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ABSTRACT

Objective: The United States faces an opioid crisis. Integrating prescription drug monitoring programs into

electronic health records offers promise to improve opioid prescribing practices. This study aimed to evaluate

2 different user interface designs for prescription drug monitoring program and electronic health record inte-

gration.

Materials and Methods: Twenty-four resident physicians participated in a randomized controlled experiment

using 4 simulated patient cases. In the conventional condition, prescription opioid histories were presented in

tabular format, and computerized clinical decision support (CDS) was provided via interruptive modal dialogs

(ie, pop-ups). The alternative condition featured a graphical opioid history, a cue to visit that history, and nonin-

terruptive CDS. Two attending pain specialists judged prescription appropriateness.

Results: Participants in the alternative condition wrote more appropriate prescriptions. When asked after the ex-

periment, most participants stated that they preferred the alternative design to the conventional design.

Conclusions: How patient information and CDS are presented appears to have a significant influence on opioid

prescribing behavior.

Key words: user-computer interface, decision support systems, clinical, medical order entry systems, prescription drug monitor-

ing programs, pain management

INTRODUCTION

Opioid overdose deaths quadrupled between 1999 and 2016 in the

United States, accounting for more than half of drug overdose

deaths.1 Prescribed opioids are believed to have contributed to the

crisis: 1 in 10 patients prescribed opioids became dependent,2 4 in 5

heroin users started with an opioid prescription,3 and many opioid

prescriptions have been diverted.4

This is not the first opioid crisis in the United States—lawmakers

responded to the crisis of the 1960s by writing the Controlled

Substances Act of 1970, which set the contemporary framework for

controlling drugs with “abuse potential” via criminological and

medical institutions.5 In response to the current crisis, all 50 U.S.

states and Guam have developed prescription drug monitoring pro-

gram (PDMP) databases to track prescriptions of most controlled

substances, and to make patients’ prescription histories available to

licensed prescribers.6,7 Further, the U.S. Centers for Disease Control

and Prevention and other governing bodies have recommended or

Published by Oxford University Press on behalf of the American Medical Informatics Association 2019.

This work is written by US Government employees and is in the public domain in the US.

613

Journal of the American Medical Informatics Association, 27(4), 2020, 613–620

doi: 10.1093/jamia/ocz213

Advance Access Publication Date: 4 February 2020

Brief Communication

https://academic.oup.com/
https://academic.oup.com/


even required that prescribers verify each patient’s PDMP history

before prescribing opioids.8–10

In most states, PDMPs are provided via standalone websites; they

are not integrated with the electronic health records (EHRs) that most

prescribers now use to place medication orders. Therefore, accessing

PDMP information is often a tedious task: a prescriber must first lo-

cate the website, and then contend with strict password logistics, rigid

search engines, and cluttered information displays.7,11–13

There have been some efforts to integrate PDMPs into EHRs,14–17

which may address the difficulties locating and logging into PDMPs.

Whether this integration should be mandated has also been

discussed.17,18 However, little attention has been paid to where and

how PDMP information should be presented in the EHR, as well as

how clinical decision support (CDS) should be designed to augment

cognition while introducing minimal disruption to workflow.7,19,20

A conventional method of implementation would be to provide the

PDMP in a dedicated tab in the user interface and to present CDS via

interruptive modal dialogs (ie, pop-up alerts). Such a design is, how-

ever, susceptible to a number of issues known in the human factors

and health informatics literature. First, prescribers have difficulty read-

ing and interpreting PDMP reports (eg, owing to cluttered, disorga-

nized displays).7,12 Second, without contextual cues to draw

prescribers’ attention to the PDMP information, the tab may likely be

neglected.21 As for CDS, the problem of alert fatigue22 may arise:

when a CDS system issues too many alerts, and when many of them

are irrelevant, users tend to cease to pay attention to them.23 Further,

the literature suggests against restrictive designs such as modal dia-

logs24,25 because of their interruptive nature, and excessive use of

modal dialogs may have contributed to clinician dissatisfaction and

burnout.26–29

In this work, we applied human factors principles to improve the

design of PDMP-EHR integration. Human factors research aims

to develop technologies that fit users’ expectations, rather than

requiring users to conform to any given design. It has been widely

applied in health informatics to study a variety of applications such

as medical devices,30,31 EHRs,32 and computerized prescriber order

entry systems.33–37

In this study, we conducted a simulation experiment to compare

2 designs for PDMP-EHR integration. In the conventional design,

the patient’s controlled substance prescription history is presented in

tabular format, in a separate PDMP tab, and CDS advisories are pre-

sented in interruptive modal dialogs when an order is about to be

placed. In the alternative design, multiple contextual cues are pro-

vided to draw prescribers’ attention to PDMP information, along

with noninterruptive CDS presented as part of the ordering process.

We subsequently provide details and illustrations of these 2 designs.

We hypothesized that the alternative design would increase the

appropriateness of physician prescriptions, because it was intended

to facilitate “information foraging,”21 convey information through

cognitively efficient graphic representation,7,38 and deliver CDS

early on in the prescribing process.39 We also hypothesized that

physicians would prefer the alternative design, the alternative condi-

tion would require less time to use, and physicians would visit the

PDMP tab more often under the alternative condition when infor-

mation was available. Next, we describe the 2 designs and the proto-

col for the simulated experiment.

MATERIALS AND METHODS

Two competing designs for PDMP-EHR integration
Demonstrations of the 2 designs are available online (https://www.

ics.uci.edu/�mihussai/demos/2019-simulation-study/). In Table 1,

we summarize the features present in each of the designs. Briefly, the

conventional design (Figure 1) has a dedicated PDMP tab, which

Table 1. Feature description and comparison

Feature Conventional Alternative

Medication list Displays medication history and current medica-

tions.

Cue for availability of PDMP information. When PDMP data are

available for the patient, a noninterruptive cue appears, with a

shortcut to the PDMP tab ‹.

Prescribed controlled

substances tab

Displays a table, showing date filled, prescribing

physician, drug category, and MMEs.

Graphical presentation of opioid history. The tabular PDMP data

are supplemented with a stacked bar chart showing MMEs and

distinct prescribers in the past year ›.

Medication ordering

entry

The user orders medications by searching for a

drug, and then selecting a route, dose, fre-

quency, and duration. After the prescription is

fully defined and before the order is placed,

the system pops up CDS.

Modal dialogs. CDS is delivered via modal dia-

logs. The user clicks “Cancel” to return to the

ordering screen, or “Order” to override the

alert.

The user is guided by 3 types of contextual cues:

Query expansion suggestions. When ordering a medication, if one

types “fent” into the search bar, medication classes similar to the

fentanyls, such as “analgesic combinations” and “NSAIDs,” ap-

pear below the search results. The query expansion algorithm is

based on the RxNorm40 classification system fi.

Contextual prescription opioid history. When one adds an opioid

to the Your Options panel, the graphical prescription opioid his-

tory appears on the right side of the screen fl.

Medication suggestions. The CDC Guideline recommends first

seeking alternatives to opioids, then starting with low MMEs.6

Accordingly, if one adds a high-MME opioid such as fentanyl to

the Your Options panel, the system would display a generic re-

minder to use lower-risk pain medications, such as acetamino-

phen, ibuprofen, and codeine. One can then add 1 or more of

these medications to the Your Options panel as potential substi-

tutes �.

CDC: Centers for Disease Control and Prevention; CDS: clinical decision support; MME: milligram morphine equivalent; PDMP: prescription drug monitoring

program.
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presents controlled substance prescription history in a tabular

format, as is typical of PDMPs.7 It also features a typical CDS de-

sign, which presents text-only modal dialogs immediately before the

order is placed.33,39 The alternative design also presents a noninter-

ruptive cue to draw the prescriber’s attention to PDMP information,

a graphical opioid prescription history along with tabular PDMP

data, and noninterruptive CDS advisories presented as part of the

ordering process (Figure 2).

In the experiment, participants completed 4 scenarios, developed

by an attending pain specialist (AMN). These scenarios, and accom-

panying graphical prescription opioid histories, are provided in the

Supplementary Appendix. We created mock patient interview videos

to present the scenarios, each of which featured a white male actor

between 28 and 56 years of age, to minimize potential discrimina-

tory prescribing effects—prior research41,42 has found that opioids

are prescribed less frequently for black and female patients.

Study setting and experiment protocol
All study participants were either anesthesiology or physical medi-

cine and rehabilitation (PM&R) residents; practitioners in these dis-

Figure 1. Conventional design, which presents the patient’s medication history as a simple list (top), the prescription drug monitoring program information in a

tabular format on a separate tab (middle), and interruptive modal dialogs for delivering decision support (bottom).
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ciplines commonly prescribe opioids. All participants had completed

at least 1 year of residency training at a large academic medical cen-

ter in Southern California. Researchers presented the study during

monthly resident meetings and recruited in person. All eligible resi-

dents but 1 agreed to participate. Half of the participants were ran-

domly assigned to use 1 of the designs. At the beginning of the

experiment, participants viewed a tutorial video about how to use

the simulated EHR. Then, participants proceeded to the first patient

interview video, reviewed the patient’s medical records, and placed

medication orders. The experiment concluded after the participant

completed all 4 patient scenarios, which were presented in a random

order. In this article, we refer to each instance of a participant com-

pleting a scenario as a trial, in accordance with how it is described

in experimental psychology studies. This portion of the study took

approximately half an hour, with no apparent differences in time be-

tween the 2 conditions.

After the experiment, participants who used the conventional de-

sign were shown a video tour of the alternative design, and vice

versa. They were then asked to preferentially compare the 2 designs,

and to provide a reason for their preference. Participants did not

Figure 2. Alternative design, featuring a contextual cue when prescription drug monitoring program information is available (‹), a graphical presentation of opi-

oid prescription history (›), and noninterruptive decision support delivered as contextual cues as part of the ordering process (fi, fl, and �).
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receive compensation or an honorarium for their participation.

The institutional review board of the University of California, Irvine

reviewed the research protocol of the study and determined that it

met the exemption criteria.

Data collection and appropriateness review
We implemented a tracking mechanism in both designs to record

mouse clicks as well as timestamps of interaction events in order to

measure the time spent between actions (eg, starting an order and

placing an order).

In order to assess whether the pain medication orders placed for

each scenarios were appropriate, we developed an appropriateness

panel review, based on the process described by McCoy et al.43

First, 2 pain specialists (AMN, BY) created a scoring rubric (in-

cluded in Supplementary Appendix) through consensus develop-

ment. Then, they independently reviewed the prescriptions placed

for each trial. During the entire process, reviewers were blinded to

the experimental condition (alternative vs conventional) in which

each prescription was written. Interrater reliability was assessed us-

ing Cohen’s kappa.44 If there were scoring differences, they were

reconciled through discussion and consensus development.

Data analyses
We used JASP v. 0.10.2 (JASP Team, Amsterdam, the Netherlands) to

conduct a 2-way mixed-effects analysis of variance (ANOVA) analysis

of appropriateness. We tested the sphericity and equality of variance

assumptions using Mauchly’s and Levene’s tests, respectively.

We used a chi-square test to evaluate participants’ design prefer-

ences. We also conducted a mixed-effects ANOVA to assess time re-

duction from each trial to the next, between conditions, to examine

the learning effect and time efficiency of each of the designs.

Further, we conducted a 1-way mixed-effects ANOVA to test to

assess whether those in the conventional condition visited the PDMP

tab less often than their peers in the alternative condition when the

patient’s PDMP information was available. We also analyzed the

usage of different features presented in the interfaces of the 2 condi-

tions (eg, recommended alternative medications or pop-up alerts).

RESULTS

Participant demographics
Seventeen (71%) of the participants were anesthesiology residents

and the other 7 (30%) were PM&R residents. We randomly

assigned 9 (53%) of the anesthesiology residents and 3 (43%) of the

PM&R residents to the conventional condition, and the rest to the

alternative condition. Among the participants who reported demo-

graphic data, the mean age was 31 (range, 26–38) years of age; there

were 8 (40%) women and 12 (60%) men. Fifty-five percent (n ¼ 10)

of them were White, 35% (n ¼ 7) were Asian, and 8% (n ¼ 2) were

Black or African American. The Supplementary Appendix provides

additional demographic details.

Appropriateness analysis
Participants completed 94 trials in total; 2 were incomplete due to

loss of network connectivity. Interrater reliability was high between

the 2 attending physicians’ appropriateness ratings (Cohen’s

j¼0.93).44

The results of our 2-way mixed-effects ANOVA analysis are

shown in Table 2. According to these results, there was a borderline

significant effect of the experimental condition, which explained

14% of the variance (F1,18 ¼ 4.40, P¼ .05, g2 > .14); prescribers

who used the conventional design achieved lower scores (3.94 6

1.96) than those who used the alternative design (4.85 6 1.84). Fur-

ther, there was a significant main effect of specialty, which

explained 28% of the variance (F1,18 ¼ 8.73, P < .05, g2 > .28).

Overall, anesthesiology residents received higher appropriateness

scores (4.80 6 1.83) than PM&R residents (3.43 6 1.86).

Table 2. Two-way mixed-effects analysis of variance analysis of prescription appropriateness

Sum of Squaresa df Mean Square F P g2

Between-participants effects

Condition 18.546 1 18.546 4.398 .050 .140

Specialty 36.819 1 36.819 8.732 .008 .278

Condition � Specialty 1.113 1 1.113 0.264 .614 .008

Residual 75.897 18 4.217

Within-participants effects

Scenario 76.292 3 25.431 13.955 <.001 .242

Scenario � Condition 5.732 3 1.911 1.049 .379 .018

Scenario � Specialty 0.411 3 0.137 0.075 .973 .001

Scenario � Condition � Specialty 2.061 3 0.687 0.377 .770 .007

Residual 98.406 54 1.822

aType III sum of squares.
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Figure 3. Appropriateness scores by specialty and experimental condition.

PM&R: physical medicine and rehabilitation.
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There were no significant interaction effects. This analysis withstood

Mauchly’s test (P> .05) and Levene’s test (P> .05). As shown in Fig-

ure 3, those in the alternative condition tended to receive higher scores.

Participants’ preferences
As described previously, researchers showed a video of the alterna-

tive design to participants randomly assigned to the conventional

condition, and vice versa. Among those who provided a preference,

7 (70%) in the conventional condition stated that they preferred the

alternative design and 9 (81%) in the alternative condition preferred

it to the conventional design. Using a chi-square test, we found this

result to be statistically significant (n¼21; v2
1 ¼ 5.74, P < .05).

The top reason provided by the participants for preferring the alter-

native design was the visual representation of PDMP information,

followed by its flexibility in interaction, and participants’ aversion

to modal dialogs.

Trial duration and feature usage
In our mixed-effects ANOVA analysis of time, while we detected a

statistically significant overall reduction in trial completion time as

participants progressed through the 4 trials (144 seconds vs 135 sec-

onds vs 89 seconds vs 91 seconds; F3,60 ¼ 6.24, P < .001), we did

not detect a statistically significant difference in trial completion

time between the 2 conditions. We also did not detect an interaction

between trial progression and experimental condition.

As mentioned in the Materials and Methods section, we con-

ducted a 1-way mixed-effects ANOVA analysis to measure the influ-

ence of the experimental condition on whether participants checked

the PDMP tab when information was available. We found a signifi-

cant interaction effect of scenario and experimental condition on

whether the participant visited the PDMP tab—meaning that the de-

sign and the presence of a PDMP history produced the effect to-

gether—which explained 10% of the variance (F3,60 ¼ 3.44, P < .05,

g2 ¼ .10). Scenarios 3 and 4 were the only scenarios in which PDMP

information was available; both patients had been prescribed opioids

in the past year. In these scenarios, participants in the conventional

condition neglected to visit the PDMP tab 58% of the time, whereas

their peers in the alternative condition neglected to visit the tab only

8% and 27% of the time, respectively. There were no main effects,

as expected. Levene’s test did not pass under scenario 3 (P < .05).

In the conventional condition, participants overrode 45 of 47

(96%) modal dialogs. In the alternative condition, the patient’s

PDMP information was available in 23 trials. In 14 (61%) of these

cases, participants clicked the PDMP shortcut button (Figure 2, ‹).

In another 6 (26%) trials, they clicked the PDMP tab directly, rather

than using the shortcut. Among the other features provided in the al-

ternative condition, alternative medication suggestions were barely

clicked, and search suggestions were never used. However, we do

not know whether the information presented on screen had an influ-

ence on participants’ prescribing decisions.

DISCUSSION

To combat the opioid crisis, there is a broad consensus that it is im-

perative to integrate PDMP into EHRs to make it easier for prescrib-

ers to access patients’ prescription history of controlled substances

at the point of care.7,11–13 However, how PDMP information should

be presented in the EHR, and how this information should be opti-

mally incorporated into clinicians’ workflow and decision-making

processes, have remained understudied.

As mentioned previously, the primary approach to presenting

medication safety alerts is through modal dialogs. Modal dialogs are

relatively easy to implement, and there seems to be a perception that

modal dialogs—because of their interruptive nature—are an effec-

tive means of obtaining clinicians’ attention, leading to a higher like-

lihood of actions. However, there has been an extensive body of

literature suggesting that alerts delivered through modal dialogs are

frequently overridden,22,45 much like in our study, in which partici-

pants overrode 96% of modal dialogs. Further, modal dialogs are a

significant contributing factor to clinician frustration,46 burnout,47

and potentially unsafe prescribing practices.27

Alternative design improved prescription

appropriateness
In our study, participants who used the alternative design for inte-

grating PDMP information into the EHR, which features noninter-

ruptive, contextual cues, wrote more appropriate pain medication

prescriptions than did those who used an interruptive, modal dia-

log–based design, as we expected. This result suggests that attention

to interactive design can improve the effectiveness of PDMP-EHR

integration while minimizing disruption to workflow and clinicians’

decision-making processes.

Participants preferred the alternative design
Most participants preferred the contextual cue-based version, again

as expected. The results of participant feedback suggest that partici-

pants found the graphical PDMP display to be valuable, and they

also liked the fact that interaction with the system in the alternative

design was more flexible. In related research, prescribers have stated

that they are unlikely to check the database unless they see a

legitimate reason to do so.7,11,12 We believe that the PDMP history

indicator provided one such reason: the fact that the database actu-

ally had some information to offer.

Contextual information preferable to direct persuasion
While the alternative condition did not appear to save time, it also

did not appear to increase the time burden. It appears, then, that the

alternative condition allowed physicians to make better use of their

time, as measured by appropriateness. For example, according to

our usage statistics, those in the alternative design condition were

far more likely to visit the PDMP tab when information was

available, as we expected; we attribute this to the PDMP history in-

dicator, which participants frequently clicked.

Further, direct persuasion features (eg, modal dialogs and alter-

native medication recommendations) were almost always ignored.

We believe that alternative medication recommendations could be

more acceptable if they were more tuned to the patient’s chief com-

plaint, problem list, or diagnoses—developing such a recommender

system would require careful research in its own right.

The relative apparent efficacy of those “guiding” features, such

as the PDMP history cue and the visual representation of PDMP

data, seems to lend credence to design principles such as “anticipate

clinician needs and bring information to clinicians at the time they

need it.”48 We also note that participants said they liked the alterna-

tive design’s flexibility. By this, we believe that they were referring

to its support for flexible task wayfinding,49 the process by which a

user explores the structure of a task, such as composing a medica-

tion order. The alternative design allowed users to move quite freely

between the “high level” (eg, compiling medication options and reg-

imens) and the “low level” (specifying order details, such as route,
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dose, and frequency). By contrast, the conventional condition was

more regimented; it required the user to fully specify route, dose,

and frequency as soon as a medication was selected. We believe that

the alternative design’s support for flexible task wayfinding contrib-

uted to the overall improvement in appropriateness.

We conclude that alert fatigue continues to be a barrier to realiz-

ing the efficacy of CDS systems. Future research should seek alterna-

tive means of delivering decision-supporting information, such as

through contextual cues.

Limitations
First, our simulation apparatus only displayed generic names of the

medications, whereas most commercial EHRs display both generic

and brand names. However, because generic names were presented

in both conditions (alternative and conventional), we do not believe

that it influenced the outcomes of the study. Second, both attending

physicians who scored the results are anesthesiologists. This might

explain why the anesthesiology residents received slightly higher

overall scores than the PM&R residents did. Third, participants

were all resident physicians. Therefore, the results may not be gener-

alizable to more experienced participants, or physicians in special-

ties other than anesthesiology and PM&R. Fourth, our study was

designed to evaluate multiple user interface design features; further

research is needed to isolate which features contributed more to the

overall effect. Further, this was an experimental study conducted in

a simulated setting; further evaluation in realistic clinical environ-

ments is needed. Last, it should be acknowledged that certain U.S.

states prohibit PDMP-EHR integration by law. Alternative methods

for facilitating provider access to PDMP information may need to be

developed for these states, or lawmakers may consider allowing

some form of integration given the improved information utility.

CONCLUSION

With PDMP-EHR integration efforts projected to be underway

across the United States, it would be prudent to consider using hu-

man factors principles to ensure such integration is not only useful

but also usable, in order to achieve its maximum benefits. In this

study, we found that an alternative design using graphical presenta-

tion of PDMP data and contextual cues resulted in improved pain

prescribing compared with a conventional design that features tabu-

lar data display and modal dialogs for presenting CDS. Based on

these results, we conclude that the effectiveness of PDMP-EHR inte-

gration is critically dependent on interactive design.
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