

proval.9,29,107,109–111,113,116,121–125 In the second, closed-loop eAc-

tions directly and automatically control therapy—they remove the

decision from the clinician.21,23–28,83–86,88–92,95–98,126–129 Results

from initial eActions developed by the group at LDS Hospital (Salt

Lake City, USA, using an open-loop CDSS101,103–105,114) illustrate

the potential for improved clinical research and care. These eActions

generated personalized mechanical ventilation care instructions, dis-

played on bedside computer terminals (Figure 1). These open-loop

instructions were accepted by bedside clinicians 95% of the

time.101,103–105,107,111,114,123–125 Furthermore, closed-loop control

(automated care) can also be reasonable and practical in specific set-

tings.21,23–25,83–98 A mechanical ventilation closed-loop controller

evaluated in a randomized controlled trial reduced clinician burden

and was safe.130 Importantly, a compelling, quasi-experimental

comparative effectiveness clinical trial of closed-loop mechanical

ventilation, generated through routine clinical care of COVID-19

pandemic acute respiratory distress syndrome (ARDS) patients, pro-

duced results favoring closed-loop control, while also unburdening

clinicians.97

We present herein our argument for the targeted use of auto-

mated, closed-loop eActions in personalized care, as a fundamental

objective of both clinical care and clinical research. Examples in-

clude closed-loop control of ventilator weaning and specific treat-

ments for Type 1 diabetes mellitus.94,96,98,117 Support for our

argument includes the following:

1. eActions satisfy CDSS evaluation requirements.

2. eActions fit within clinical informatics models.

3. eActions use can produce study results that are more scientifi-

cally rigorous and valid.

4. eActions use will identify those clinical decisions that can be au-

tomated, differentiating them from those that cannot, only if

initially designed to function as closed-loop (automated) CDSS.

eActions satisfy CDSS evaluation requirements131

First, we should distinguish therapeutic from diagnostic CDSS.

Therapeutic eActions return personalized best evidence-based care

for patients, once a diagnosis has been made, or a clinical task speci-

fied.9,19,101,105–113,115,132,133 The diagnosis or specified clinical task

establishes a clinical context that enables the initiation of a thera-

peutic process.128 As articulated by others, diagnostic CDSS is inher-

ently more challenging.34,134–137 Previous workers have had

difficulty capturing a physician’s complex patient understanding

with a CDSS tool137 and artificial intelligence has not yet realized its

promise to properly assist clinician decision-makers.80 In contrast,

for therapeutic eActions, it is possible to capture the way clinicians

manage clinical tasks or problems. This is achieved through knowl-

edge engineering with multiple clinicians,106 coupled with imple-

mentation, iterative refinement, and validation in multiple clinical

settings in which the specific clinical task or problem-focused eAc-

tions are intended to be used.106,131,135 These are well-supervised

clinical settings that can function as human outcomes research labo-

ratories106 (Figure 1). This approach assures validation and safety in

all sites in which eActions are implemented. eActions thus meet ef-

fective CDSS implementation requirements.138

System-wide Information Technology (IT) “top-down” CDSS

solutions are unlikely to produce positive outcomes34 and can even

lead to harm.139 By contrast, a narrow focus on the clinical problem

at hand is a prerequisite for success in an advice-giving CDSS. eAc-

tions embrace an interprofessional clinician and patient problem-

centric strategy140 in concert with Abraham Maslow’s problem cen-

tering research imperative (see Chapter 16 in Ref.141) echoed by

others (see pp. 543–4 in Ref.142) CDSS-based eActions are not in-

formation technology-focused, but rather provide tools to address

specific clinical problems. eActions only require the decision-making

information that expert clinicians need and currently use for the spe-

cific clinical problem or task.19,102,106,108

eActions fit within clinical informatics models
Friedman’s “fundamental theorem” of biomedical informatics

requires a synergy between clinician-users and computer applica-

tions, with clinician users being the most important source of infor-

mation.136 To be successful, the outcome of this synergy must

exceed the outcome achieved by the unaided clinician (Fig-

Figure 2).34,136,137,149 eActions comply with this “fundamental the-

orem” by capturing the detailed and comprehensive information

clinicians use to make decisions.102,106,108

Our previous work demonstrated how eActions instructions at

LDS Hospital (Salt Lake City, UT, USA)101,103–105,112,114,150 (Fig-

ure 1) and elsewhere9,107 led to more uniform patient management

and lower tidal volumes, within the safety limits of accepted me-

chanical ventilation (Figure 3). eActions reduced unwarranted varia-

tion in care, thereby reducing both random and systematic (bias)

EHR noise.151–159 eActions must therefore increase the signal-to-

noise ratio53–55 of EHR data55 and outcomes (Figure 3), improving

the “Knowledge to Performance” limb of the proposed learning

healthcare cycle (Figure 4),68,160 reflecting a common conceptual

model (see pp. 28, 667, and 786 in Ref.161). The eActions for me-

chanical ventilation of ARDS patients101,103–105,112,114,150 provided

a foundation for the mechanical ventilation protocol developed and

used by the ARDS Network in a groundbreaking randomized clini-

cal trial.162

eActions use can produce study results that are more

scientifically rigorous and valid
The quality of scientific data depends on methodological replicabil-

ity for validating research results—a long recognized163 core re-

quirement of rigorous science164–167 and a clinical research ethical

imperative.168 Methodological replicability is achieved by eActions

that utilize detailed and comprehensive input data.19,169 Replicabil-

ity is not achieved by more general evidence-based guidelines cur-

rently provided to clinician decision-makers.170–174 Consequently,

eActions increase the scientific rigor of clinical studies.3,4,37,38,52

Joining 4 strategies reflected in Table 2 would enhance the popu-

lation of a robust EHR with valid and largely noise-free data, en-

abling the development of a rigorous learning healthcare system. For

example, eActions can enable distributed, replicable, evidence-based

clinical care and research methods.101,105–113,115 This would lead to

more robust explanatory trial results, more scientifically robust

multi-institutional trials, and could replace some pragmatic compar-

ative effectiveness clinical trials.108,190 After completion of a trial,

eActions have been immediately introduced into usual care110 and
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Table 1. Attributes of usual guidelines, protocols, and machine learning that contrast those of eActions: CDSS examples that demonstrate

and clarify distinctions between eActions that return detailed personalized clinical care decisions and actions from the other CDSS tools

that provide only approximate and often reasonable recommendations that cannot lead to replicable personalized care decision and

actions

Decision-support tool Replicable? Description Model Needs

added

clinician

logic

eActions

Rule Physiol Yes ? Auto

Mechanical Ventilation for

ARDS patients9,101,

103–105,107,114.

Yes Production rule-based protocol generating decisions for

starting, stopping, and adjusting FiO2, PEEP, mode of

ventilation, arterial blood gas testing sampling, and

waiting times. Multisite validation with iterative refine-

ments following capture of clinician reasons for declin-

ing any returned personalized medicine instruction.

The eActions if-then logic fills approximately 50 pages

of paper flowsheets. Used clinically as an open-loop

CDSS for >30 years at 3 hospitals in Utah (�2200

patients) and one in Texas. It was successfully used in 2

patients for �850 h as a closed-loop controller.

X X X

Mechanical Ventilation115. Yes This was a short-term (6 h) open-loop CDSS management

study.

X X

Iron Lung Mechanical Ventila-

tion83

Yes These investigators and clinicians used closed-loop con-

trol to manage iron lung mechanical ventilation for 2

poliomyelitis patients.

X X X

Weaning Mechanical Ventila-

tion91

Yes These investigators and clinicians managed mechanical

ventilation weaning in children using the SmartCare/PS

option of the Evita XL mechanical ventilator (Dr€ager-

werk AG & Co. KGaA).

.

X X

Mechanical Ventilation21 Yes These investigators managed inspired oxygen to maintain

arterial oxygenation in low-birth-weight infants.

X X X X

IV Insulin: ICU blood

glucose109,110116

Yes These investigators and clinicians used eActions to per-

sonalize care orders for starting, stopping, and adjust-

ing IV insulin, blood glucose testing, measurement and

waiting times, IV glucose, and nutrition. Developed

and validated over several years and implemented in

multiple institutions in adult and pediatric ICUs.

X X

IV insulin to control ICU blood

glucose98,113,117

Yes These investigators and clinicians used eActions to per-

sonalize care orders for blood glucose management in

RCTs of children.

X X

Sepsis111 Yes eActions produced higher compliance and lower mortal-

ity in Sepsis and Septic Shock patients than did a pa-

per-based protocol with the same rules. Both were

more favorable than published outcomes after usual

care.

X X

Post Operative Left Atrial

Pressure85

Yes These investigators and clinicians managed 8500 consec-

utive cardiac surgery postoperative patients with a

physiological model for controlling left atrial pressure

with automatic control of blood infusion and vasodi-

lating agents by closed-loop feedback control. They

managed other postoperative care with a rule-based

CDSS.

X X X X

Clinical Guidelines No Generally, a consensus circumscribed set of if—then—

else statements, based on a very limited set of input

data that fail to lead to replicable clinician actions. For

example, if a diabetic patient has not had an HbA1c

test in the last 6 months, then order an HbA1c test. Or

if a treatment is employed, like a diet in a hospitalized

patient, the recent ESPEN Hospital Nutrition Guide-

line recommends “reevaluation 5 days after hospital-

ization.”118 In contrast to the preceding general

guideline statements, the Heart Failure Guideline, ar-

guably the most mature and scholarly of clinical guide-

lines, provides more detailed recommendations but

X

(continued)
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have become foundations9,107,111 of additional quasi-experimental

or more rigorous comparative effectiveness trials.123–125,191–193 This

contrasts strikingly with the longstanding extended delays character-

istic of translation of research results to clinical practice.5

eActions use will identify those clinical decisions that

can be automated, differentiating them from those that

cannot, only if initially designed to function as closed-

loop (automated) CDSS
Automated (closed-loop) personalized clinical care has been a diffi-

cult concept to accept by those engaged in healthcare deliv-

ery.1,6,7,19,31,69,143 Our eActions strategy does not assume all

clinical tasks/decisions can be automated.194 Only by capturing the

information detail that would theoretically enable automated func-

tions can we identify those clinician decisions and tasks able to be

automated. Necessary details of a task may only become clear when

the CDSS is executed in the intended clinical environment.34 This

has been one justification for the required iterative refinement and

validation of eActions in the intended clinical use environ-

ments.102,105–108,111,195 Significantly, eActions need not be perfect

to justify eActions use. Clinicians aided by eActions need only pro-

duce more favorable clinical outcomes for each specific clinical task

or problem than do unaided clinicians.131,136,137

We believe the evidence we cite strongly supports our argu-

ment that the best CDSS strategy for distinguishing those clinical

tasks that can be fully automated using eActions from those that

cannot is to undertake the same detailed work on evidence and

logic for all clinical tasks being considered for eActions. The

results of this process will make it clear that some eActions are

implementable as closed-loop CDSS21,23–30,83,85–92,95–98,126–129

and some are not.

Table 1. continued

Decision-support tool Replicable? Description Model Needs

added

clinician

logic

eActions

Rule Physiol Yes ? Auto

these also fail to lead to replicable clinician actions. For

example, Diuretic and Decongestions Strategies in

Patients with Heart Failure and Pharmacological Treat-

ment for HFrEF recommend: “For patients with HF

and congestive symptoms, addition of a thiazide (eg,

metolazone) to treatment with a loop diuretic should

be reserved for patients who do not respond to moder-

ate or high-dose loop diuretics to minimize electrolyte

abnormalities,” and “In patients with previous or cur-

rent symptoms of chronic HFrEF, in whom ARNi is

not feasible, treatment with an ACEi or ARB provides

high economic value.”119

Common Clinical Protocols No These are usually paper-based and generally consist of a

circumscribed set of if—then—else statements based on

a very limited set of input data. “Try to return to

FIO2¼ 0.4 and PEEP¼ 5 as soon as possible,” a rec-

ommendation from an old book of ICU protocols, is an

example of a protocol return that fails to lead to repli-

cable clinician actions. Similarly, a more recent recom-

mendation for oxygen: “Oxygen has to be given

cautiously with monitoring as uncontrolled high-flow

oxygen can lead to respiratory depression and worsen-

ing hypercapnia in type 2 respiratory failure. . .,” or for

Noninvasive Ventilation: “To control pH and pCO2-

manipulate the minute ventilation, the respiratory rate

and tidal volume, consider NIV for extubation in se-

lected cases.”120

X

Machine (Deep) Learning74,77,79 No Machine learning CDSS currently return only approxi-

mate results that are often reasonable, like clinical

guideline recommendations are reasonable. However,

approximate results, whether from clinical guidelines

application or from image interpretations, are not ade-

quately detailed to provide personalized medicine

CDSS instructions.

X

Renal Dialysis ? Potential clinical challenges that we expect can likely be

managed with a future eActions

X

Anesthetic dosing ? Potential clinical challenges that we expect can likely be

managed with a future eActions

X

Rule: rule-based model; Physiol: physiological-based model; Needs bedside clinician logic: Decision-making clinician must supply missing data or logic not

found in the decision support system; ?: uncertain if decision support tool is replicable or qualifies as an eActions; ARDS: acute respiratory distress syndrome

patients.
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Maintenance and curation of eActions will be challenging but

should be manageable with allocation of adequate resources. To

keep eActions data and logic updated and reliable, a yet unexplored

formal process for continuous curation seems necessary. Our antici-

pated structure and flow of this formal process are outlined in Fig-

ure 5.19,31,69 We foresee that each eAction focused on a specific

clinical problem/task will be curated by a separate multi-

institutional committee. Each committee would be tasked and

resourced to provide continual iterative refinement and assessment

of clinical outcomes. Curation would comply with national policies

for best practices to improve both use of CDSS and health care

decision-making. Widespread use of eActions will require transpar-

ency and shared learning. Transparency in the development, testing,

and implementation processes should support and accelerate eAc-

tions adoption. Users of eActions should be able to review the clini-

cal logic that generated any clinician action and be able to review

the oversight results of eActions effectiveness.

Curation of multiple copies of eActions on different vendors’

cumbersome EHR platforms would be an irresolvable technology

maintenance nightmare. Consequently, we suggest that eActions

should operate as platform-independent Web-services, based on a

standard, shared data model and interchange format that ensures

syntactic and semantic interoperability, to enable effective and effi-

cient curation of the eActions logic and performance.142,161 Signifi-

Figure 1. Iterative refinement (indicated by —————) and clinical implementation strategy105,106 for an open-loop mechanical ventilation eActions clinical deci-

sion support system (CDSS)9,29,107,109–111,113,116,121–125 that provides personalized medicine care instructions. SpO2: pulse oximetry; PaO2: arterial oxygen partial

pressure; pH: arterial pH; FIO2: fraction of inspired oxygen; PEEP: positive end-expiratory pressure; VT: tidal volume; VR: ventilatory rate; MD: physician; RN:

nurse; RT: respiratory therapist. Clinicians accepted eActions instructions 95% of the time and declined eActions instructions 5% of the time.105,106 Clinician rea-

sons for declining instructions were captured by eActions. Quantitative distributions of VT are presented in Figure 3. Information Technology Communication

Standards include, but not limited to: LOINC: Logical Observation Identifiers Names and Codes; UMLS: Unified Medical Language System; HL7: Health Level

Seven, a standard for exchanging health information between medical applications. Modified from Ref.104

Figure 2. Modified from Ref.136 eActions CDSS, operating as a Web service, focus on complex clinical problems to deliver personalized medicine returns tailored

to the individual patient’s needs at the time of execution. Friedman’s “fundamental theorem” of biomedical informatics requires only that the clinician, with her/

his cognitive limitations,32,36,81,102,108,143–148 aided by the computer CDSS (eActions), produces a clinically important outcome more favorable than that produced

by the unaided clinician.131,136,137 eActions need not be perfect, but only better than the unaided clinician. The information captured by knowledge engineering

and embedded in eActions occurs asynchronously, before the patient-clinician encounter.106 During the patient-clinician encounter, eActions provide what

amounts to a consultation that delivers evidence-based clinical decisions and actions. The “Computer Screen !Cloud” icon indicates a Web-service communi-

cation strategy.
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cant obstacles exist to the implementation of “external to the

institution” remote clinical services. These include maintaining the

privacy of transmitted patient information, maintaining bi-

directional feedback connections among participating sites so dis-

covered erroneous recommendations can be rapidly reported from

peripheral sites and alternatively recognized “centrally” at the re-

mote service provider. Regardless of origin, errors must be dealt

with rapidly and effectively to ensure patient safety. The ability to

identify patients who may have been affected by “bugs” in remotely

hosted eActions will be of utmost importance. Sites hosting remote

Figure 3. Distribution of set Tidal Volume (VT set [ml]) in physician-controlled (MD Decisions) and eActions controlled (Computer Protocol) groups (unpublished

RCT data from Ref.105) from the same study depicted in Figure 1. N: number of VT set (ml). Vertical black bars ¼ group means. The tidal volume setting (VTset

[ml]) distributions in the eActions controlled (Computer Protocol) group more strongly reflect the random contributions of physiologic and other variability that

are expected to have a Gaussian distribution (superimposed red dots) than those of the MD Decisions groups. Modes indicate step changes of 100 ml, a reflection

of noise introduced by MD Decisions.

Figure 4. Conceptual learning healthcare system model modified from Friedman et al68,160 and reflecting a common conceptual model (see p. 28 in Ref.161) EHR

data are noisy and degraded reducing signal-to-noise ratio19,55 for important data and outcomes, and therefore reducing both precision and validity of “Critically

Appraised External Evidence.” eActions focus on clinician performance and reduce EHR noise by reducing unwarranted,2–4,32,36–39,41–45,52,56–60 or mindless,32,61

in contrast to mindful19,32,36,62,63 variation, improving the “Knowledge to Performance” component of the learning healthcare system model and secondarily im-

proving the Performance to Data and the Data to Knowledge limbs, since all 3 limbs are tightly linked.68 This will increase the signal-to-noise ratio for important

clinical data and outcomes and should increase the validity of “Critically Appraised External Evidence,” leading to more “Credible Evidence” for “Evidence-based

Decisions.”
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eAction services must be fully uninterruptible and crash-proof. Simi-

larly, network connectivity between clinical sites and remote eAc-

tion service providers must be error-free and uninterruptible.

Interruptions in network connectivity can be just as serious as life-

threatening software bugs. Healthcare institutions relying on closed-

loop remote service-based eActions will put patients at risk if serv-

ices “downtimes” are not recognized immediately and effective

downtime procedures are not implemented rapidly and safely.

With the momentum and requirement to learn faster and better

(eg, COVID-19 provides an example196,197) extending the admit-

tedly difficult development of eActions in collaboratives that rely on

a shared or synthetic data infrastructure across health systems is de-

sirable. This will expand the problem space (clinical challenges and

tasks) that eActions can address and will engage smaller healthcare

organizations that cannot resource their own embedded learning

systems. This could address concerns that most care in the United

States occurs in small-to-medium sized hospitals and clinics that

lack adequate informatics personnel and expertise. These challenges

could include issues that benefit from n-of-1,198–201 micro-random-

ized,202,203 or novel decentralized204 clinical trials, as well as from

traditional randomized controlled clinical trials (RCTs)151 and qual-

ity improvement strategies.36,205–208

LEARNING HEALTH SYSTEMS FOR DEVELOPING
AND TESTING NEW GUIDELINES/eActions

The conceptual model of the learning healthcare system of Friedman

et al proposes an iterative learning cycle involving EHR and other

data, knowledge, clinician performance, and external critical ap-

Table 2. Four strategies for advancing a learning healthcare system

Strategy Bottom-up clinical

problem-centric

Top-down

system-cen-

tric

Efficacy

trials

Effectiveness

trials

Replicable

method

Reference

Information Technology standardization X 175–181

Embedded clinical investigation X X X 182–184

Multiple simultaneous interventions X X 185–189

eActions CDSS or other replicable-evidence-

based strategies

X X X X 101,105–113

The citations are not an exhaustive literature review but support our conclusions. For example, eActions are “bottom-up” (designed and led by clinicians trying

to solve a clinical task/problem), enable both effectiveness and efficacy clinical trials, and are replicable clinical care/research methods.

Figure 5. (A) Development, iterative refinement, and validation of eActions at the local development site (modified from Refs.101,150). (B) Anticipated Web services

eActions implementation and distribution with iterative refinement and validation of eActions directed by the chair and members of each multi-institutional com-

mittee responsible for each specific clinical eActions curation. (C) Anticipated Learning Healthcare System with continual, iterative learning enabled by the high

signal-to-noise ratio of EHR data populated with eActions clinical care. We envision curation to include continual outcome analyses (length of stay, survival. . .) to

accommodate any change in eActions or in databases (eg, coding). We envision use of web-services eActions to require participation of all institutions, practi-

tioners, and patients in ongoing curation (comparative effectiveness research) and requiring links to the Host EHRs to allow assessment of the outcomes.226–228

Refusing to participate would preclude clinical use of eActions.227 We do not expect this will be a problem if eActions produce a significantly better clinical out-

come, than is realized with unaided clinicians or with other forms of “usual care.” New knowledge or changes returned from C (Learning Healthcare System)

lead the multi-institutional committee members to first approve for validation (B), then send to Computer Protocol in A, for the process to flow down A, then re-

turn to B (Prepare Documents. . .), flow down to “Publish New. . .,” and then go to C (High Signal-to-Noise) in an iterative loop without end.
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praisal (Figure 4).68,160 Learning healthcare systems and eActions

are mutually complementary activities. In the absence of guidelines

and consensus for many healthcare delivery topics, proposed learn-

ing healthcare systems can provide data to support creation and vali-

dation of new guidelines and eActions, both within an institution

and at the national level. Such learning systems will work best with

valid and precise data, but EHR data are noisy and de-

graded.3,4,19,37,38,52 In contrast, data generated by eActions can en-

able rigorous explanatory clinical trial results and complement other

major efforts to achieve a learning healthcare system, both “bottom-

up” and “top-down” (Table 2). “Bottom-up” approaches include

rule-based eActions,9,19,101,105–112 model-based eAc-

tions,113,115,132,133 comparative effectiveness studies of multiple

interventions simultaneously (master protocols,185 platform tri-

als,186–188 and combinations of adaptive platform trials with prag-

matic point-of-care trials,189 and adaptive intervention trials209)

“Top-down” IT-based efforts include system-centric or

administration-centric efforts to standardize information exchange

or work processes and focus on multiple standardization strategies

(Table 2).175–181 Recent investigations have combined some

“bottom-up” and “top-down” efforts and have been embedded in

routine care processes, sometimes within the EHR.182–184,210–212

Results from RCTs remain a reference standard for many clinical

care and research questions. However, RCTs are costly, time- and

resource-consuming, cannot address all pertinent clinical areas of

uncertainty because of resource limitations,174,194,213–218 and im-

pact clinical care slowly and incompletely.5 As a complement and

addition to needed RCTs, many clinical questions and challenges

could be effectively addressed with valid study designs in a learning

healthcare system with data generated through routine clinical

care.31,149 These questions and challenges could theoretically be rig-

orously studied in a learning healthcare system with comparisons of

different care strategies using comparative effectiveness, quality im-

provement, quasi-experimental, and even RCT strategies that could

avoid large cost and time consumption. Such studies could be con-

ducted if best evidence-based clinical care methods were consistently

applied in routine clinical care. Results from this care would reduce

random and systematic (bias) noise and populate EHRs with more

valid data. However, EHRs have not yet met such expecta-

tions.31,69,159,219,220

Ongoing continuous quality improvement efforts within a learn-

ing healthcare system could use eActions as their foundation. As

critical care increasingly evolves to deliver phenotypic-based therapy

(personalized medicine), eActions could facilitate adherence to pro-

tocol for studies enrolling large numbers of patients at multiple insti-

tutions. Thus, eActions use provides a basis for clinical discovery

and advances through thoughtful modifications that can be tested.

This would lead to enhanced replicability of clinical care and re-

search. This all depends on obtaining credible, internally valid study

results (best evidence) that are then applied consistently by clinicians

in usual care. This contrasts with allowing variable decision-making

and actions, hoping to find a better solution by chance, a real but in-

frequent route to progress. This need for credible evidence-based

care has been highlighted by widespread exaggeration and hyper-

bolic behavior that characterize discussions of the current COVID

pandemic.196 This behavior evokes images of the poor process con-

trol that results from responding to system noise rather than to cred-

ible representative data.16–18,197 We aver that joining automated

eActions97,130,221 with the comparative effectiveness clinical studies

in a learning healthcare system such as the groundbreaking studies

conducted at Vanderbilt University Medical Center (Nashville, TN,

USA)182,210–212 could significantly enhance our ability to achieve an

effective learning healthcare system based on routinely acquired

clinical care data.

eActions consistently link personalized medical decision-making

with best evidence, even though eActions algorithmic data and logic

are based on population evidence, clinician protocols from accepted

best practice, results from RCTs, and meta-analyses.9,19,101,105–

113,115 When eActions cannot accommodate a particular patient

state, the input data, and associated logic are incomplete. Accord-

ingly, clinicians must then supplement such data and logic gaps of

the eActions. For this reason, it is essential during CDSS develop-

ment, validation, and subsequent clinical use, to capture the bedside

clinician’s reasoning for not following every declined eActions in-

struction.106 This enables modification of detailed elements of the

algorithm, with the potential to eventually achieve closed-loop con-

trol, the ideal development target for the CDSS, though closed-loop

control will not always be possible.19 While the feasibility of eAc-

tions, including closed-loop implementation, is clearly established,

the evaluation of clinical problems and tasks for which eActions in

either closed- or open-loop application would be desirable has been

sparse. Substantial work invested in clinical guidelines and ordinary

protocols (including pharmacy drug-drug interaction CDSS), neither

of which are replicable methods of care or research, does not inform

this issue. The fraction of applicable clinical problems or tasks is

currently unknown but, in our view, likely sizeable. Even if only

10% of clinical activities accommodate eActions, that would repre-

sent �$410 billion in US national annual healthcare expendi-

tures.222,223 Widely applicable scalability remains to be

demonstrated.

We expect most comparative effectiveness clinical research224,225

questions in the future to be addressed within learning healthcare

systems,169,190 as part of routine healthcare delivery with eAc-

tions,226–228 if eActions CDSS can be successfully scaled and broadly

applied.167

DISCUSSION

Whenever relevant and feasible, patient care and clinical studies

should be guided by well-designed eActions that enable interprofes-

sional clinical teams229,230 to consistently link decisions and actions

to best evidence.55,231 This will both maximize the probability of de-

sired individual and population clinical outcomes, and address the

tension between individual patient and population care.232

Table 3. Impact of decision support tools on clinician decision-mak-

ing burden

Clinician unburdened?

Decision support tool type Clinician use Little Moderate Maximal

Clinical Process16–18,41 Common X

Guideline10,17,41 Low X

Common paper or com-

puter protocol

Common X

Open-loop eAc-

tions9,29,101,103–

105,107,109–

111,113,114,116,121,122

�95% X

Closed-loop eAc-

tions21,23,25,83–98

�100% X
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Clinical care is delivered in a complex and dynamic sys-

tem.230,233 Clinical decision-makers are cognitively lim-

ited32,36,46,48,234–238 and commonly overwhelmed with both

information and clinical tasks.32,36,81,102,108,143–148 Within that sys-

tem, unintended consequences and errors are well documented239–

245—likely reflecting domain-independent general human limita-

tions.246 Despite the advancement of clinical guidelines and proto-

cols, clinical practice remains a process that largely lacks systems-

engineering input and design.9,247–249 Insights generated from even

the most detailed in silico simulators of health systems and human

biology have not yet, to our knowledge, been translated to wide-

ranging practice changes nor have such holistic mathematical mod-

els been subjected to rigorous, prospective evaluation.250–252 Unbur-

dening clinicians, expediting care including emergency care, and

enabling all clinical team members to practice at their maximum

skill level will be most effectively accomplished by automating some

evidence-based care tasks (Table 3).21–30,78–87

Many clinicians and investigators with different views will likely

object to our arguments for eActions use in clinical research and

care253–256 described in this Perspective manuscript. These different

views have focused on diverse issues that include: hazards of EHRs

with frequent, often irrelevant, system-generated disruptions,257–259

ethical challenges,260,261 the potential for overuse of automated

CDSS,262 potential CDSS bias,263 and the potential to make some

clinicians obsolete,264,265 a fear linked to concern about deskill-

ing.266–269 Deskilling appears to be an unavoidable consequence of

civilization’s advance (see p. 42 in Ref.270, p. 29 in Ref.271) and is

certainly apparent in the changing medical landscape of the past 60

years. These issues have merit and deserve our attention. However,

with respect to eActions, they are largely distracting because they

are equally applicable to the decisions and actions effected by

unaided clinicians. Rather than using these distractions to dismiss

eActions, we assert it is more important to focus on the question im-

plicit in Figure 2: “Does clinician behavior aided by albeit imperfect

eActions lead to more favorable healthcare outcomes?”

Automated eActions (where possible) have been only sparsely

evaluated in clinical settings21,83,85,91 and are disruptive innova-

tions.272 They are responsive to the call for new care models5,117 in-

cluding changes in academic centers.118 Disruptive innovations are

not likely to be encouraged by mature medical institutions, including

professional societies.273–276 eActions work best when advanced by

clinician-led interprofessional teams.229,230 They will have to address

multiple regulatory barriers.31,69,231 We cannot expect politicians and

regulators to take the lead275—nor should they. Politicians and regu-

lators typically follow healthcare changes; they do not lead them.277

SUMMARY

All pertinent clinical questions have not, cannot, and will not be ad-

dressable with costly time- and resource-consuming controlled clini-

cal trials. We expect most comparative effectiveness clinical research

questions in the future to be addressed within learning healthcare

systems, as part of routine healthcare delivery using evidence-based

care. EHR data noise and overburdened clinician cognitive limita-

tions are barriers to providing accurate evidence to a learning

healthcare system. Reducing EHR data noise and unburdening clini-

cians will be most effectively accomplished by automating some care

tasks and removing these decisions and tasks from the clinician’s

workload. Automated eActions (validated clinical decision support

systems) would help achieve a learning healthcare system. Wide-

spread use of eActions will require surmounting current healthcare

technical and cultural barriers and installing a clinical evidence/data

curation system.

Widespread and scaled implementation of eActions entails sig-

nificant future work. Clinical experts must identify new healthcare

guidelines based on data gleaned from learning health systems (and

other mechanisms). Local and national clinical committees must de-

termine which clinical problems and tasks are amenable to open-

and closed-loop eAction solutions. Healthcare system vendors must

evolve current, relatively inflexible and proprietary EHRs into sys-

tems that can be modified to collect and rapidly externalize patient

data in standardized format in order to support the implementation

and evolution of eActions. Fundamental to all of this is rigorous test-

ing of eActions and evaluation of eActions impact on important clin-

ical outcomes.
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