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Abstract

An inconsistent knowledge base can be abstracted as a set of arguments and a defeat re-

lation among them. There can be more than one consistent way to evaluate such an argu-

mentation graph. Collective argument evaluation is the problem of aggregating the opinions

of multiple agents on how a given set of arguments should be evaluated. It is crucial not

only to ensure that the outcome is logically consistent, but also satisfies measures of social

optimality and immunity to strategic manipulation. This is because agents have their individ-

ual preferences about what the outcome ought to be. In the current paper, we analyze three

previously introduced argument-based aggregation operators with respect to Pareto optimal-

ity and strategy-proofness under different general classes of agent preferences. We highlight

fundamental trade-offs between strategic manipulability and social optimality on one hand,

and classical logical criteria on the other. Our results motivate further investigation into the

relationship between social choice and argumentation theory. The results are also relevant

for choosing an appropriate aggregation operator given the criteria that are considered more

important, as well as the nature of agents’ preferences.
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1 Introduction

Argumentation has recently become one of the main approaches for non-monotonic reasoning and

multi-agent interaction in artificial intelligence and computer science [6, 9, 37]. The most promi-

nent approach in argumentation models is probably the abstract argumentation framework (AAF)

by Dung [24], in which the contents of the arguments are abstracted from and the framework can

be represented as a directed graph in which nodes represent arguments, and arcs between these

nodes represent binary defeat relations over them. An important question is which arguments to

accept. In his seminal paper, Dung has defined extension-based semantics which correspond to

different criteria of acceptability of arguments. Another equivalent labeling-based semantics is

proposed by Caminada [14]. Using this approach, an argument is labeled in (i.e. accepted), out

(i.e. rejected), or undec (i.e. undecided). One of the essential properties, that is common, is

the condition of completeness. Every complete (i.e. legal) labeling represents a consistent self-

defending point of view. Since there can be different reasonable positions regarding the evaluation

of an argumentation graph, choosing one legal labeling above another is not a trivial task. There-

fore, in a multi-agent setting, different agents can subscribe to different positions. Hence, a group

of agents with an argumentation graph would need to find a collective labeling that best reflects the

opinion of the group. Despite the apparent simplicity of the problem, the aggregation of individual

evaluations can result into an inconsistent group outcome. Recently, the problem of aggregating

valid labelings has been the topic of some studies [38, 4, 16, 12, 10]. In the work by Caminada and

Pigozzi [16], they proposed three possible operators for aggregating labelings, namely the skeptical

operator, the credulous operator, and the super credulous operator. These operators guarantee not

only a well-formed outcome but also a compatible one, that is, it does not go against the judgment

of any individual. Recently, dialectical proof procedures have been stated by Caminada and Booth

[15] for these three operators.

Although the outcomes of these three aggregation operators are compatible with every individ-

ual’s labeling, this does not mean that they are the most desirable given individuals’ preferences.

It is possible that other compatible labelings are more desirable. Moreover, it is possible that

some agents submit an insincere opinion in order to get more desirable outcomes. Given that, it is

interesting to study the following two questions:

1. Are the social outcomes of the three aggregation operators Pareto optimal if preferences

between different outcomes are also taken into consideration?

2. How robust are these operators against strategic manipulation? And what are the effects of

strategic manipulation from the perspective of social welfare?

The first question studies the Pareto optimality of the outcomes of these operators. A Pareto

optimal outcome (given individuals preferences) cannot be replaced with another outcome that is

more preferred by all individuals and is strictly more preferred by at least one individual. Pareto

optimality is a fundamental concept in any social choice setting and a clearly desirable property

for any aggregation operator. The second question studies the strategy-proofness of the operators.

Strategy-proofness is fundamental in any realistic multi-agent setting. A strategy-proof operator is

2



one that produces outcomes where individuals have no incentive to misrepresent their votes (i.e. to

lie). Unfortunately, as we will see later, most strategy-proofness results for the three operators are

negative. However, we show later that lies do not always have bad effects on other agents.

One can realize that individuals’ preferences (over all the labelings) play a vital role in answer-

ing the previous two questions. However, aggregation operators usually do not give the chance for

individuals to disclose these preferences. The labeling an agent submits is the only information

available about agent’s preferences. It seems a natural choice to assume that the submitted labeling

is the most preferred one according to agents’ individual preference. Moreover we assume that

the rest of agent’s preferences can be modeled using distance from the most preferred one. For

example, if the top preferred outcome for agent i is the outcome O1 (i.e. ∀O j, O1 �i O j), then

O2 ≻i O3 iff dist(O1,O2) < dist(O1,O3) where dist(O1,O2) is the distance between the two out-

comes O1 and O2. In this work, we investigate different classes of preferences based on different

distance measures, and use them to analyze the three aggregation operators proposed by Caminada

and Pigozzi [16] with respect to the aforementioned two questions.

This paper makes three distinct contributions. First, it introduces the first thorough study of

Pareto optimality and strategy-proofness for aggregation operators in the context of argumentation.

In doing so, the paper highlights that considering argumentation in multi-agent conflict resolution

calls for criteria other than logical consistency such as social optimality and strategic manipulation.

Second, the paper introduces different families of agents’ preferences. For example, we define a

new class of preferences which consider the label undec as a middle label between in and out.

The variety of the different families of preferences are meant to broaden the scope of analysis of

preferences, and test the robustness of the studied operators with respect to the considered ques-

tions. The third contribution of this paper is establishing relations between the different classes of

preferences, and providing a full comparison for three previously introduced labeling aggregation

operators with respect to the proposed classes of preferences. Moreover, cases where agents do not

share the same classes of preference are also considered.

Our results bridge a gap in our understanding of the social optimality and strategic manipulation

of labeling aggregation operators. As for the Pareto optimality, we show the persistence of the

superiority of the skeptical operator. However, there are situations where the credulous and super

credulous operators are as good as the skeptical operator. This has an implication on the choice

of the appropriate aggregation operator given the criteria that is considered more important, as

well as, the nature of agents preferences. As for the strategy-proofness, we establish the fragility

of the three operators against strategic manipulation. This negative result is consistent even for a

wide range of individual agent preference criteria (except for one case). This highlights a major

limitation of these otherwise attractive approaches to collective argument evaluation. Despite the

negative results, our results show that lies with the skeptical operator are always benevolent i.e.

every strategic lie by an agent does not hurt others, but rather improves their welfare. Furthermore,

we show that this effect is surprisingly consistent for a wide range of individual agent preference

criteria. This shows an important advantage for such an approach to labeling aggregation.1

1Part of the results of this paper have been presented in a paper by Caminada et al. [17].
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2 Preliminaries

2.1 Abstract Argumentation Framework (AAF).2

The seminal paper by Dung [24] introduced the fundamental notion of abstract argumentation

framework that can be represented as a directed graph where the vertices represent arguments

(ignoring details about their contents) and the directed arcs represent the defeat relations between

these arguments.3 For example, in Figure 1, argument A1 is defeated by arguments A2 and A4

which are, in turn, defeated by arguments A3 and A5.

�� ��

��

��

��

Figure 1: A simple argumentation graph

Definition 1 (Argumentation framework [24]). An argumentation framework is a pair AF= 〈A,⇀
〉 where A is a finite set of arguments and ⇀⊆A×A is a defeat relation. We say that an argument

A defeats an argument B if (A,B) ∈⇀ (sometimes written A ⇀ B).

There are two approaches to define semantics that assess the acceptability of arguments. One

of them is extension-based semantics by Dung [24], which produces a set of arguments that are

accepted together. Another equivalent labeling-based semantics is proposed by Caminada [14],

which gives a labeling for each argument. With argument labelings, we can accept arguments

(by labeling them as in), reject arguments (by labeling them as out), and abstain from deciding

whether to accept or reject (by labeling them as undec). As the work by Caminada and Pigozzi

[16] employed the labeling approach, so we continue to use it here.

Definition 2 (Argument labeling [14]). Let AF = 〈A,⇀〉 be an argumentation framework. An

argument labeling is a total function L : A→{in,out,undec}.

For the purposes of this paper, we use the following marking convention, as shown in Figure 2,

arguments labeled in are shown in white, out in black, and undec in gray.

We write in(L), out(L), and undec(L) for the set of arguments that are labeled in, out, and

undec by L, respectively. A labeling L can be represented as L= (in(L),out(L),undec(L)), or

can be denote as: L = {(A, l)| L(A) = l for all A ∈ A, l ∈ {in,out,undec}}. However, labelings

should follow some given conditions. If an argument is labeled in then all of its defeaters are

labeled out. If an argument is labeled out then at least one of its defeaters is labeled in. We call

a labeling that follows the previous two conditions an admissible labeling.

2Readers familiar with AAF can skip this part.
3We will use “argumentation graph” and “argumentation framework” interchangeably.
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Figure 2: A labeling of an argumentation graph.

Definition 3 (Admissible labeling [14]). Let AF = 〈A,⇀〉 be an argumentation framework. An

admissible labeling is a mapping L : A→{in,out,undec} such that for each A ∈A it holds that:

if L(A) = in then ∀B∈A : (B ⇀ A ⇒ L(B) = out), and

if L(A) = out then ∃B∈A : (B ⇀ A ∧ L(B) = in).

Some examples for admissible labelings, in Figure 1, can include the following: ({A1,A3,A5},
{A2,A4}, /0), ({A3}, {A2}, {A1,A4,A5}), and ({A5}, /0, {A1,A2,A3,A4}). A complete labeling is

an admissible labeling with the following extra condition: If an argument is labeled undec then

there is no defeating argument that is labeled in and not all defeating arguments are labeled out.

Definition 4 (Complete labeling [14]). Let AF = 〈A,⇀〉 be an argumentation framework. A

complete labeling is a mapping L : A→{in,out,undec} such that for each A ∈A it holds that:

if L(A) = in then ∀B∈A : (B ⇀ A ⇒ L(B) = out),
if L(A) = out then ∃B∈A : (B ⇀ A ∧ L(B) = in), and

if L(A) = undec then:

¬[∀B∈A : (B ⇀ A ⇒ L(B) = out)]∧¬[∃B∈A : (B ⇀ A ∧ L(B) = in)]

As an example for a complete labeling, in Figure 1, we have only one complete labeling, namely

({A1,A3,A5}, {A2,A4}, /0). We will use AdmsAF and CompsAF to refer to the set of all admissible

labelings and the set of all complete labelings, respectively, for an argumentation framework AF.4

2.2 Aggregation Operators

Before introducing the aggregation operators that were defined by Caminada and Pigozzi [16], we

first define the problem of aggregation. The problem of labeling aggregation can be formulated as

a set of individuals that collectively decide how an argumentation framework AF = 〈A,⇀〉 must

be labelled.

Definition 5 (Labeling aggregation problem [4]). Let Ag = {1, . . . ,n} be a finite non-empty set of

agents, and AF = 〈A,⇀〉 be an argumentation framework. A labeling aggregation problem is a

pair LAP= 〈Ag,AF〉.

Each individual i ∈ Ag has a labeling Li which expresses the evaluation of AF by this individ-

ual. A labeling profile P is a set of the labelings submitted by agents in Ag: P = {L1, . . . ,Ln}.5

4AF will be dropped when there is no ambiguity about the argumentation framework.
5We follow the paper by Caminada and Pigozzi [16] in assuming that the profile is a set of labelings instead of a

list of labelings. Although this is not common in judgment aggregation literature where the number of votes matter

in many operators, it is not the case for the three operators considered in this study, since they focus on compatibility

instead of cardinality. As such, one can think of Ag as the set of agents who submit distinct labelings for AF, so other

agents whose labelings overlap with those in P can be discarded from Ag.
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A labeling aggregation operator is a function that maps a set of n labelings, chosen from the set

of all labelings, Labs, into a collective labeling.6

Definition 6 (Labeling aggregation operator OAF [16]). Let LAP= 〈Ag,AF〉 be a labeling aggre-

gation problem. A labeling aggregation operator for LAP is a function OAF : 2Labs \{ /0}→ Labs

such that OAF({L1, . . . ,Ln}) = LColl , where LColl is the collective labeling.

A labeling L1 is said to be less or equally committed as another labeling L2 if and only if every

argument that is labeled in by L1 is also labeled in by L2 and every argument that is labeled out

by L1 is also labeled out by L2.

Definition 7 (Less or equally committed ⊑ [16]). Let L1 and L2 be two labelings of argumenta-

tion framework AF = 〈A,⇀〉. We say that L1 is less or equally committed as L2 (L1 ⊑ L2) iff

(in(L1)⊆ in(L2))∧ (out(L1)⊆ out(L2)).
7

Two labelings L1 and L2 are said to be compatible with each other if and only if for every

argument, there is no in− out conflict between the two. In other words, every argument that is

labeled in by L1 is not labeled out by L2 and every argument that is labeled out by L1 is not

labeled in by L2.

Definition 8 (Compatible labelings ≈ [16]). Let L1 and L2 be two labelings of argumentation

framework AF= 〈A,⇀〉. We say that L1 is compatible with L2 (L1 ≈L2) iff (in(L1)∩out(L2)=
/0)∧ (out(L1)∩in(L2) = /0)

We now define a compatible operator as the following:

Definition 9 (Compatible operator). Let LAP= 〈Ag,AF〉 be a labeling aggregation problem, and

let OAF be a labeling aggregation operator for LAP. We say OAF is a compatible operator if

given any labeling profile P = {L1, . . . ,Ln}, OAF(P) ≈ Li,∀i ∈ Ag i.e. the outcome of OAF is

compatible with each individual’s labeling.

Caminada and Pigozzi [16] proposed three different aggregation operators, namely the skep-

tical operator, the credulous operator and the super credulous operator. Each of these operators

maps a set of labelings, that are submitted by individuals, into a collective labeling. The following

two definitions are used in the definition of these operators:

Definition 10 (Initial operators ⊓, ⊔ [16]). Let LAP= 〈Ag,AF〉 be a labeling aggregation prob-

lem. The skeptical initial ⊓ and credulous initial ⊔ operators are labeling aggregation operators

for LAP defined as the following:

6Although it would be more precise to use LabsS
AF

to denote the set of all labelings for AF= 〈A,⇀〉 according to

semantics S, we will often drop AF and S, and use Labs instead when there is no ambiguity about the argumentation

framework. The same goes for all other notations (e.g. OAF) that were defined for an AF, when there is no ambiguity

about the argumentation framework.
7To improve readability, we often use the logical connectives ∧, ∨, ¬, and ⇒ instead of and, or, not, and implies,

respectively.
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• ⊓({L1, . . . ,Ln}) = {(A,in)|∀i ∈ Ag : Li(A) = in} ∪ {(A,out)|∀i ∈ Ag : Li(A) = out} ∪
{(A,undec)|∃i ∈ Ag : Li(A) 6= in∧∃ j ∈ Ag : L j(A) 6= out}

• ⊔({L1, . . . ,Ln})= {(A,in)|∃i∈Ag :Li(A)= in∧¬∃ j ∈Ag :L j(A)= out} ∪ {(A,out)|∃i∈
Ag : Li(A) = out∧¬∃ j ∈ Ag : L j(A) = in} ∪ {(A,undec)|∀i ∈ Ag : Li(A) = undec∨ (∃ j ∈
Ag : L j(A) = in∧∃k ∈ Ag : Lk(A) = out)} 8

In words, the skeptical initial operator ⊓ collectively accepts (resp. rejects) an argument if it

was accepted (resp. rejected) by every agent, while the credulous initial operator ⊔ collectively

accepts (resp. rejects) an argument if it was accepted (resp. rejected) by some agents, but not

rejected (resp. accepted) by any agent. Remaining arguments are collectively labeled as undecided

by both operators.

Definition 11 (Down-admissible ↓ and up-complete ↑ labelings [16]). Let L be a labeling of ar-

gumentation framework AF = 〈A,⇀〉. The down-admissible labeling of L, denoted as L↓, is the

biggest (i.e. the most committed) element of the set of all admissible labelings that are less or

equally committed as L:

∀L′ ∈ Adms : (L′ ⊑ L⇒ L′ ⊑ (L ↓)⊑ L)

The up-complete labeling of L, denoted as L↑, is the smallest (i.e. the least committed) element

of the set of all complete labelings that are bigger or equally committed as L.

∀L′ ∈ Comps : (L⊑ L′ ⇒ L⊑ (L ↑)⊑ L′)

Now, we provide the definitions of the three operators:

Definition 12 (Skeptical soAF, Credulous coAF and Super Credulous scoAF operators [16]). Let

LAP = 〈Ag,AF〉 be a labeling aggregation problem. The skeptical soAF, the credulous coAF

and super credulous scoAF operators are labeling aggregation operators for LAP defined as the

following:

• soAF({L1, . . . ,Ln}) = (⊓({L1, . . . ,Ln})) ↓.

• coAF({L1, . . . ,Ln}) = (⊔({L1, . . . ,Ln})) ↓.

• scoAF({L1, . . . ,Ln}) = ((⊔({L1, . . . ,Ln})) ↓) ↑.

It was shown in the work of Caminada and Pigozzi [16][Theorem 5, Theorem 11] that the

down-admissible labeling of a labeling of AF is unique, and that the up-complete labeling of an

admissible labeling of AF is unique. Thus, the three operators above are well defined. Further,

given the set of all admissible labelings Adms for some argumentation framework, it was shown

that the outcome of the skeptical aggregation operator is the biggest element in Adms that is less or

equally committed as every individual’s labeling.

8We will often use sioAF and cioAF to refer to the skeptical initial and credulous initial operators, respectively.
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Theorem 1 ([16]). Let L1, . . . ,Ln (n ≥ 1) be labelings of argumentation framework AF= 〈A,⇀〉.
Let LSO = soAF({L1, . . . ,Ln}). It holds that LSO is the biggest admissible labeling such that for

every i ∈ Ag : LSO ⊑ Li.

According to Caminada and Pigozzi [16], given any profile P, the skeptical operator always

produces an admissible labeling that is smaller or equally committed (⊑) as each labeling in P, the

credulous operator always produces an admissible labeling that is compatible (≈) with each label-

ing in P, and the super credulous operator always produces a complete labeling that is compatible

(≈) with each labeling in P. Our analysis in this work aims to investigate the social optimality and

strategic manipulability while respecting the properties of the outcomes of each operator. For ex-

ample, a labeling that does not conform to the property of skeptical operator outcomes mentioned

above (that is, admissible and is smaller or equally committed (⊑) as each labeling in P, for any

P) is not considered for comparison. Given this, we define here the respective set of labelings for

each operator, given a profile.

Definition 13 (Respective set for skeptical EP
so, credulous EP

co, and super credulous EP
sco operators).

Given a profile P, the respective set for:

• skeptical operator is EP
so = {L|L ∈ Adms;L⊑ Li, ∀Li ∈ P}

• credulous operator is EP
co = {L|L ∈ Adms;L≈ Li, ∀Li ∈ P}

• super credulous operator is EP
sco = {L|L ∈ Comps;L≈ Li, ∀Li ∈ P}

Note that EP
so ⊆ EP

co and EP
sco ⊆ EP

co, for any profile P.

2.3 Distance Measures

In this part, we define the family of distance measures that we use to define preferences. Each of

the distance measures we consider is characterized by two choices:

• Set inclusion vs. Quantitative distance.

• Uniform vs. undec in the middle.

The combination of these choices produces four different distance measures. We start from the

second choice. The uniform vs. undec in the middle choice captures the intuition that an in/out

disagreement may be as serious or more serious (depending on the contexts) than a in/undec (or

a out/undec) disagreement.

Thus, we consider the following two cases. First, in, out, and undec are equally distant

from each other. In other words, dist(in,out) = dist(dec,undec), where dist(.) is the difference

between two labels for one argument, and dec is either in or out. In the other case, we assume

that undec is in the middle between in and out. Thus, we differentiate between two types of

disagreement. One between in and out, and the other between dec and undec. When considering

distance, we assume dist(in,out)> dist(dec,undec).

8



2.3.1 Case 1: in, out, and undec are Equally Distant from Each Other

Hamming Set and Hamming Distance

The Hamming set between two labelings L1 and L2 is the set of arguments that these two labelings

disagree upon.

Definition 14 (Hamming Set �). Let L1, L2 be two labelings of AF = 〈A,⇀〉. We define the

Hamming set between these two labelings as:

L1 �L2 = {A ∈A|L1(A) 6= L2(A)} (1)

The Hamming distance between two labelings L1 and L2 is the number of arguments that these

two labelings disagree upon.

Definition 15 (Hamming Distance |�|). Let L1 and L2 be two labelings of AF = 〈A,⇀〉. We

define the Hamming distance between these two labelings as:

L1 |�|L2 = |L1 �L2| (2)

2.3.2 Case 2: undec is in the Middle between in and out

In this section, we consider the case where undec is in the middle between in and out. Thus,

we differentiate between two types of disagreement: 1) in/out disagreement, and 2) dec/undec
disagreement. When considering distance, we assume dist(in,out) = 2× dist(dec,undec) = 2.
9

To illustrate the difference from the previous case, consider the example shown in Figure 3.

In this example, one can realize that the labelings L2 and L3 are equally distant from labeling L1

when considering Hamming set/distance.

However, one can argue that L3 is closer than L2 to L1. Consider the arguments in Figure 3.

Labelings L1 and L2 seem to be on completely different sides regarding their evaluations for A and

B. On the other hand, the difference between L1 and L3 is less drastic, because L3 abstains from

taking any position about A and B.

We use IUO (short for In-Undec-Out i.e. Undec is in the middle) to denote this class of prefer-

ences.

IUO Hamming Sets and IUO Hamming Distance

The in− out Hamming set (�io) between two labelings L1 and L2 is the set of arguments that

both labelings label as decided (i.e. in or out), but on which they disagree upon. The dec−undec

Hamming set (�du) between two labelings L1 and L2 is the set of arguments that one of the two

labelings labels as decided (whether in or out) and the other labels as undecided.

9The use of 2 here is chosen carefully to satisfy the triangle inequality. Otherwise dist(in,out) would not be a

valid measure of the shortest distance between in and out. However, the use of any α s.t. 1 < α ≤ 2 would not affect

the results of this paper. We just use 2 here for simplicity.
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3

A: John is guilty.

B: John is not guilty.

Figure 3: An example showing the need for considering undec as a middle labeling between in

and out.

Definition 16 (IUO Hamming sets �
M). Let L1, L2 be two labelings of AF = 〈A,⇀〉. We define

the IUO Hamming sets as a pair �
M = (�io,�du), where �

io is in−out Hamming set and �
du

is dec−undec Hamming set:

L1 �
io L2 = {A ∈A|(L1(A) = in∧L2(A) = out)∨

(L1(A) = out∧L2(A) = in)} (3)

L1 �
du L2 = {A ∈A|(A ∈ dec(L1)∧L2(A) = undec)∨

(L1(A) = undec∧A ∈ dec(L2))} (4)

where dec(L1) is the set of decided (in or out) arguments according to the labeling L1.

The IUO Hamming distance between two labelings L1 and L2 is the number of arguments in

L1 �
du L2 added to twice the number of the arguments in L1 �

io L2.

Definition 17 (IUO Hamming Distance
∣

∣�
M
∣

∣). Let L1, L2 be two labelings of AF = 〈A,⇀〉. We

define the IUO Hamming distance between these two labelings as:

L1

∣

∣

∣
�

M
∣

∣

∣
L2 = 2×|L1 �

io L2|+ |L1 �
du L2| (5)

Table 1 summarizes the distance measures we consider.

Uniform IUO

Hamming
Set Hamming Set � IUO Hamming Sets �

M

Distance Hamming Distance |�| IUO Hamming Distance
∣

∣�
M
∣

∣

Table 1: Full family of distance measures.

2.4 Preferences

Given the distance measures defined earlier, we define agents’ preferences. We say an agent’s

preferences are x-based, if her preferences are calculated using the distance measure x (e.g. Ham-

ming distance based preferences). We use �i,x to denote a weak preference relation by agent i
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whose preferences are x-based i.e. for any pair L1,L2 ∈ Labs, L1 �i,x L2 denotes that L1 is

more or equally preferred than L2 by agent i with x-based preferences. Further, we use ≻i,x to

denote a strict preference relation (L1 ≻i,x L2 iff (L1 �i,x L2)∧¬(L2 �i,x L1)), and ∼ to denote

an indifference relation (L1 ∼i,x L2 iff (L1 �i,x L2)∧ (L2 �i,x L1)).
We define the subset relation over pairs of sets as the following.

Definition 18 (Subset Over Pairs ⊆). Let A1,A2,B1,B2 be four sets, and Let S1 = (A1,B1), S2 =
(A2,B2) be two pairs of sets. We use S1 ⊆ S2 to denote the subset relation over pairs of subsets:

S1 ⊆ S2 iff A1 ⊆ A2 ∧B1 ⊆ B2 (6)

Given a set measure ⊗ ∈ {�,�M}, an agent i, who has ⊗-set based preferences (and whose

top preference is Li), would prefer a labeling L over another labeling L′ if and only if the set of

arguments in Li ⊗L is a subset of Li ⊗L′ (where “subset” here refers to the standard definition

of subset as well as the definition of “subset over pairs” defined above). Note that the set based

preference yields a partial order over the labelings.10

Definition 19 (Set Based Preference �i,⊗). We say that agent i’s preferences are ⊗-set based w.r.t

Li iff:

∀L,L′ ∈ Labs : L�i,⊗ L′ ⇔ L⊗Li ⊆ L′⊗Li (7)

where Li is agent i’s most preferred labeling and ⊗∈ {�,�M}. Note that ⊗-set based preferences

is read Hamming set based preferences when ⊗= �, . . .etc.

Given a distance measure |⊗| ∈ {|�| ,
∣

∣�
M
∣

∣}, an agent i, who has |⊗|-distance based pref-

erences (and whose top preference is Li), would prefer a labeling L over another labeling L′ if

and only if Li |⊗|L is less than Li |⊗|L′. Note that the distance based preference yields a total

pre-order over the labelings.

We now define the classes of preferences which are based on different distance measures, that

we defined earlier.

Definition 20 (Distance Based Preference �i,|⊗|). We say that agent i’s preferences are |⊗|-
distance based w.r.t Li iff:

∀L,L′ ∈ Labs : L�i,|⊗| L
′ ⇔ L |⊗|Li ≤ L′ |⊗|Li (8)

where Li is agent i’s most preferred labeling and |⊗| ∈ {|�| ,
∣

∣�
M
∣

∣}. Note that |⊗|-distance based

preferences is read Hamming distance based preferences when |⊗|= |�|, . . .etc.

Note here that Hamming distance was used by Dietrich and List [21] to define preferences

over sets of accepted/rejected issues in the judgment aggregation (JA) domain. Additionally, in

the same work, they defined closeness-respecting preferences, which correspond to Hamming set

based preferences in JA.

10Although formally, the set-based criteria are not measures but mappings to sets, we will slightly abuse terminology

and refer to all criteria (set based and distance based) as set and distance measures for easy reference.
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To illustrate the set and distance based preferences, we use Hamming set and Hamming dis-

tance based preferences for their simplicity. Consider the example in Figure 4 with four possible

complete labelings. The Hamming sets between L1 and the other three labelings are:

L1 �L2 = {A,B}

L1 �L3 = {C,D,E}

L1 �L4 = {A,B,C,D,E}

Consequently, the Hamming distance values between L1 and the other three labelings are the

cardinality values of the Hamming sets between L1 and the other three labelings.

L1 |�|L2 = |{A,B}|= 2

L1 |�|L3 = |{C,D,E}|= 3

L1 |�|L4 = |{A,B,C,D,E}|= 5

Assume we have agents with Hamming set based preferences. Hence, an arbitrary agent i

who prefers L1 the most, would have the following preferences: L1 ≻ L2 ≻ L4 and L1 ≻ L3 ≻ L4

(neither L1 � L2 nor L1 � L3 is a subset of the other). However, if agents have Hamming distance

based preferences, an agent who prefers L1 the most, would have the following preferences: L1 ≻
L2 ≻ L3 ≻ L4.

2

3 4

Figure 4: An argumentation graph with four possible complete labelings.

The following lemma is important in the context of compatible operators. For each agent i∈Ag,

let Li = L1. Then, provided the conditions below, the lemma says an individual’s preference over

L2 and L3 would coincide whether she has a Hamming set (resp. distance) or IUO Hamming sets

(resp. distance).

Lemma 1. Let AF = 〈A,⇀〉 be an argumentation framework. Let L1, L2, and L3 be three

labelings and let L1 ≈ L2 and L1 ≈ L3:

L1 �L2 ⊆ L1 �L3 ⇔ L1 �
ML2 ⊆ L1 �

ML3, and

L1 |�|L2 ≤ L1 |�|L3 ⇔ L1

∣

∣�
M
∣

∣L2 ≤ L1

∣

∣�
M
∣

∣L3.

(or equivalently L2 �1,⊖ L3 ⇔ L2 �1,⊖M L3 and L2 �1,|⊖| L3 ⇔ L2 �1,|⊖M| L3)
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Proof sketch. Since L1 ≈ L2, there is no in-out disagreement between them (i.e. L1 �
io L2 = /0).

This makes the Hamming set and the IUO Hamming set between L1 and L2 equivalent. Conse-

quently, the Hamming distance and the IUO Hamming distance between them are also equivalent.

The same goes for L1 and L3 (since L1 ≈L3). The rest follows from the definition of the set-based

and the distance-based preferences. �

The following lemmas are also crucial for the proofs of theorems in this paper. Since the

labelings have only three values, we can use the following lemma.

Lemma 2. Let AF = 〈A,⇀〉 be an argumentation framework. Let dec(L) = in(L)∪ out(L)
∀L ∈ Labs. For any pair L1,L2 ∈ Labs:

a) L1 �L2 = (in(L1)∩out(L2))∪(in(L1)∩undec(L2))∪(out(L1)∩in(L2))∪(out(L1)∩
undec(L2))∪ (undec(L1)∩in(L2))∪ (undec(L1)∩out(L2))

b) if L1 ⊑ L2 then L1 �L2 = undec(L1)∩dec(L2)

c) if L1 ≈ L2 then L1 �L2 = (dec(L1)∩undec(L2))∪ (undec(L1)∩dec(L2))

Proof.

a) This follows from the fact that in(L), out(L) and undec(L) partition the domain of any

labeling L.

b) From L1 ⊑ L2, the sets (in(L1)∩ out(L2)), (in(L1)∩ undec(L2)), (out(L1)∩ in(L2)),
and (out(L1)∩undec(L2)) are all empty sets. Then, we are left with the following:

(undec(L1)∩in(L2))∪ (undec(L1)∩out(L2))

which can be written as:

undec(L1)∩ (in(L2)∪out(L2))

and replacing in(L)∪out(L) by dec(L) would give the result.

c) From L1 ≈ L2, the sets (in(L1)∩ out(L2)), and (out(L1)∩ in(L2)) are empty. The rest

can be rearranged similarly to b), and replacing in(L)∪out(L) by dec(L) would give the

result.

�

We now prove two lemmas establishing the relations between less or equally committed label-

ings and Hamming based preferences over labelings.

Lemma 3. Let AF= 〈A,⇀〉 be an argumentation framework. Let L, L′ and Li be three labelings

such that L⊑L′⊑Li. If Li is the most preferred labeling of agent i and her preference is Hamming

set based or Hamming distance based, then L′ �i,� L and L′ �i,|�| L respectively.
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Proof. From L⊑L′, we have that dec(L)⊆ dec(L′), which is equivalent to undec(L′)⊆ undec(L)
because undec is the complement of dec. From this, it follows that undec(L′)∩ dec(Li) ⊆
undec(L)∩dec(Li). Since L⊑Li and L′ ⊑Li (by assumption and transitivity of ⊑), we can use

Lemma 2b to obtain L′
�Li ⊆ L�Li. By definition we have that L′ �i,� L and L′ �i,|�| L. �

Lemma 4. Let AF= 〈A,⇀〉 be an argumentation framework. Let L, L′ and Li be three labelings

and let L⊑Li. If Li is the most preferred labeling of agent i, her preference is Hamming set based

and L′ �i,� L, then L⊑ L′.

Proof. L′ �i,� L implies L′
�Li ⊆L�Li which implies L(A) =Li(A)⇒L′(A) =Li(A) for any

argument A (i). Now, L ⊑ Li implies L(A) = Li(A) for any A ∈ dec(L) (ii). From (i) and (ii) it

follows that L(A) = L′(A) for any A ∈ dec(L). Hence L⊑ L′. �

3 Pareto Optimality

In this section, we study the Pareto optimality of the outcomes of the three operators given different

variations of the preferences. Pareto optimality is one of the fundamental concepts that ensures

that, given a profile, the social outcome selected by the aggregation procedure cannot be improved.

A labeling L1 Pareto dominates L2 if and only if for any agent i, i would prefer L1 at least as

much as she prefers L2, and for at least one agent j, j would strictly prefer L1 over L2.

Definition 21 (Pareto dominance). Let Ag = {1, . . . ,n} be a set of agents with preferences �i,
i ∈ Ag. L Pareto dominates L′ iff ∀i ∈ Ag, L�i L

′ and ∃ j ∈ Ag, L≻ j L
′.

A labeling is Pareto optimal in a set, if it is not Pareto dominated by any other labeling from

that set.

Definition 22 (Pareto optimality of a labeling in S). Let S be a set of labelings. A labeling L is

Pareto optimal in S if there is no labeling L′ ∈ S such that L′ Pareto dominates L.

In our results, the set S will mainly refer to one of the three respective sets (from Def.13).

Moreover, whenever we refer to an operator as Pareto optimal (in a set S) we mean that it only

produces Pareto optimal outcomes (in S).

Definition 23 (Pareto optimality of an operator in S). Let S be a set of labelings. An operator is

Pareto optimal in S if it only produces Pareto optimal (in S) outcomes.

Similarly, the set S will mainly refer to the respective set of the operator, in the case of the three

operators.

3.1 Connections between Classes of Preferences

We notice that Pareto optimality carries over from each of the distance-based preferences to its

corresponding set-based preferences.
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Proposition 1. Let ⊗∈ {⊖,⊖M} be a set measure and |⊗| be its corresponding distance measure

(i.e. if ⊗ = ⊖M then |⊗ | = |⊖M |). If a labeling11 is Pareto optimal in a set S given agents with

|⊗ |-based preferences, then it is Pareto optimal in S given agents with ⊗-based preferences.

Proof sketch. Suppose, towards a contradiction, that there exists a labeling L that is Pareto optimal

in a set S given agents with |⊗ |-based preferences, but L is not Pareto optimal in S given agents

with ⊗-based preferences. Then, there exists a labeling LX in S such that LX Pareto dominates L

in S (given agents with ⊗-based preferences). Then, for each agent i, whenever LX disagrees with

Li on an argument, L would also disagree in the same way with Li on the same argument. Further,

for at least one agent j, L would disagree with L j on some argument for which LX agrees with

L j on. Since for any two sets A,B : (A ⊆ B ⇒ |A| ≤ |B|) (for both standard subsets and subsets

over pairs, as defined in Def.18), then LX would also Pareto dominate L in S given agents with

|⊗ |-based preferences. Contradiction. �

While these connections are only one-way, they hold without restrictions. However, when

further restrictions are introduced, one can find more connections. The following result shows

that when all labelings in S are admissible labelings and are compatible (≈) with each of the

individuals’ labelings, some other connections hold.

Proposition 2. Let S be any arbitrary set such that S⊆ EP
co, for an arbitrary P. A labeling from S

is Pareto optimal in S when individual preferences are Hamming set (resp. distance) based iff it is

Pareto optimal in S when individual preferences are IUO Hamming sets (resp. distance) based.

Proof sketch. Since all labelings in S are compatible with every individual’s labeling, using Lemma

1, Hamming set (resp. distance) based preference and IUO Hamming set (resp. distance) based

preferences would be equivalent for each agent. Thus, the preference order would be the same

for each agent whether she is using Hamming set (resp. distanced) based preferences, or IUO

Hamming set (resp. distanced) based preferences. �

Note that these connections hold in both directions, unlike in the previous result where con-

nections are one-way (from distance based to set based, but not vice versa). Other than the ones

found above, there exist no more connections, even after considering further restrictions, similar

to the ones in the previous part. One can provide counterexamples for the connections that do not

hold between the classes of preferences. We summarize all the findings in Table 2. Now we turn

to studying the Pareto optimality of the three operators; the skeptical, the credulous and the super

credulous, with respect to the four classes of preferences.

3.2 Hamming Set and Hamming Distance

In this part, we establish the first advantage of the skeptical operator over the credulous and super

credulous operators. When all individuals’ preferences are Hamming set based, or all are Hamming

distance based, the skeptical operator is Pareto optimal in the set of admissible labelings that are

smaller or equally committed (⊑) as each individual’s labeling.

11Note that since an operator is Pareto optimal in a set if and only if all of its outcomes are Pareto optimal in that

set, then one can see that in this theorem, and others as well, ‘labeling’ can be substituted with ‘operator’.
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HS HD IUO HS IUO HD

Hamming set (HS) Y N Y* N

Hamming dist. (HD) Y Y Y* Y*

IUO Hamming sets (IUO HS) Y* N Y N

IUO Hamming dist. (IUO HD) Y* Y* Y Y

Table 2: Pareto optimality relations between the different preference classes. A Y means Pareto

optimality carries over from the class in the row to the class in the column, a Y ∗ means it only

carries over if the operator only produces compatible labelings, and an N means that it does not

necessarily carry over even if the operator only produces compatible labelings.

Theorem 2. If individual preferences are Hamming distance based, then the skeptical aggregation

operator is Pareto optimal in its respective set.

Proof. Let P be a profile of labelings, LSO = soAF(P) and LX be some admissible labeling with the

property ∀i ∈ Ag,LX ⊑ Li. From Theorem 1 we know that LSO is the biggest admissible labeling

with such property, so LX ⊑ LSO. So we have ∀i ∈ Ag,LX ⊑ LSO ⊑ Li. From Lemma 3 we have

LSO �i,|�| LX for any i. So no agent strictly prefers LX and hence there is no labeling that Pareto

dominates LSO. �

Corollary 1. If individual preferences are Hamming set based, then the skeptical aggregation

operator is Pareto optimal in its respective set.

Proof. From Theorem 2 and Proposition 1. �

On the other hand, the credulous and super credulous operators are only Pareto optimal when

individuals have Hamming set based preferences, and they fail to produce Pareto optimal outcomes

when the preferences are Hamming distance based. The proof for the following theorem is omitted

due to its similarity to the one for Theorem 4. The interested reader can see the full proof in the

work by Caminada et al. [17].

Theorem 3. If individual preferences are Hamming set based, then the credulous aggregation

operator is Pareto optimal in its respective set.

Theorem 4. If individual preferences are Hamming set based, then the super credulous aggrega-

tion operator is Pareto optimal in its respective set.

Proof. Let P be a profile of labelings, LCIO = ⊔(P), LCO = coAF(P), and LSCO = scoAF(P).
Suppose, towards a contradiction, that there exists a complete labeling LX s.t. LX ≈ Li ∀i ∈ Ag,

and LX dominates LSCO (w.r.t �i,�).

Let A ∈ dec(LCO), then LSCO agrees on A with LCO. However, LCO only decides on an

argument if at least one agent decides on this argument and agrees with LCO on it. Then, this

agent also agrees on A with LSCO. Since LX , by assumption, Pareto dominates LSCO, LX also

needs to agree with this agent on A. This is the case for every argument A ∈ dec(LCO). Hence,

∀A ∈ dec(LCO) : LCO(A) =LX(A). Then, LCO ⊑LX . By definition, LSCO is the smallest element
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(w.r.t ⊑) of the set of all complete labelings that are bigger or equally committed as LCO. Then,

LCO ⊑ LSCO ⊑ LX .

LX should be different from LSCO to dominate it. Then, ∃A ∈ undec(LSCO)∩ dec(LX). We

will show that ∀A ∈ undec(LSCO)∩ dec(LX) then ∀i ∈ Ag : Li(A) = undec. This is enough to

reach a contradiction because it shows that all agents agree on at least one argument with LSCO

while disagree with LX on that argument.

Suppose, for contradiction, that ∃A∈ undec(LSCO)∩dec(LX), and there exists an agent j such

that L j(A) = LX(A) ∈ {in,out}. Since A ∈ undec(LSCO), then A ∈ undec(LCO). However, LX

is a complete labeling which means that it is also an admissible labeling, and from Theorem 3,

LCO is Pareto optimal in the set of all admissible labelings that are compatible (≈) with each of

the participants’ labelings (i.e. the respective set of the credulous operator). Then:

∀B ∈A,¬∃i ∈ Ag s.t. LCO(B) 6= Li(B)∧LX(B) = Li(B) (9)

Contradiction. Then, all agents need to agree with LCO and LSCO on every A s.t. A∈ undec(LSCO)∩
dec(LX) (and disagree with LX on A). �

Observation 1. If individual preferences are Hamming distance based, then neither the credu-

lous nor the super credulous aggregation operator is Pareto optimal in their respective sets. An

example is given in Figure 5 where LCO represents the outcome of the credulous (and the super

credulous) aggregation operator. Both labelings LCO and LX are compatible with both L1 and L2,

but LX is closer when applying Hamming distance. L1 �LCO = L2 �LCO = {A,B,E,F,G}, so

the Hamming distance is 5, whereas L1 �LX =L2 �LX = {A,B,C,D}, so the Hamming distance

is 4.

Figure 5: If individuals’ preferences are Hamming distance based, the (super) credulous aggrega-

tion operator is not Pareto optimal in its respective set.
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3.3 IUO Hamming Sets and IUO Hamming Distance

We now analyze the Pareto optimality for the three operators given the classes of preferences that

assume undec to be in the middle between in and out (dist(dec,undec)< dist(in,out)). We use

Proposition 2 to show that the results for the three operators given IUO Hamming set and distance

based preferences echo their results with the Hamming set and distance based preferences.

Corollary 2. If individual preferences are IUO Hamming sets based, then the skeptical, the cred-

ulous, and the super credulous aggregation operator are Pareto optimal in their respective sets.

Proof. From Proposition 2 with each of Corollary 1, Theorem 3, and Theorem 4, respectively. �

Corollary 3. If individual preferences are IUO Hamming distance based, then the skeptical aggre-

gation operator is Pareto optimal in its respective set, but the credulous, and the super credulous

aggregation operator are not Pareto optimal in their respective sets.

Proof. From Proposition 2 and Theorem 2 for the skeptical operator; and from Proposition 2 and

Observation 1 for the credulous and the super credulous operators. �

Table 3 summarizes the Pareto optimality results for the three operators given all the eight

classes of preferences.

Skeptical Credulous Super Credulous

Operator Operator Operator

Hamming set Yes (Cor. 1) Yes (Thm. 3) Yes (Thm. 4)

Hamming dist. Yes (Thm. 2) No (Obs. 1) No (Obs. 1)

IUO Hamming sets Yes (Cor. 2) Yes (Cor. 2) Yes (Cor. 2)

IUO Hamming dist. Yes (Cor. 3) No (Cor. 3) No (Cor. 3)

Table 3: Pareto optimality in the respective set of the aggregation operators depending on the type

of preference.

3.4 Heterogeneous Preferences

The previous subsections have considered the case where agents have homogeneous preferences

i.e. agents share the same class of preferences (e.g. all agents have Hamming set based prefer-

ences). However, there can be some scenarios where this assumption does not hold. In this part,

we study the effect of removing this assumption.

Let F be the set of all classes of preferences, R be some arbitrary subset of F, and c : Ag → F

be a function defining the class of preferences for each agent. We say that the set of agents Ag have

homogeneous preferences from R if ∀i, j ∈ Ag : c(i) = c( j) ∈ R. We say Ag have heterogeneous

preferences from R if ∀i ∈ Ag : c(i) ∈ R and ∃i, j ∈ Ag s.t. c(i) 6= c( j).
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Let R be an arbitrary set of classes of preferences. In general, if a labeling L is Pareto optimal

in a set S given that Ag have homogeneous preferences from R, then L might not be Pareto optimal

if Ag have heterogeneous preferences from R.

However, one can show that some of the classes of preferences that we defined enjoy special

relations with each others that make Pareto optimality carry over from homogeneous preference of

each of those classes to heterogeneous preferences that combine all of those classes. Consider the

following theorem.

Theorem 5. Let R = {�,�M} be a set of preference classes, Ag be a set of agents, and L be a

labeling from EP
co (the respective set of the credulous operator, for an arbitrary P). If L is Pareto

optimal in EP
co given that Ag have homogeneous preferences from R, then L is Pareto optimal in

EP
co given that Ag have heterogeneous preferences from R.

Proof sketch. Given the compatibility of all labelings from EP
co with every individuals’ labeling,

and from Lemma 1, if some agents who have Hamming set based preferences switched their classes

of preferences to IUO Hamming sets based preferences or vice versa, then their preferences would

not change. �

For our three operators, we have the following corollary.

Corollary 4. Let R= {�,�M}. The skeptical, the credulous, and the super credulous aggregation

operators are Pareto optimal in their respective sets given that individuals have heterogeneous

preferences from R.

We showed earlier that the skeptical operator is always Pareto optimal no matter which class

of preferences the individuals have, as long as all agents have the same class i.e. homogenous

preferences (as Table 3 shows). We show here even a stronger result, that is even when agents

preferences are heterogeneous, and no matter what the combination of classes of preferences that

they have, the skeptical operator sustains Pareto optimality. This establishes the robustness of the

skeptical operator when it comes to Pareto optimality.

Theorem 6. Let R= {�,�M, |�| ,
∣

∣�
M
∣

∣}. The skeptical operator is Pareto optimal in its respec-

tive set given that individuals have heterogeneous preferences from R.

Proof sketch. Let L = soAF(P), for some P. From Theorem 1, L is the biggest labeling in EP
so.

Then, ∀L′ ∈ EP
so : L′ ⊑ L ⊑ Li,∀i ∈ Ag. From Lemma 1 and Lemma 3, no matter what class

of preferences from R each agent in Ag employs, no agent i would prefer a labeling LX (that is

different from Li) over L. �

Given the above results, we realize that the skeptical operator satisfies Pareto optimality given

different classes of preferences, while the credulous and super credulous operators can fail to

produce Pareto optimal outcomes for some presumed preferences. Specifically, the two operators

fail to do that when agents are assumed to employ distance based preference. Pareto optimality

is a very basic property and one should expect that any useful aggregation operator will satisfy

it. Thus, these results suggest a strong disadvantage of the two operators. If more committed

outcomes are more desirable, there would be a trade-off between choosing operators that produce
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more committed outcomes (i.e. credulous and super credulous), and the operator that guarantees

Pareto optimal outcomes (i.e. the skeptical operator). On the other hand, in the case of the set

based preferences, all operators satisfy Pareto optimality, and so this factor is irrelevant when it

comes to choosing an operator.

One might argue that this distinction between set-based preferences and distance based pref-

erences is blurred in reality and has no intuitive meaning. Additionally, since the classes of pref-

erences employed by agents are most probably implicit, it would be impossible to figure out the

employed classes of preferences. However, the distinction between set-based preferences and dis-

tance based preferences can be meaningful and identifiable in real world applications. Agents

that evaluate arguments qualitatively, or to whom arguments are incomparable, can be thought to

have set-based preferences. On the other hand, agents that evaluate arguments quantitatively, or to

whom the value of arguments are only relevant collectively, can be thought to have distance-based

preferences. Whether agents evaluate arguments quantitatively or qualitatively depends to high de-

gree on the context rather than on the private type of the agent. As thus, our results above provide

an answer that is relevant within the studied context.

4 Strategy-Proofness

Strategic manipulability is usually an undesirable property in which an agent, upon knowing the

preferences of other individuals, has incentive to misrepresent her own true opinion in order to

force a collective outcome which is closer to her true opinion. A strategic lie is what an agent can

say if and when she has the opportunity to vote strategically.

Definition 24 (Strategic lie). Let P be a profile and Lk ∈ P be the most preferred labeling of

an agent with preference �k. Let Op be any aggregation operator. A labeling L′
k such that

Op(PLk/L
′
k
) ≻k Op(P) is called a strategic lie, where PLk/L

′
k

is the profile that results from the

profile P after agent k changes her vote from Lk to L′
k.

A strategy-proof operator is one where individuals have no incentive to make strategic lies.

Definition 25 (Strategy-proof operator). An aggregation operator Op is strategy-proof if strategic

lies are not possible.

Despite the fact that, as we shall see, for most classes of preference, the aggregation operators

turned out to be vulnerable to strategic manipulation, a novel type of lie emerged: the benevolent

lie. Unlike the malicious lie, the benevolent lie has positive effects on some of the other agents and

no negative effects on any agent.

Definition 26 (Malicious lie). Let Op be some aggregation operator and P be a profile of labelings.

We say that a strategic lie L′
k is malicious iff, for some agent j 6= k, Op(P)≻ j Op(PLk/L

′
k
).

Definition 27 (Benevolent lie). Let Op be some aggregation operator and P be a profile of label-

ings. We say that a strategic lie L′
k is benevolent iff, for any agent i Op(PLk/L

′
k
) �i Op(P) and

there exists an agent j 6= k, Op(PLk/L
′
k
)≻ j Op(P).
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4.1 Connections between Classes of Preferences

Consider an operator Op that only produces labelings that are compatible (≈) with each individ-

ual’s labeling. The following lemma shows that every strategic lie with the operator Op given

IUO Hamming distance based preferences is also a strategic lie given Hamming distance based

preferences. This lemma is crucial to show that the benevolence property of lies with the skeptical

operator carries over from Hamming distance based preferences to IUO Hamming distance based

preferences.

Lemma 5. Let Op be a compatible operator. Let Lk denote the top preference labeling of agent k.

Let P be a profile where each agent submits her most preferred labeling, and let P′ = PLk/L
′
k

be a

profile that results from P by changing Lk to L′
k. Let LOp = OpAF(P) be the outcome when agent

k does not lie. Let Xk

|�M|
(resp. Xk

|�|) be the set of all labelings L′
Op that satisfy the following two

properties:

1. There exists some labeling L′
k s.t. L′

Op = OpAF(PLk/L
′
k
) (i.e. L′

Op is a possible outcome

given some lie by agent k), and

2. L′
Op ≻k,|�M| LOp (resp. L′

Op ≻k,|�| LOp).

Then Xk

|�M|
⊆ Xk

|�|.

Proof. ∀L′
Op ∈ Xk

|�M|
, we have:

1. There exists some labeling L′
k s.t. L′

Op = soAF(PLk/L
′
k
), and

2. L′
Op ≻k,|�M| LOp.

We just need to show that L′
Op ≻k,|�| LOp.

Since L′
Op ≻k,|�M| LOp, then L′

Op

∣

∣�
M
∣

∣Lk < LOp

∣

∣�
M
∣

∣Lk. Then:

2×|L′
Op �

io Lk|+ |L′
Op �

du Lk|< 2×|LOp �
io Lk|+ |LOp �

du Lk| (10)

Since |LOp �
io Lk|= 0:

2×|L′
Op �

io Lk|+ |L′
Op �

du Lk|< |LOp �
du Lk| (11)

Which implies:

|L′
Op �

io Lk|+ |L′
Op �

du Lk|< |LOp �
du Lk| (12)

But |L′
Op �Lk|= |L′

Op �
io Lk|+ |L′

Op �
du Lk| and |LOp �Lk|= |LOp �

du Lk|. Then:

|L′
Op �Lk|< |LOp �Lk| (13)

Which means L′
Op ≻|�| LOp. Hence, L′

Op ∈ Xk
|�|. �
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We show that the benevolence property carries over from Hamming distance to IUO Hamming

distance based preferences.

Theorem 7. Consider an operator Op that only produces labelings that are compatible (≈) with

each individual’s labeling. If all strategic lies are benevolent when agents have Hamming distance

based preferences then all strategic lies are benevolent when agents have IUO Hamming distance

based preferences.

Proof. Let Op be a compatible operator. Let P be a profile, and L′
k be a strategic lie of agent k.

Denote LOp = OpAF(P) and L′
Op = OpAF(PLk/L

′
k
). From Lemma 1 (1), since the operator Op

only produces labelings that are compatible with all individuals’ labelings, then for every agent j

s.t. j 6= k: (LOp � j,|�| L
′
Op iff LOp � j,|�M| L

′
Op) i.e. Hamming distance based preferences and

IUO Hamming distance based preferences are equivalent for all agents other than agent k.

Now given Lemma 5, every strategic lie with the operator Op given IUO Hamming distance

based preferences is also a strategic lie given Hamming distance based preferences. However, all

those lies are benevolent for every agent j 6= k whether she has Hamming distance based prefer-

ences or IUO Hamming distance based preferences. Hence, every lie given IUO Hamming distance

based preferences is benevolent. �

Now we turn to studying the strategy-proofness of the three operators: the skeptical, the cred-

ulous and the super credulous.

4.2 Hamming Set and Hamming Distance

Following, we show that none of the three operators is strategy-proof given Hamming set (resp.

Hamming distance) based preferences.

Observation 2. The skeptical aggregation operator is not strategy-proof for neither Hamming set

nor Hamming distance based preferences. Consider the three labelings in Figure 6. Labeling

L1 of agent 1 when aggregated with L2 gives labeling L3, which disagrees with L1 on all three

arguments. But, when agent 1 strategically lies and reports labeling L2 instead, the result of the

aggregation is the same labeling L2, which differs only on two arguments {A,B}. The example is

valid for both Hamming set and Hamming distance based preferences.

Figure 6: The skeptical operator is not strategy-proof.
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Observation 3. The credulous (resp. super credulous) aggregation operator is not strategy-proof

for neither Hamming set nor Hamming distance based preferences. See the example in Figure 7.

Labeling L2 of agent 2 when aggregated with L1 gives labeling LCO, which disagrees with L2

on the two arguments. But, when agent 2 strategically lies and reports L′
2 instead, the result of

the aggregation is L′
CO, which matches the labeling L2. This lie by agent 2 makes the agent with

labeling L1 worse off. The example is valid for both Hamming set and Hamming distance based

preferences.

Figure 7: The (super) credulous operator is not strategy-proof.

For the skeptical aggregation operator, however, every strategic lie is benevolent, given Ham-

ming set (resp. Hamming distance) based preferences. Unfortunately, this is not the case for the

credulous or the super credulous operators.

Theorem 8. Consider the skeptical aggregation operator and Hamming set based preferences.

For any agent, her strategic lies are benevolent.

Proof. Let P be a profile, and L′
k be a strategic lie of agent k. Denote LSO = soAF(P) and L′

SO =
soAF(PLk/L

′
k
). Agent k’s preference is L′

SO ≻k LSO (i). We will show that for any agent i 6= k,

we have L′
SO ≻i LSO. Since the skeptical aggregation operator produces outcomes that are less or

equally committed as all the individual labelings, we have that L′
SO ⊑Li for all i 6= k (ii). Similarly,

we have LSO ⊑ Lk (iii). From (i) and (iii), by Lemma 4, we have that LSO ⊑ L′
SO (iv). From (iv)

and (ii) we have LSO ⊑L′
SO ⊑Li for all i 6= k. Finally, we can apply Lemma 3 to obtain L′

SO �i LSO

for all i 6= k (v). We showed that a lie cannot be malicious, now we show that it is benevolent.

(iii) implies undec(Lk)⊆ undec(LSO) (vi). (i) and (vi) imply ∃A∈ dec(Lk) : A∈ undec(LSO)∧
A ∈ dec(L′

SO) (vii). From (vii), (ii) and (v) L′
SO ≻i LSO for i 6= k. �

Theorem 9. Consider the skeptical aggregation operator and Hamming distance based prefer-

ences. For any agent, her strategic lies are benevolent.

Proof. Let P be a profile, and L′
k a strategic lie of agent k whose most preferred labeling is Lk.

Denote LSO = soAF(P) and L′
SO = soAF(PLk/L

′
k
). We will show that, if L′

SO is strictly preferred to

LSO by agent k, then it is also strictly preferred by any other agent. Without loss of generality we

can take agent j, j 6= k,whose most preferred labeling is L j.

Let us partition the arguments into the following disjoint groups:

• X= dec(LSO)\dec(L
′
SO) (decided arguments that became undecided).
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• Y= dec(L′
SO)\dec(LSO) (undecided arguments that became decided).

• Z= dec(L′
SO)∩dec(LSO) (arguments decided in both labelings).

• V= undec(L′
SO)∩undec(LSO) (arguments undecided in both labelings).

Labelings LSO and L′
SO agree on the arguments in V (which are labeled undec) and Z (whose

arguments are labeled in or out). For the arguments in Z there are no in−out conflicts between

LSO and L′
SO as the skeptical aggregation operator guarantees social outcomes less or equally

committed as L j. Therefore, only arguments from X and Y have an impact on the Hamming

distance.

Both labelings Lk and L j agree with LSO on the arguments in X because LSO decides on those

arguments and is less or equally committed as both labelings. On the other side, L′
SO remains

undecided on the arguments in X so both labelings Lk and L j disagree with L′
SO on X.

L′
SO is less or equally committed as L j so, as above, we obtain that on the arguments in Y, L j

agrees with L′
SO and disagrees with LSO. On the contrary, L′

SO does not have to be less or equally

committed as Lk and so, for agent k, some of the arguments from Y increase the distance and some

of them decrease. If agent k prefers L′
SO to LSO, then the number of the arguments decreasing the

distance must be greater than the number of those increasing by more than |X|. But for agent j all

the arguments from Y are decreasing the distance, as L j agrees with L′
SO on the whole Y. So, if

agent k gains by switching to labeling L′
SO, agent j needs to gain at least the same. �

Note that the previous two theorems raise an interesting point. Given the Pareto optimality of

the skeptical operator for Hamming set/distance based preferences, one would expect that benev-

olent lies are not possible. Otherwise, it means there exists another labeling that is more preferred

by every agent and strictly preferred by at lease one agent. This contradicts the Pareto optimality

result found earlier.

However, it is important to remember that the Pareto optimality results found earlier are all

with respect to the sets of labelings that are smaller or equal (or compatible in the case of the other

operators) to each individuals’ labelings. On the other hand, an outcome given a benevolent lie

is not compatible with every individual’s labeling i.e. while the skeptical operator does produce

labelings that are compatible with each individual’s true labeling, it does so for the submitted

labelings only. Hence, when an agent k lies and submits L′
k instead of Lk, the outcome L′

SO (which

is the outcome when k submits L′
k) is compatible with L′

k but not necessarily to Lk. As a result, the

labeling L′
SO does not belong to the set of labelings that LSO is compared to when studying Pareto

optimality.

This highlights another interesting point that can be implied by the benevolence and Pareto

optimality of the skeptical operator. When using the skeptical operator, whenever an agent k con-

siders lying in order to get a closer labeling to Lk, she is faced with an inevitable trade-off between

getting a less or equally committed outcome and getting a closer (i.e. more preferred) outcome.

4.3 IUO Hamming Sets and IUO Hamming Distance

In this part, we analyze the strategy-proofness for the three operators given the classes of prefer-

ences that assume undec is in the middle between in and out (dist(dec,undec) < dist(in,out)).
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Following, we show the strongest result for this section. The skeptical operator is strategy-

proof given the IUO Hamming sets based preferences.

Theorem 10. The skeptical aggregation operator is strategy-proof when individuals have IUO

Hamming sets based preferences.

Proof. Let P be a profile, Lk be the top preference of agent k, and L′
k 6= Lk be an admissible

labeling of AF. Denote LSO = soAF(P) and L′
SO = soAF(PLk/L

′
k
). We will show that ¬(L′

SO ≻k,�M

LSO) (that is, L′
k is not a strategic lie). Which means, we need to show:

¬((L′
SO �k,�M LSO)∧¬(LSO �k,�M L′

SO)) (14)

¬(L′
SO �k,�M LSO)∨ (LSO �k,�M L′

SO) (15)

In other words:

¬((L′
SO �

io Lk ⊆ LSO �
io Lk)∧ (L′

SO �
du Lk ⊆ LSO �

du Lk))

∨(LSO �k,�M L′
SO) (16)

To reformulate, we only need to show that one of the following holds:

1. ¬(L′
SO �

io Lk ⊆ LSO �
io Lk), or

2. ¬(L′
SO �

du Lk ⊆ LSO �
du Lk), or

3.

(a) LSO �
io Lk ⊆ L′

SO �
io Lk, and

(b) LSO �
du Lk ⊆ L′

SO �
du Lk.

First, by definition, LSO is less or equally committed (⊑) as Lk. So, LSO �
io Lk = /0, However,

this is not the case for L′
SO and Lk. So, L′

SO �
ioLk might not be an empty set. Hence, LSO �

ioLk ⊆
L′

SO �
io Lk i.e. (3)(a) is true. Now we show that either (1),(2) or (3)(b) is true.

Suppose (1) and (2) are false and we will show that (3)(b) is then true. This shows that (1), (2),

and (3)(b) cannot be all false together.

Since (1) is false and since LSO �
io Lk = /0 then L′

SO �
io Lk = /0 (i). Since (2) is false then ∀a :

(a ∈L′
SO �

duLk ⇒ a ∈LSO �
duLk) (ii). Note that ∀a : (a ∈L′

SO �
duLk ⇒ (a ∈ undec(L′

SO)∧a ∈
dec(Lk)))(iii). Otherwise, we would have a ∈ dec(L′

SO)∧a ∈ undec(Lk) and from (ii) we would

have a ∈ dec(LSO)∧a ∈ undec(Lk) which contradicts LSO ⊑ Lk.

From (i) and (iii), ∀a ∈ in(L′
SO) ⇒ a ∈ in(Lk) (iv) (from (i), Lk(a) 6= out, and from (iii),

Lk(a) 6= undec). Similarly, from (i) and (iii), ∀a ∈ out(L′
SO)⇒ a ∈ out(Lk) (v). From (iv) and

(v), L′
SO ⊑ Lk. Since ∀i 6= k: L′

SO ⊑ Li, then ∀i ∈ Ag: L′
SO ⊑ Li. By Theorem 1, L′

SO ⊑ LSO.

Then, undec(LSO)⊆ undec(L′
SO) (vi).

Now, ∀a∈LSO �
duLk then a∈ undec(LSO)∧a∈ dec(Lk). From (vi), a∈ undec(L′

SO). Thus,

a ∈ L′
SO �

du Lk. Then, (3)(b) is true. �
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The previous result does not hold for the credulous or the super credulous operators. Further,

none of the three operators is strategy-proof when individuals have IUO Hamming distance based

preferences. However, as was the case with other classes of preferences, lies with the skeptical

operators are always benevolent, unlike those with the credulous or the super credulous operators.

Observation 4. The skeptical aggregation operator is not strategy-proof when individuals have

IUO Hamming distance based preferences. Consider the three labelings in Figure 8. Labeling L1

of agent 1 when aggregated (using skeptical operator) with L2 gives labeling L3, which differs

from L1 on all five arguments with respect to dec− undec Hamming set. Then, L1

∣

∣�
M
∣

∣L3 =
2×0+1×5 = 5. But, when the agent strategically lies and reports labeling L2 instead, the result

of the aggregation is the same labeling L2, which differs only on two arguments {A,B} with respect

to in−out Hamming set. Then, L1

∣

∣�
M
∣

∣L2 = 2×2+1×0 = 4.

Figure 8: The skeptical operator is not strategy-proof when agents have IUO Hamming distance

preferences.

Observation 5. The credulous (resp. super credulous) aggregation operator is not strategy-proof

for neither IUO Hamming sets nor IUO Hamming distance based preferences. The example in

Figure 7 can serve as a counterexample for the case where individuals have IUO Hamming sets

(or IUO Hamming distance) based preferences. The agent with labeling L2 can insincerely report

L′
2 to obtain her preferred labeling. This makes an agent with labeling L1 worse off.

Corollary 5. Consider the skeptical aggregation operator and IUO Hamming distance based pref-

erences. For any agent, her strategic lies are benevolent.

Proof. From Theorem 9 and Theorem 7. �

Table 4 summarizes the strategy-proofness results for the three operators given all the eight

classes of preferences.

4.4 Heterogeneous Preferences

Following Subsection 3.4, we do a similar analysis for the case where agents have heterogeneous

preferences. Since strategy-proofness is usually considered given other agents’ preferences are

fixed, it is easy to show the result for the heterogeneous preferences given the homogeneous pref-

erences.
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Skeptical Credulous Super Credulous

Operator Operator Operator

Hamming set No (Obs. 2) No, and No, and

but benev. (Thm. 8) not benev. (Obs. 3) not benev. (Obs. 3)

Hamming dist. No (Obs. 2) No, and No, and

but benev. (Thm. 9) not benev. (Obs. 3) not benev. (Obs. 3)

IUO Hamming sets Yes (Thm. 10) No, and No, and

not benev. (Obs. 5) not benev. (Obs. 5)

IUO Hamming dist. No (Obs. 4) No, and No, and

but benev. (Cor. 5) not benev. (Obs. 5) not benev. (Obs. 5)

Table 4: Strategy-proofness of operators depending on the type of preferences.

Proposition 3. Let F be the set of all possible classes of preferences, R be some set s.t. R ⊆ F,

and Ag be the set of agents. If an operator is strategy-proof given that Ag have homogeneous

preferences from R, then it is strategy-proof given that Ag have heterogeneous preferences from

R.

Proof sketch. Since strategy-proofness is considered given that other agents’ preferences are fixed,

if an agent i has no incentive to lie given some class of preferences, the classes of preferences that

are assumed for any agent k 6= i should not affect the incentives of agent i (to lie or otherwise). �

Given the above results, when using the skeptical operator all strategic lies are benevolent

lies, while this is not the case with the credulous and super credulous operators. This introduces

another trade-off between choosing the operator that guarantees no malicious lies, and operators

that produce more committing outcomes (when more committed outcomes are more desirable).

5 Discussion and Future Work

In order to apply argumentation to multi-agent conflict resolution, it is crucial to take into account

not only postulates about logical consistency, but also measures of social optimality and strategic

manipulation. Two key criteria are Pareto optimality and strategy-proofness, which are fundamen-

tal in any social choice and multi-agent setting. In this study, we have analyzed and compared three

aggregation operators, namely the skeptical, the credulous and the super credulous operators with

respect to different classes of preferences. Our comparison is based on two fundamental criteria,

namely Pareto optimality and strategy-proofness. We showed that the skeptical operator guaran-

tees Pareto optimal outcomes given different classes of preferences, while the credulous and super

credulous operators only guarantee Pareto optimal outcomes given a subset of these classes. If

more committed outcomes are more desirable, then there is a trade-off between Pareto optimality

and the more committed outcomes. As for the strategy-proofness, the three operators are vulnera-

ble to manipulation given most classes of preferences. However, the skeptical operator guarantees

benevolent lies. Hence, there is another trade-off in choosing an appropriate operator between

avoiding the malicious lies and choosing the more committed outcomes.
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All the considered classes of preferences in this work treat arguments independently. Since the

label of an argument depends on the labels of the defeating arguments, measuring the distance by

treating arguments independently might not give an accurate sense of how far two labelings are

from each other. Motivated by this, Booth et al. [13] proposed and defined a new distance method,

using the notion of “issue”. This distance method captures this idea, while satisfying a set of

axiomatic properties which they listed as essential for any distance measure. Given this, it would

be sensible to define Issue-wise set and Issue-wise distance measures (and their IUO counterparts).

However, agents’ preferences defined using (IUO) Issue-wise set turn out to be equivalent to (IUO)

Hamming set based preferences. Further, while (IUO) Issue-wise distance based preferences are

not equivalent to (IUO) Hamming distance based preferences, all the results found in this paper

for (IUO) Hamming distance based preferences turn out to be exactly the same for (IUO) Issue-

wise distance based preferences. As such, to avoid a lengthy presentation of similar results, we

skipped the presentation of these measures, but the reader can keep in mind that the results found

for preferences based on Hamming set and Hamming distance in fact are extensible to broader

and potentially more realistic measures. All technical details including definitions and results of

Issue-wise related preferences can be found in [5].

The analysis we perform in this study concerns operators that aggregate labelings of an abstract

argumentation framework. This problem of aggregating labelings can be compared to preference

aggregation (PA) [1, 2, 26, 41], judgment aggregation (JA) [33, 31, 32, 30], and non-binary judg-

ment aggregation [22, 23]. There exist many differences between labelings and preference rela-

tions stemming from their corresponding order-theoretic characterizations. Labeling aggregation

differ from JA in that arguments (which are the counterparts of propositions) can have three values

instead of two traditionally considered in JA. Considering the general framework of Dokow and

Holzman [23], our settings can be considered as focusing on special classes of feasible evaluations,

which are the conditions imposed by the legal labeling (or other semantics). Additionally, the pos-

sible evaluations of each issue (argument, in our case) are to accept (labels as in), reject (labels

as out), or be undecided (labels as undec). However, translation of results between labeling ag-

gregation and non-binary JA amounts to encoding argumentation semantics in propositional logic,

which is not a trivial task [7, 8].

One might note that the considered operators are insensitive to the number of votes given to

each label, which is uncommon in aggregation domains. While most of the common aggregation

rules (including the quota rules in JA [20]) are highly dependent on the number of votes received by

each alternative, these rules are not always appropriate. One example is in juries, when the legal or

the moral responsibility of the outcome is shared by all individuals. Indeed Ronnegard [39] argued

that the attribution of moral responsibility to all members of a committee is legitimate when the

decision is taken through unanimous voting, while it is not necessarily the case otherwise. Another

example is when the outcome of the decision can potentially harm some individuals. It was shown

by Bonnefon [11] that people show a preference for more conservative aggregation procedures

when the outcome of the decision may involve the infliction of personal harm. The considered

three aggregation rules that ensure the compatibility of the outcome with all individuals’ votes were

proposed to address such scenarios. In a study that experimentally compares the three operators

to the argument-wise plurality rule [38, 4], Awad et al. [3] found that while the latter is generally
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more favorable, there can be some contextual factors given which this is not the case.

Few studies have considered Pareto optimality and strategy-proofness with argument based

aggregation. Rahwan and Larson [36] defined a set of simplistic agents preferences over argumen-

tation outcomes, and studied the Pareto optimality of different argument evaluation rules defined

using classical semantics (e.g. complete,...etc.) given agents with these simple types of prefer-

ences. Unlike Rahwan and Larson, we study the Pareto optimality of labeling aggregation oper-

ators that produce a collective evaluation given many different evaluations. Another difference is

that we consider more realistic, distance-based preferences. As for strategy-proofness, since the

Gibbard-Satterthwaite theorem [27, 40], much research has been done towards analyzing strategic

manipulation of preference aggregation (PA) rules [28, 29, 34, 18, 35, 25]. Strategy-proofness of

judgment aggregation (JA) operators have been first studied by Dietrich and List [19, 21]. In the

former, Dietrich mentioned some independence conditions that make the rule strategy-proof. In

the latter, Dietrich and List showed equivalence between satisfying strategy-proofness and satis-

fying both the independence and monotonicity postulates. The first study of strategy-proofness of

labeling aggregation operator has been done by Rahwan and Tohmé [38] in the context of a specific

labeling aggregation operator (argument-wise plurality rule). They showed the strategy-proofness

of this operator given agents with a particular class of preferences, dubbed focal set preferences.

Our work considers different labeling aggregation operators, and we provide the first broad analy-

sis for strategy-proofness of labeling aggregation operators given a wide variety of preferences.
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