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Decision Tree Design from a Communication 
Theory Standpoint 

RODNEY M. GOODMAN, MEMBER, IEEE, AND PADHRAIC SMYTH 

Abstract -The design of efficient decision trees from labeled sample 
data is currently an important topic in several fields, such as pattern 
recognition and expert system design. A communication theory approach 
to decision tree design based on a top -down mutual information algorithm 
is presented. We state and prove that this algorithm is equivalent to a form 
of Shannon-Fano prefix coding and derive several fundamental bounds 
relating decision tree parameters. We then use these bounds, in conjunc- 
tion with a rate-distortion interpretation of tree design, to explain several 
phenomena previously observed in practical decision tree design. We also 
propose a new termination rule for the algorithm, called the delta-entropy 
rule, which improves the robustness of the algorithm in the presence of 
noise, compared with existing methods. Simulation results are presented 
from which we show that the tree classifiers derived by our algorithm 
compare favorably to the single nearest neighbor classifier. 

I. INTRODUCTION 

IERARCHICAL classifier design is a subject which H has received considerable attention in recent litera- 
ture. In designing any classifier, hierarchical or not, one 
seeks to classify some future samples of unknown class 
based on what one has inferred from labeled training 
samples. The training samples are described by feature 
vectors located in a multidimensional feature space. In 
addition, each sample has a label, i.e., the class to which it 
belongs. Classifier design can thus be viewed as a statisti- 
cal inference procedure for partitioning the multidimen- 
sional feature space into class regions. Future samples are 
thus assigned to a particular class region, or classified, 
according to some function of its feature vector in this 
space. It is important to note that this problem is quite 
general and could equally well describe problems in speech 
recognition, image analysis, data compression, medical di- 
agnosis, equipment maintenance strategies, etc. 

The more traditional techniques of partitioning the fea- 
ture space, as described in Duda and Hart [l], rely on 
extensive knowledge of the joint probability distributions 
between the classes and the feature vectors. In addition, 
they yield computationally complex classifiers where, typi- 
cally, an unknown sample must be compared to each class 
to find the “most likely” classification. Estimation of the 
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joint distributions when either the dimensionality of the 
feature space or the number of classes is very large re- 
quires impractically large training sets. Indeed, increasing 
the number of features while keeping the number of sam- 
ples fixed can actually lead to a decrease in the accuracy of 
the classifier [2]. 

An alternative approach is to use a nonparametric hier- 
archical partitioning of the feature space. Clearly, as in any 
hierarchy, the order in which the hierarchy is implemented 
is of fundamental importance for any optimality criterion 
which might be used. This herarchical approach can be 
traced back to Wald’s original work on sequential statisti- 
cal decision theory [3]. The idea of using the mutual 
information between the features and classes to select the 
best features has received considerable attention recently 
(cf. [7]-[20]), but in fact the idea was initially put forward 
in 1962 in a paper by Lewis [4]. Then in 1968, Fu [5] 
formulated Wald’s ideas in terms of the classifier design 
problem with reference to Lewis’ information criterion. 
More recently, there has been renewed interest in this 
approach, more commonly referred to as decision tree 
design (since a hierarchical classifier can be viewed as a 
decision tree). The primary reason for this renewed intere\st 
is the need to derive more efficient classifiers, particularly 
with respect to classification speed. More detailed ratio- 
nale on the motivation for using hierarchical classifiers 
can be found, for example, in Kana1 [6] and Swain and 
Hauska [7]. 

Some of the earlier work (e.g., Ganapathy and Rajara- 
man [8], Hartmann el al. [9]) deals with the conversion of 
decision tables to decision trees. However, decision table 
conversion in some respects is a subset of the more general 
problem of tree design from a table of arbitrary sample 
data, as outlined by Chou [lo]. We shall deal with a 
particular approach to this more general problem of prob- 
abilistic decision tree design, namely, using the average 
mutual information between the features and the classes to 
design the tree. The basic principle of this approach re- 
volves around choosing the “best” feature at any node in 
the tree (or, equivalently, at any stage in the sequential 
decision process), conditioned on which features were cho- 
sen previously and the outcomes of evaluating those fea- 
tures. From an intuitive viewpoint, any sequence of feature 
evaluations or path from the root node to a leaf (i.e., a 
terminal node) involves only those features which are most 
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relevant toward the classification decision made at the leaf. 
Clearly, some trade-off must exist between the number of 
features evaluated and the accuracy of classification. Re- 
cently, Chou and Gray [ l l ]  have formulated this in terms 
of rate-distortion theory, where the classification error 
versus average depth trade-off can be directly related to 
the rate-distortion curve for a given problem. The overall 
effect one expects of using the average depth approach is 
for the average number of feature evaluations to be consid- 
erably reduced, resulting in advantages in time and cost. 
Among the successful applications of the mutual informa- 
tion approach to decision-tree design reported already are 
medical diagnosis [12], an expert system design tool [14], 
alpha-numeric character recognition [15], [16], Chnese 
character recognition [17], and the classification of chess 
endgames [18]. In addition, several successful applications 
of tree classifiers have been designed manually without 
using information-theoretic concepts, e.g., in aerial image 
analysis [19] and speech recognition [20]. 

Within the domain of the mutual information approach 
are several variations on the same principle, e.g., Breiman 
et al. have developed extensive algorithms based on prun- 
ing large or complete trees back to much smaller trees [12]. 
We shall deal with algorithms which are strictly top-down 
where the tree is essentially derived in a single iteration. In 
1982, Hartmann et al. [9] proposed a general top-down 
mutual information algorithm to design decision trees from 
deterministic decision tables. Recently, this work has been 
extended [13] to probabilistic decision trees. Our perceived 
limitations of this algorithm are that it is restricted to deal 
only with independent tests and that it requires that all the 
probabilities are known a priori. In general, for practical 
tree-design problems, such as may occur in expert system 
design applications, such conditions are not satisfied. 

We deal here with the more general problem, namely, 
tree design from a table of sample data using the top-down 
mutual information algorithm. The tests or features are not 
assumed to be independent, and the probabilities are esti- 
mated from the sample data. We relate the problem to 
communication theory using a noisy channel analogy. 
Specifically, we prove that the algorithm is directly equiva- 
lent to a form of Shannon-Fano prefix coding. This leads 
to considerable insight into the basic principle involved, 
from whch we derive bounds relating the various tree 
performance parameters, such as the average tree depth 
and probability of misclassification. We analyze the prob- 
lem of determining suitable termination rules for the algo- 
rithm (i.e., when to declare a tree node to be a leaf or 
terminal node) and propose a new termination rule called 
the delta-entropy rule to overcome the disadvantages of 
threshold-type rules. Finally, we present experimental re- 
sults and interpret them in the light of the theoretical 
results given earlier. The primary conclusions are that the 
greedy algorithm (Le., top-down tree design using mutual 
information) will work well on the average and that the 
termination rules must be chosen carefully if noise is 
present in the feature vectors. 
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Fig. 1. Typical sample data table. 

11. THE MUTUAL INFORMATION ALGORITHM FOR 

TREE DESIGN 

In the introduction we developed an outline of the basic 
algorithm. Let us now be somewhat more specific. Con- 
sider that one is given a table of data as in Fig. 1. The 
table consists of M samples drawn from the population at 
large. Each sample is described in terms of N feature 
values (or attribute values) and a class label. The class 
labels are letters from the alphabet of the discrete random 
variable C. For example, the samples could be plants 
described in terms of height, number of flowers, etc., or 
medical case histories in terms of presence or absence of 
certain symptoms. It is important to realize that the table 
is probabilistic rather than deterministic, i.e., “overlap” 
may exist in the class-feature conditional probability dis- 
tributions. 

Note that the problem of feature selection is not dealt 
with here; rather, we take what features are given and do 
the best we can. Feature selection is a different problem 
but nevertheless directly related. Indeed, if all known 
features are given then the tree-design algorithm will auto- 
matically select the most relevant features and ignore the 
irrelevant ones. T h s  is an additional advantage of the 
mutual information tree-design approach over conven- 
tional classifiers since it yields valuable information on the 
relative importance of the various features. In applications 
such as medical diagnosis t h s  can be quite useful [12]. We 
assume that the sample size is sufficiently large to yield 
reliable estimates of the class distribution conditioned on 
the values of the N features. Indeed, it can be shown [21] 
that for a given confidence level the required number of 
samples is not too large from a practical point of view. 
Implicitly, we have also assumed that the feature values 
have been quantized-we will return to this point later. 

Let C be a discrete random variable, henceforth re- 
ferred to as the class variable. The finite set of class labels 
{ cl, c2; . e ,  c K }  comprises the letters of the alphabet of C. 
The probability that C assumes the value c, is denoted by 
p ( C =  c,) and C ; = , p ( C =  c,) =l. We will adopt the con- 
vention that p(c, )  = p ( C  = c,). 
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t r e e 0  

if (stack is not empty) 

{ node = pop-node0 

leaf-flag = leaf (node) 

if (leaf-flag = 1) 

{ increment leaf-l ist  

t r e e 0  1 
e l s e  

{ A = max-inf.-attribute(node) 

{ sort-table (a k )  

for ( k  = 1 to n i  ) 

push-node( ) } 

1 
1 

else return ( ) 

e n d  

Fig. 2. Pseudocode description of algorithm. 

In addition, we have N features or attributes. Each 
feature A , ,  1 I i I N ,  is also defined as a discrete random 
variable, i.e., the ith feature or variable has an alphabet 
{ai, a;;  . -, a : , } ,  where n ,  is the cardinality of the alpha- 
bet of A , .  The probability of the event A ,  = u;, 1 I j I n ,  
is denoted as p ( A ,  = u:), where C,”.,,p(A, = u;) =1, 
1 s i s N .  

Now we consider the algorithm itself. Essentially, it just 
deals with one tree node at a time. The initial node (root 
node) consists of the original table of data samples, Le., 
unconditioned on any feature values. Subsequent nodes 
result from evaluating certain features and obtaining sub- 
tables conditioned on the outcome of all prior evaluations. 
The algorithm continues to process nodes until no candi- 
date nodes remain, i.e., the tree has been grown and all 
leaves and internal nodes defined. The algorithm may be 
implemented recursively using a stack to store unprocessed 
nodes. New nodes which are not leaves are pushed onto 
the stack and “popped” off later to either yield more new 
nodes (child nodes) or be declared a leaf. The algorithm is 
defined in pseudocode in Fig. 2. 

Apart from the bookkeeping aspects, two functions in 
the algorithm remain to be defined, namely, the “leaf-or- 
not” and “ max-information-feature” functions. It is these 
two functions which characterize any top-down tree deriva- 
tion algorithm, i.e., 

a) determine if the node is a leaf; 
b) if not, determine the feature whch yields the maxi- 

mum information at that node. 

We shall deal with the first problem which concerns 
finding appropriate termination rules later. Initially, we 
will focus on the second problem, namely, which feature 
yields the most information. The criterion can be stated 
quite simply, but we shall be more interested in what 
implications this approach has for the tree as an efficient 
classifier. We can state the criterion in terms of our previ- 

channel 1 

C !  

channel N 

Fig. 3. Communications channel model of feature measurement. 

ously defined notation. Choose the feature A ,  such that 

Z(C; A , )  2 Z(C; A , ) ,  11 i I N ,  i # k 

or, equivalently, 
H ( C ( A , )  IH(C(A,),  I i i i N ,  i + k  (1) 

where H ( - )  and I(-) are the well-known entropy and 
average mutual information functions, respectively. This is 
essentially the same as the criterion originally proposed by 
Lewis in 1962 [4]. In his paper Lewis justifies theoretically 
why the mutual information criterion is appropriate for 
feature selection- the interested reader should refer to the 
original. 

We now introduce an interesting analogy with a commu- 
nications problem. The transmitted information is c,, the 
unknown class (from the receiver’s viewpoint), a member 
of what one might term the class alphabet. What is being 
transmitted is essentially a coded version of this “letter” 
c,, namely, 4, the transmitted feature vector. This feature 
vector (or message sequence) contains N components, and 
each component can assume n ,  different elements in each 
alphabet. Consider that the features are transmitted over 
N different discrete memoryless noisy channels, one for 
each feature component and its alphabet. Fig. 3 shows the 
overall picture. For example, feature a ,  could be binary 
values ( n ,  = 2), and so channel 1 could be a binary sym- 
metric channel. These N noisy channels are analogous to 
the feature measurement process and essentially represent 
a model for the combined effects of overlap in the joint 
class-feature distributions, transducer noise, quantization 
noise, etc. 

The receiver’s problem is to compute t as a best esti- 
mate for whichever c, was transmitted. This is equivalent 
to decoding the received feature vector 

Clearly then, having a set of training samples available 
in the classification problem is analogous to ,having a 
number of test transmissions with side information avail- 
able, namely, the true value of t. The problem is to design 
a decoder which is optimal or near optimal in some sense, 
given what one has inferred from the test transmissions. 
Traditionally, the approach is to use all of the available 
channels (i.e., all of the features) in the decoding algo- 
rithm. Perhaps, however, some channels are costly to oper- 
ate, just like some features are difficult to measure, e.g., if 
one of the channels is an expensive satellite link. The 
hierarchical approach here is to devise a decoding algo- 
rithm which uses the channels sequentially and terminates 
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with an estimate of 2, using on average somewhat fewer 
than N channels. The mutual information extension of this 
is simply to choose sequentially the channels whch yield 
the maximum average mutual information between 
and e,. 

111. TREE DERIVATION AS A FORM OF PREFIX CODING 

As outlined in the previous section, the tree algorithm 
can be reduced to a recursive procedure which only deals 
with nodes. Each node in the designed tree has an associ- 
ated test or feature evaluation. In our notation ths  feature 
is a random variable. We adopt the convention (for nota- 
tional convenience) of using node, to represent the feature 
variable associated with the j t h  node, where j is an index 
over the internal nodes. In other words, wherever the node, 
symbol is used it represents the random variable associated 
with that node. Hence we can think of the node itself as a 
random variable whose outcomes are members of the 
associated feature alphabet. In a similar manner, we define 
the discrete random variable T to be a function of the 
internal nodes. Henceforth we refer to T as the tree. The 
alphabet of T consists of all the possible paths (or se- 
quences of feature values) through the designed tree. Since 
these paths are disjoint and the sum of their probabilities 
is 1, T is indeed a random variable. 

We define the average mutual information I (  C; T )  which 
the tree yields about the classes as 

where S is the set of internal nodes, p(node,) is the 
probability that one traverses a particular internal node ( j 
is an arbitrary index) in the tree, and I(C;node,) is the 
information which the node yields about C,  Le., by travers- 
ing a node one evaluates a feature and descends a branch 
to a child node conditioned on the outcome of the feature 
evaluation. The average mutual information gained is the 
average information one receives about the classes when 
one evaluates this feature. Note that to calculate Z(C; T )  
in (2) we need a specific designed tree; Le., Z(C; T )  
depends on the sample data and the algorithm used. A 
natural question to ask is “what exactly is Z(C; node,)?” 

Theorem 1: The average information gained by evaluat- 
ing a feature at a given node is simply the entropy of the 
probabilities of the branches leaving that node: 

(3) 

where m is the number of branches at the node and q, 
(1 I i I m) is the probability of descending the ith branch. 

Proof: See Appendix I for details. 

The result can be worded as follows. The information 
we gain from traversing a node in the tree is simply equal 
to the m-ary entropy of the branch probabilities emanating 
from that node. As a numerical example, if m = 2 and 
q1 = 0.4 at some node,, then by Theorem 1, Z(C; node,) = 

H2(0.4) = 0.971 bits. We can state the following corollary. 
Corollary to Theorem 1: The top-down or “greedy” al- 

gorithm for designing trees using mutual information is 
directly equivalent to prefix coding of a certain type, 
namely, a form of Shannon-Fano prefix coding. 

Proof: From Theorem 1, the tree-design algorithm 
tries to maximize the quantity H (  pl; . . , p,). T h s  is 
equivalent to determining the m-ary partition of the com- 
ponent p ,  such that the p ,  are as equal as possible. This is 
the same criterion as used in a form of Shannon-Fano 
prefix coding [22], and since trees are directly equivalent to 
prefix codes [23], the tree-design algorithm and the prefix 
coding algorithm are, in fact, the same. This is sufficient to 
prove the corollary. 

Note, however, that the tree-design is really equivalent 
to “constrained” prefix coding in a practical sense since 
there is no guarantee that the features exist to perform the 
appropriate partitions. With actual prefix coding no such 
constraints exist. 

An immediate consequence of this result is the fact that 
we have proven that the top down tree-design algorithm 
using mutual information is necessarily suboptimal. This is 
because of the equivalence to prefix coding where the 
optimal code derivation algorithm is that of Huffman [24]. 
We are, of course, interpreting optimal here in the sense of 
minimum average tree length which is consistent with our 
overall criterion of optimality when all feature costs are 
the same. 

Therefore, if the top-down “greedy” algorithm is subop- 
timal, should we abandon it and search for the optimal 
one? Most probably not, for a variety of reasons, not least 
the fact that optimal tree derivation has been shown to be 
NP-complete [25] and hence would be computationally 
intractable as the number of classes and/or features in- 
creases. In addition, it is well-known that Shannon-Fano 
prefix coding yields near-optimal length codes in prac- 
tice. One suspects then that this simple algorithm may 
be the “best” from a practical point of view. Rather than 
viewing the proof of suboptimality of the algorithm as a 
negative result, one should interpret its equivalence to 
Shannon-Fano coding as a positive argument in its favor. 
The only weakness in the argument is the lack of quantita- 
tive results available on how “ near-optimal’’ this prefix 
coding scheme really is-although it is known to work well 
in practice one would like to quantify this. Section IV will 
establish some results in ths  regard. 

Theorem 1 was derived on the unrealistic assumption of 
zero noise. The reason for doing ths  was to clarify the 
basic equivalence to prefix coding. Indeed, the following 
theorem includes the result of theorem 1 as a special case, 
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but we have chosen to separate the two results for the 
purposes of clarity. 

Theorem 2: The following holds: 

I (  C; node,) 
e 

m - 1 ’  ’ m - 1  

= m qilog( +-€)log( -)-dog( 1 -) m - 1  
4i 1-€ 

I = 1  

(4) 

where m is the number of branches at the node, q, (1 I i I 
m) is the probability of descending the ith branch, as 
before. Now e is the probability that one will not descend 
the “correct” branch and z/(m - 1) is the probability that 
one descends any of the other m - 1 branches. 

For a proof of this result using a noisy channel analogy 
see Appendix I. From the proof we note that t h s  is simply 
the information equation for a discrete memoryless chan- 
nel so that the noise term can be replaced by a general 
equivocation term H( QlC) for any noise characteristics, 
symmetric or not, where Q is the m-ary partition random 
variable as defined in the Appendix. Let us say that m = 2 
and q l =  0.4 as before, and we let e = 0.1. From (4) we 
then find that I(C; node,) = H,(0.4) - H,(O.l) = 0.502 bits. 
In other words, the introduction of a noise level of z = 0.1 
resulted in a loss of information of 0.469 bits. 

Here we see that the noise places a fundamental limit on 
the amount of information a node can yield, Le., 

I(C;node,) I log, ( m )  -(1- e) log(l / ( l -  e ) )  

- e log( m - I/( e ) ) .  

From the original equation it might seem that I (C;  node,) 
could be negative if the noise were large enough. Of 
course, this does not happen since the qi themselves are 
noise-dependent and with complete randomness they must 
in fact be equal giving the log2(m) term for the first 
expression on the right side. We shall later see that this 
limit has direct implications for using threshold-type ter- 
mination rules. 

Iv. BOUNDS ON THE AVERAGE MUTUAL 
INFORMATION AVAILABLE AT A NODE 

We have seen that the average information to be gained 
from a node is equal to H,(q,, q2, .  -, q,), where q, is the 
probability of descending to the ith child given that one is 
at the parent node. Clearly, this entropy term attains a 
maximum when all the q, are equal to l /m.  On average, 
however, given an arbitrary class probability distribution 
at the node, how well can one do in terms of maximizing 
the information? 

Consider a binary node, i.e., a node where one wishes to 
partition the members of the class alphabet into two 
disjoint subsets. Or to look at it from another angle, how 

much information can one get by asking a purely binary 
question? Let us define pmax as the maximum probability 
component in the discrete distribution of the class random 
variable C. Then we have the following theorem. 

Theorem 3: Given a discrete random variable C with K 
possible outcomes, one can always define a partition of the 
outcomes of C into two disjoint subsets such that 

where I(  C, Q )  is the average mutual information between 
the class variable C and the optimal partition variable Q. 
The optimal partition variable Q is, in turn, defined as the 
binary random variable whose two possible outcomes con- 
sist of the optimal partitioned subsets of the alphabet of C. 
The optimal split will be the one for which the probabili- 
ties of the components of Q are closest to 0.5. 

Proof: See Appendix 11. 

leads to the following corollary. 
We plot this bound as a function of p,, in Fig. 4. This 

Corollary to Theorem 3: The following holds: 

if p,, < -, 
2 
3 

then I( C; Q )  > H2(  f ) = 0.918 bits. 

(6) 

Proof: Follows directly from Theorem 3. 

Theorem 2 and its corollary yield a surprising result. For 
example, the corollary states that if the maximum proba- 
bility component is less than 2/3, then one can always 
define a partition or question which yields 0.918 bits of 
information. This is quite large when one considers that 
the upper bound is, of course, 1 bit so that even under the 
most adverse conditions we lose only 0.082 bits. For pm, 
< p I 2/3 the loss of information is even smaller. One can 
already begin to see that top-down node splitting may well 
be near optimal under certain conditions. Later we shall 
use this theorem to show why Shannon-Fano prefix cod- 
ing and more relevantly, top-down tree design, almost 
always yield near-optimal results. 

Consider first though the question of how restrictive the 
assumption that p,, < p may be, i.e., how likely it is that 
an arbitrary distribution will have p,, less than some 
value p ,  say 2/3 or 9/10 or whatever. Assume that no 
constraints have been put on the distribution in a 
Maxwell-Boltzmann statistical type of argument, i.e., ev- 
ery possible distribution is equally likely. It can be shown 
[21] using a combinatorial occupancy technique that 

P‘ { Pma, > P I = k ( 1 -  P> -’ (7) 

where 0 < pmax I 1, 0.5 < p 11, and k is the number of 
components of the distribution, e.g., k = K for the class 
variable C. Consider a numerical example where k =10 
and p=O.9. From(7)weget thatpr{p,,>p} =lo-(1-  
0.9)”-’ =lo-*. 
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0 0.1 0.2 0.3 0.4 0.5 

maximum probability component pmaS 

Fig. 4. Lower bound on maximum average information available by asking binary question, as a function of pn,ar 

Clearly, the probability depends primarily on the num- 
ber of classes. As the number of classes k increases, the 
probability tends to zero. Of course, just as in solid-state 
physics the assumption that all the “states” or distribu- 
tions are equally likely may be an over simplification. 
Nevertheless, the result is a positive indication that as the 
number of classes increases, “almost all” distributions 
have no components greater than some p ,  Le., for any 
arbitrary 8 there exists a p ,  0.5 2 p < 1, such that 

pr{p,,>p} = k ( l - p ) k - 1 < 8 .  (8) 
Returning to the main topic of interest, we now extend 

the result of Theorem 3 to account for any noise which 
may be present at the node. Consider a noise level of c at 
the node as previously defined. 

Theorem 3 Extended: The following holds: 

I ( C ;  Q) 2 H ~ ( P  + C ( ~ - ~ P ) ) - H ~ ( E )  (9) 
where p = max { p,,, 1/3}. 

Proof: See Appendix 11. 

The consequences of this result can be seen in Figs. 5 
and 6. Fig. 5 relates to p,, = 0.9, while Fig. 6 is for 
p,, = 2/3. The upper bound in each graph is 1 - I f 2 ( € ) ,  
the maximum amount of information available for a noise 
level of c. The lower bound is the minimum amount of 
information which can be acheved by the optimal parti- 
tion given that the maximum probability component is 
less than some p,,; i.e., constraining the maximum proba- 
bility to be less than 2/3 is stronger than constraining it to 
be less than 0.9, which explains why the bound is much 
tighter in the former case. The noise level c is only allowed 

to 0.5 since beyond that point the curve is symmetric. This 
is consistent with the idea of communication channel type 
noise. The extended result gives a direct quantitative mea- 
sure of the decrease in node information due to noise. 

v. INFORMATION THEORETIC BOUNDS ON THE 
TREE PERFORMANCE 

We now pose the question of how the tree depth, tree 
information, and the probability of misclassification relate 
to each other. Clearly, the latter two parameters can be 
compared by Fano’s inequality (cf. [16] and originally, 
[22]), and the tree depth will be introduced using results 
derived earlier. First it is informative to review what type 
of relationships one might reasonably expect to hold. Con- 
sider a situation where there is some noise c,  and view this 
in terms of Chou and Gray’s rate-distortion model [11]. 
The rate is equivalent to the average tree depth while the 
distortion is the probability of misclassification. Fig. 7 
depicts the type of distortion-rate curve one might expect 
based on Wolf and Ziv’s original model [26] for this type 
of problem, where the original inputs (the original class 
information) are distorted (represented by an imperfect set 
of features) prior to being source coded (decision tree) and 
transmitted (measured by an observer) before decoding 
(classification at a leaf). 

Let us define d to be the average tree depth and P ,  to 
be the average probability of misclassification for the tree. 
Also, note that H ( C )  is the entropy of the class distribu- 
tion (before using the tree), Z(C; T )  is the average mutual 
information which the tree yields about the classes, and 
H ( C I T )  is the average remaining uncertainty about the 
classes having used the tree. 
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Fig. 5. Upper and lower bounds on decrease in available information as functions of c: pmax = 9/10. 
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Fig. 6.  Upper and lower bounds on decrease in available information as functions of c: pmax = 2/3. 

Some general comments are in order at this point. The 
hierarchical classification approach is based on the princi- 
ple of finding an “operating point” slightly above the 
distortion-rate curve itself at a rate where the distortion- 
rate curve itself is slightly above the Bayes misclassifica- 
tion rate. This involves the following two assumptions. 

1) There is substantial redundancy in the feature set 
with respect to the class distribution, i.e., H ( C )  is very 
much less than N ,  the number of features. If this is true, 
one expects the distortion-rate curve to approach the Bayes 
misclassification rate for 2 somewhere above H ( C )  but 
still “far away” from N .  
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Distortion 

= pe 

B a y e s  
r i s k  

possible ‘operating’ point 
for a tree classifier 

The assumptions are certainly satisfied if one were prefix- 
coding the classes. Hence the tightness of the bound ex- 
plains why Shannon-Fano coding “almost always” seems 
to work as well as it does; i.e., the average length of the 
code is lower bounded by H ( C )  as always and upper 
bounded by 1.09H(C), provided that pm, < 2/3 at each 
node. 

The lower bound on d is fixed for any tree classifier so 
that the closeness of the bounds on 2 in the previous 
example is indeed a quantitative affirmation that the top- 
down tree-design algorithm does provide near-optimal 
trees. H ( C I T )  can be related to P, as follows: 

H 2 ( P e ) + P , l o g ( K - 1 ) > H ( C I T ) > 2 P ,  (13) 

where the upper bound is due to Fano and the lower 
bound is derived in [28] as well as other sources. K is the 
number of ,-lasses. Consequently, one can derive lower and 
upper bounds on P, in terms of 2, H ( C ) ,  and E ,  using 

H(C) - 
Rate = d 

Typical distortion-rate characteristic for classification problem. Fig. 7. 

2) In addition, one assumes that one can approach the 
distortion-rate limit by actually designing a near-optimum 
hierarchical classifier. 

Essentially, assumption 1 is problem-dependent and can 
be taken to hold in a wide variety of well-known classifica- 
tion tasks, such as image classification, where a wealth of 
features exist many of whch contain similar information; 
e.g., Conners and Harlow [27] have shown that many 
measures used in image processing to discriminate between 
textures contain the same information. First we bound the 
average tree depth. The lower bounds are quite general and 
involve no assumptions whatsoever while the upper bounds 
depend on the type of termination rule used in the tree- 
design algorithm, among other factors. 

Theorem 4: For a binary tree with average depth d 
designed using the top-down mutual information algorithm 

- H (  c )  - H (  CIT) 
1-H2(4 

d >  (10) a) 

This is true in general, while 

where a termination rule of the form “stop splitting when 
the maximum probability component at a node is greater 
than p” is used and the assumption is made that the 
optimal node splits can be defined at each internal node. 
For a proof of this result see Appendix 111. 

(13) and (11): 

If2(%)+ P,log(K-l) >H(C)-d(l -  H2(r))  (14) 
1 

P e  5 2 ( H ( c 1 - ‘( ~2 ( P + E (1 - 2 P ) - ~2 ( 6 1)). (15) 

As a numerical example of the upper bound (15), let 
p = 2/3 and E =0.1. Let us say that the variable C is 
uniformly distributed and has an alphabet size K of 8 so 
that H ( C )  = 3.0. We then get that P, I 2.5 -0.2402. 

These bounds are not particularly tight in many in- 
stances due to the well-known fact that the general bounds 
relating error probability and uncertainty are loose. In 
addition, note that H ( C I T )  is that value which one has 
estimated from the available training samples. In this sense 
it is directly analogous to the resubstitution estimate for 
the misclassification rate in conventional classifier design 
problems. Given the nature of the algorithm, i.e. minimiz- 
ing the remaining uncertainty, this estimate H (  CIT) may 
be slightly lower than the true value. It follows then that 
the bounds just derived are actually for the estimated value 
of H ( C I T )  and the estimated misclassification rate (or the 
resubstitution estimate) so that the true probability of 
misclassification may be higher. Previous bounds derived 
in the literature [16] based on Fano’s inequality have not 
emphasized this point. Unfortunately, no general relation- 
ship exists between the resubstitution estimate and the true 
misclassification rate, but in practice it has been found 
that if the sample size is sufficiently large then the true 
value of P, is not much greater than the resubstitution 
estimate [12]. 

It might seem that the upper bound on P, indicates that 
by arbitrarily increasing 2 one can reduce P, to zero. 
However, the distortion-rate model tells us that this cannot 
be true, or equivalently, no classifier can reduce P, below 
the Baves misclassification rate. The anomaly is resolved 

Example: Consider a uniformly distributed class distri- 
bution with 32 classes; the noise level E is zero, and we use 
the threshold termination rule of p,, > 2/3. Making the 
further assumption that the appropriate node splits can 
then be defined, 

- I ( C ;  T )  by remembering that the upper bound depends on the 
assumptions made in deriving Theorem 4; in particular, it 
is obvious that one cannot keep asking questions ad infini- 
t u m  and continue to receive much information. The lower 
bound is, however, completely general. Since H2( P,) I 1. 

I ( C ;  T )  I d  I ___ - 0.918 -1.09z(c; T ,  

but I (  C ;  T ) = H (  C )  = 5 .O, 

(I2) 

since E = 0 

therefore 5 .O I (2 I 5.45. 
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one can write the bound in a looser but more informative 
manner as follows: 

H (  c ) - 2( 1 - H2 ( E )) - 1 
P, 2 (16) log(K - 1) 

e.g., for c = 0.1, K = 8, and H ( C )  = 3.0 as before, we get 
P, I 0.712-0.1892. This is, in fact, a weak lower bound 
on the distortion-rate characteristic. It is interesting that 
the bound is a linear function of the average depth of the 
tree, which confirms experimental results that increasing 
the average depth (given that the 1 - H 2 ( c )  term is not 
zero, i.e., E > 0) will reduce the misclassification rate at 
least until the Bayes misclassification rate is approached. 
The increase in tree depth is necessary to exploit the 
inherent redundancy in the features. This is completely 
consistent with our communications analogy where the 
rate must be increased to reduce distortion. 

VI. TERMINATION RULES 

As stated earlier, one of the two fundamental criteria for 
any top-down tree design algorithm is its leaf termination 
criterion, Le., the criterion used to decide whether a node 
should be a leaf or not. Before looking at the’details of this 
problem it is worth referring briefly to the general distor- 
tion-rate curve of Fig. 7 once again. The distortion-rate 
curve is by definition a lower bound to the performance of 
any hierarchical classifier designed for that particular 
problem. It is reasonable to expect that tree classifiers will 
exhibit similar characteristics to the bound, i.e., as P,, the 
probability of misclassification, is reduced and brought 
closer and closer to pmin (the Bayes misclassification rate), 
2 must be increased accordingly. 

The different types of termination rules essentially de- 
termine the tree’s operating point, somewhere above the 
distortion-rate bound. Ideally, one would like to have a 
cost function f(d, P,) for which the optimal tree would 
yield the minimum value of this function. Unfortunately, 
finding optimal trees has been shown to be an NP-com- 
plete problem [25]. Even finding near-optimal trees subject 
to a general cost function constraint is very difficult since 

1) each particular problem may have its own cost func- 

2) the noise level E is assumed to be unknown. 
tion f(2, P,); 

It is clear from what we have derived earlier that some 
algorithms will not work well in the presence of noise. 
Placing an upper bound on P, and continuing to split 
nodes until the resubstitution estimate is below this bound 
is not a good idea since, given a certain amount of noise 
(which we assume we do not know much about) and for a 
given problem, a fundamental lower limit exists on the 
misclassification rate as represented by the assymptotic 
limit of the distortion-rate curve as the rate approaches N ,  
the number of features. Therefore if P, is chosen to be less 
than pmin, even a complete tree (ie., all features evaluated 
on the path to each leaf) may not satisfy the threshold 

condition. More gener_ally, this approach is liable to yield 
very large values for d as P, approaches pm,n. 

Similarly, one could choose to continue splitting until 
the total average information I ( C ,  T )  from the tree has 
exceeded a certain value or, equivalently, H ( C J T )  has 
decreased below a certain value. However, this is really 
equivalent to placing a threshold on P, since we have 
already seen that H(CIT)  is bounded above and below by 
linear functions of pmin. In other words, as well as there 
being a minimum misclassification rate pmin for a given 
problem with a certain amount of noise, there is a corre- 
sponding H( CI T ) min where 

2p,, I H ( C J T ) , ,  I 1 + pminlog( K - 1). (17) 

Therefore, constructing thresholds on H(CIT)  or I(C; T )  
will not yield satisfactory results in the presence of noise 
for the same reason that constructing thresholds on P, will 
not work in the same situation. 

Yet another approach which potentially looks somewhat 
more promising is to stop splitting nodes whenever I(C; Q) 
falls below a certain value, i.e., determine I(C; node,) at 
node, for the best split, and if it falls below some threshold 
parameter t ,  then declare the node to be a leaf. The 
various results derived earlier in terms of I(C; node,) and E 
tell us that in the presence of noise, if t is too large, one 
will get a lot of splitting and hence very large trees, while if 
t is too small, very little splitting will occur because of the 
I f 2 ( € )  term. The resulting tree will have d less than H ( C )  
with a resultant high probability of misclassification as can 
be inferred from the distortion-rate characteristic. In prac- 
tice, this very phenomenon has been observed by other 
authors [12], [29] as a result of experimentation with de- 
signing trees for a particular problem and increasing the 
value of the noise level c. In the simulation results pre- 
sented in Section VI1 we do not include results for trees 
designed using threshold rules since in the presence of 
noise such rules were found to be practically unworkable. 

We have seen so far that threshold rules by themselves 
are not sufficient to form noise-independent termination 
rules. In addition, they have the added drawback of requir- 
ing some external intervention to supply the threshold 
levels, which is undesirable in the overall context of auto- 
mated tree design. 

Consider the basic problem again. One has a class 
probability distribution defined at a node, conditioned on 
the outcomes of feature (node) evaluations along the path 
from the root to the current node. The question is whether 
it is worth splitting this node or declaring it to be a leaf, 
i.e., making a classification decision at that point or evalu- 
ating another feature. Form the null hypothesis that the 
node is in fact worth splitting, i.e., the hypothesis is 
“another feature should be evaluated before making a 
classification decision.” Potentially, many ways exist in 
which to test this hypothesis. The fixed threshold rules we 
have already considered are tests which are insensitive to 
any noise which may be present. An approach used by 
Quinlan [29] is to use the chi-square test to test for the 
independence of the candidate features (for splitting) and 
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the classes. The reasoning is that only the features which 
are rejected with a high degree of confidence are subse- 
quently considered for splitting and so the effect of noise 
is minimized. However, as the number of classes and 
features increases, the number of samples at the node 
required to use the chi-square test becomes large. Since the 
test is for leaf nodes, it is precisely in the situation where 
nodes are deep in the tree and the number of samples at 
the node is relatively small that its use is critical to the 
success of the algorithm. Therefore, for problems with 
many classes and features this test may be insufficient as a 
termination criterion. Note, however, that for a two-class 
problem t h s  rule was found to be extremely useful [29]. 

Given the limitations of the aforementioned rules we 
now propose a new termination test called the delta-entropy 
rule. No external parameters are required, and no con- 
straints as to the number of samples are required for it to 
work. In addition, it is easy to compute and intuitively 
appealing from an information-theoretic viewpoint. 

The Delta-Entropy Rule: If 

H’( C’) I H’( C) and pmax 2 0.5, (18) 
then continue to split the node, where C is the original 
class random variable at the node, C‘ is the normalized 
class distribution if pmax is deleted from the component 
set, and “(P) is the usual entropy function divided by 
the logarithm to the base 2 of the number of nonzero 
probability components of P.  

The rationale is as follows. The hypothesis that the node 
is not a leaf node is equivalent to the hypothesis that apart 
from the class component corresponding to p,, other 
class components are present at the node which are not 
due to noise alone. If H‘(C‘) 5 H‘(C), then this is evi- 
dence in favor of rejecting this hypothesis. In the absence 
of any other evidence the only alternative is to declare the 
node to be a leaf. Another way of looking at it is that our 
relative uncertainty about C‘ is greater than that about C. 

For computational purposes the rule can easily be ma- 
nipulated to yield the equivalent condition for declaring a 
node to be a leaf in the absence of any other tests, i.e., 

where n is the number of nonzero class components at the 
node. In effect, one has a dynamic threshold on pm,. The 
rule as outlined here is for the case where the class variable 
is uniformly distributed. The extension to the general case 
is given in Appendix IV. Note that this rule cannot be used 
unless n 2 3, where n is the number of classes. 

No claims of optimality are made for this rule. Rather, 
we have a useful and practical test for establishing termi- 
nal nodes with the top-down tree design algorithm. In 
particular, the rule requires no externally supplied parame- 
ters, is independent of the noise level, and does not neces- 
sarily require large data sets to work properly. In the next 
section experimental results are given which indicate that 
the delta-entropy rule works well in practice. 

To conclude this section, some final observations on the 
problem of termination tests are in order. Finding general 
termination rules for a top-down tree-design algorithm 
which can be applied to different problems with different 
noise levels is quite difficult. The fundamental problem lies 
in the concept of the greedy algorithm which by definition 
cannot “look ahead.” The question is whether or not it is 
worth continuing to split. Clearly, a purely greedy algo- 
rithm can never be totally satisfactory in ths  regard, while 
on the other hand, all look-ahead strategies must be either 
suboptimal or NP-complete. To complicate the problem, 
varying levels of noise may be present which cannot be 
distinguished except by continuing to split the node fur- 
ther. In addition, the data set at the node may be too small 
to permit any confidence in the use of statistical tests. One 
might conjecture that the exact form of the termination 
rule to be used is inevitably dictated by the nature of the 
particular problem at hand, e g ,  approaches such as 
“pruning” [12] (where subtrees are grown and later possi- 
bly removed by a “pruning” algorithm) may be appropri- 
ate in applications where a more complicated tree-deriva- 
tion algorithm is acceptable. However, for the case of 
strictly top-down algorithms we have established from a 
theoretical point of view that threshold-type rules exhibit 
deficiencies and so confirmed earlier experimentally based 
conclusions. The delta-entropy rule is an alternative termi- 
nation rule to overcome the deficiencies of the other cur- 
rently known rules. 

VII. SIMULATION RESULTS 

Simulations were carried out by designing trees at vari- 
ous noise levels based on the following problem. Consider 
16-segment alpha-numeric displays as shown in Fig. 8. The 
16 segments correspond to 16 binary features. The 26 
uppercase letters and 10 digits make up the 36 classes. This 
particular problem was chosen because, on the one hand, 
the parameters of the simulated data set (e.g., noise, num- 
ber of samples) can be directly controlled while on the 
other, a relatively large number of both features and 
classes is exhibited. A more complicated problem with real 
data (as opposed to simulated data) might yield less insight 
into tree design per se than it would about the problem 
itself. The noise parameter c has an easily interpretable 
meaning. Each segment has a probability c of “doing the 
wrong thing” at the time the features are being measured, 
i.e., being off when it should be on or being on when it 
should be off. In fact, this is just a more complicated 
version of a seven-segment problem which has been simu- 
lated by others [ll], [12]. The range of values chosen for c 
during the simulations were 0.0 to 0.1 in increments of 
0.01. It is interesting to note the reason for keeping c I 0.1. 
With c = 0.1 we found that it was quite difficult for a 
human to recognize the characters, and the Bayes misclas- 
sification rate was estimated at about 0.25. It seemed 
reasonable to expect then that the area of greatest interest 
with respect to tree performance would be for c I 0.1. The 
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Fig. 8. 16-segment alpha-numeric display used for simulations with 

distribution of the alphabetic classes was taken to be that 
of English text as defined in [30], while the digits were 
simply assigned probabilities of 1/36 each. The number of 
data samples for each tree design was 5000. The misclassi- 
fication rate P, was estimated by using the tree to classify 
an independent data set also of size 5000. Using a test set 
of size 5000 to estimate P, yields estimates of very high 
confidence levels for P,, according to [31]. 

The noise level of the test set and the design set was the 
same. It has been experimentally observed by the authors 
and others [29] that using less noisy data than that encoun- 
tered in practice while designing a tree classifier will actu- 
ally lead to a higher misclassification rate than if the same 
type of data is used for both design and use. This conclu- 
sion can be inferred from the distortion-rate model as 
shown in Fig. 9. The situation is equivalent to having an 
artificially low distortion-rate bound during the design 
while actually operating with a bound which is higher up 
on the misclassification rate axis. Designing the tree with a 
given algorithm will result in 2 being fixed; then P, in 
practice will be higher than the desired P, or the resubsti- 
tution estimate. However, were one to design with data 
having the true (higher) value for E one should be able to 
determine a lower P, for a correspondingly higher 2. This 
is what happens in practice, the artificial case yielding 
trees which are too short and do not exploit the redun- 
dancy in the features as the noise increases. On the other 
hand, if the situation is reversed and one is designing with 
noisier data than that encountered in practice (as might 
happen if at some later point in time one’s feature mea- 
surements were to become less noisy) one can conjecture 
that for a designed d the actual misclassification rate in 
practice might well be lower than the resubstitution esti- 
mate but only because the 2 is significantly larger than it 
needs to be. 

To provide an idea of what is involved, Fig. 10 shows a 
tree designed for the noiseless case, i.e., E = 0. The leaves 
(or terminal nodes) are labeled with the class decision at 
that leaf while the internal nodes are labeled with the 
feature (segment) to be evaluated at that node. Branches 
going to the right in the tree correspond to a segment 
being lit while those to the left mean that the segment is 
not lit. 

Distortion 
= P, 

- 
Rate = d 

Fig. 9. Distortion-rate curve showing how good design data can lead to 
a bad classifier. 

Fig. 10. Tree designed using delta-entropy rule for alpha-numeric 
problem. 

It can easily be shown that for the special case of E = 0 
the delta-entropy rule will always yield a “correct” tree in 
the sense that a 1-1 correspondence exists between leaves 
and classes. This property is necessary for any termination 
rule which is to be used on data where it is not known 
a priori whether or not E = 0. Threshold rules for example 
do not exhibit this property in general. 

Fig. 11 shows the increase in average depth plotted 
against the noise level. Note that for E = O  the average 
depth is only slightly greater than the entropy of the class 
distribution (2 = 4.9692, H( C) = 4.7567) and does not 
increase significantly above H ( C )  as the noise level in- 
creases; i.e., even for ~ = 0 . 1 ,  fewer than six of the 16 
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Fig. 11. Average tree depth, as designed for alpha-numeric problem versus noise 
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Fig, 12. Misclassification rates of tree classifiers and nearest neighbor classifiers for alpha-numeric problem, versus noise. 

possible features need to be evaluated on the average. In 
fact, we found the delta-entropy rule to be quite conserva- 
tive in our simulations, consistently yielding trees with an 
average depth quite close to the entropy of the class 
distribution. Average depth alone is not significant, how- 
ever. Fig. 12 shows the estimated probability of misclassifi- 

cation for the trees of Fig. 11. On the same graph is a plot 
of the misclassification rate obtained using the same data 
with the nearest neighbor algorithm, i.e., where all 16 
features were used. The tree classifier is seen to do very 
well in comparison with the nearest neighbor technique 
when in Fig. 13 we plot a merit function for each algo- 
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Fig. 13. Merit function for both tree and nearest neighbor classifiers for alpha-numeric problem versus noise. 

rithm versus the noise level. The merit function was chosen 
to be 

(1- P e ) H ( C )  - 
d 

where 2 is fixed at 16 for the nearest neighbor (even 
though effectively it is much greater than this). This merit 
function can be interpreted as a simple “benefit over cost” 
ratio where the benefit is 1 - Pe and t_he cost is defined as 
d / H ( C ) .  Hence with P, = 0 and d = H ( C ) ,  the merit 
function = 1 which is its maximum attainable value. The 
tree classifier is clearly better for this criterion and indeed 
would be superior for any criterion which gives the average 
number of features evaluated at least equal weight with the 
misclassification rate. 

That the tree classifier does well on this problem is a 
good indication of the fact that 16-segment alpha-numeric 
displays exhibit much redundancy. Similar success can be 
expected in classification problems where considerable re- 
dundancy exists in the feature data. 

VIII. CONCLUSION 

Following a brief overview of designing tree classifiers, 
we established that the well-known top-down tree-design 
algorithm using mutual information is directly equivalent 
to a form of prefix coding. Using a communication theory 
analogy, we derived bounds on the maximum average 
information available at a node. This led, in turn, to a 
series of results involving average tree depth, probability of 
misclassification and the remaining average uncertainty. 
Using these results in conjunction with a recently proposed 

distortion-rate model [ll] for tree classifiers, we looked at 
several experimentally observed phenomena which occur 
when designing tree classifiers and explained them in a 
theoretical context. In particular, we showed that thresh- 
old-type rules are not suitable for terminating the algo- 
rithm. We have proposed a new rule, the delta-entropy 
rule, which does not require externally supplied parameters 
and is robust in the presence of noise. Finally, a classifica- 
tion problem was simulated, and the results concur with 
the general theory outlined earlier. 

The approach outlined in this paper is a basis for further 
work. In particular, we are investigating problems such as 
information-efficient quantization of real-valued attributes 
and designing trees when each attribute has an associated 
cost. 

APPENDIX I 

Proof of Theorems 1 and 2 

Let Q be a discrete random variable which can assume values 
from 1 to m each with probability qk ,  1 I k I rn, Zr=l=lqk = 1. 

Consider a discrete memoryless channel as shown in Fig. 14. 
The input is C, the class variable, which has an alphabet 
{ cl, c2,. . -, cK } as previously defined. The received output is Q, 
the partition random variable, which has an “alphabet” of m 
letters corresponding to the m-ary partition of C. In the example 
in Fig. 14, K = 5, m = 2, and the partitioned subsets are { cl, c2} 
and { cj, c,, c, }. In other words, evaluating a feature at a node is 
equivalent to observing the output of a noisy channel where the 
possible outputs correspond to the different branches emanating 
from the node. One can thus write 

I (  C ;  node,) = I (  Q; C )  ( 20) 

=H(Q)-H(QIC). (21) 
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condition. This choice is, in fact, the optimal choice for the 
partition since the function H 2 ( p )  is convex about the point 
p = 0.5. However, this is incidental to the proof so it is sufficient 
to state that 

Case 2)  1 / 3  5 pmax 5 1 1 2 :  Now choose p = p,,,, + p ,  so 
that 

Fig. 14. Example of node modeled as discrete memoryless channel. if such p,  exist, i,e,, is closer to 1,,2 than Pmax,  If such p ,  do 
not exist, then choose p=p,,. In any case, because of the 
convexity of H , ( ~ ) ,  In particular, for no noise, H(QlC)  = 0, and this proves Theo- 

rem 1. 
For the case with noise one can define an m-ary symmetric 

channel with transition probabilities such that 
H ~ ( P )  2 H 2 ( ~ m a x ) = H 2  

1 - € ,  if c, E k Case 3) p,,, s 1 /3:  There exist at least three other p, < pmU 
(22) since 

if c, P k (23) 3 1 1 1  
p, + pm, < - + - + - =1. ( 30) 3 3 3  where 11 k I m and 1 I i I K.  Then we have 1 = 2  

m / l \  

Consequently, it must be possible to construct an appropriate 
p by adding p, to p,,. More specifically, since all of the 
p, < 1/3, some combination of k p, must exist such that 

Let p = E;p,, so that 
k = l  c , E k  1 2 

- < p < - .  ( 32) 
m - 1  3 -  3 m 

k = l  c . Q k  Now max { pm,, 1/3} = 1/3 by definition so that by the convex- 
ity argument one gets 

Now since the partitions define disjoint subsets of the c, 

c P(C,) = I - % ,  ( 2 5 )  
c ,  Q k 

From Cases 1-3 the statement is true in general: and so 
m m 2 

(26) if p,, < 7, then I( C ;  Q )  > H2 = 0.918 bits. (33) p ( c , )  = 2 l - q k  = m - l .  
k = l  c , B k  k =1 

This yields Proof of Theorem 3 Extended 

APPENDIX I1 
PROOFS OF THEOREM 3 AND THEOREM 3 EXTENDED 

Hence it suffices to prove that 

Proof of Theorem 3 

From Theorem 1, I(C; Q) = H2( p ) ,  where p is the probability 
of one of the two subsets (and 1 - p is the probability of the 
other subset). Therefore, it suffices to prove that 

There are three cases to consider. 
Case 1 )  p,nax > 1 / 2 :  Choose the partition probability p = p",,,. 

i.e. partition the maximum component of the distribution on its 
own. Therefore, in this case the inequality is actually an equality 

We have already seen in the noiseless case that 

Ip'- 0.51 I max pm,,, I i f)- 0.51 (35) 

i.e., we choose p' so that it is at least as close to 0.5 as the greater 

Now by introducing noise, can the basic inequality be changed, 
Le., can p,,, or 1/3 be closer to 0.5 than p' when noise is 
accounted for? If not, then (35) remains true with the inclusion of 
noise and hence (34) holds. 

of Pniax or 113. 
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It can easily be shown that for the normalization is to measure the relative decrease in 
uncertainty for each class. 1 

3 3  
p + ~ ( 1 - 2 p )  = max pmax t c(l-2pm,), - + E:} (36) 

by the definition of p ((9) Section IV). Hence it remains to show 
that 
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10.5 - ( p’+ E ( l -  2p’)) 1 s 10.5 - ( p + E(l- 2p)) I (37) 

given that 

10.5 - $1 s 10.5 - pJ. (38) 
Equation (37) can be manipulated to yield 

(0.5- ( p + ~ ( 1 - 2 ~ ) ) ) ~  

= (0.5 - ~ ) ~ + 2 p ( 0 . 5  - E ) ( ~ E  - 1) + p2(2€ - 1)2 

= (0.5- 

= ( 0 , 5 - ~ ) ’ + ( 2 ~ - 1 ) ~ ( p ~ - p )  

2 (0.5 - 

t (26 -1)((1-2~)p + p’(2~ -1)) 

+ ( 2 ~  - 1)’( p’* - p’) 

= (0.5-( p’+  ~ ( 1 - 2 ~ ’ ) ) ) ~  (39) 
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Proof of Theorem 5 

We have 

H( C )  - H( CIT) = I (  c; T )  

= p(node,)I(C;node,). (40) 
J E S  

In addition, we have that 

d =  p(node,). (41) 
1 E S  

However, I ( C ,  node,) I 1 - &(E) at any node by Theorem 2, 
and under the assumption made for part b) of this theorem one 
can use (9) in Section IV: 

I (  C;node,) >- H,( p t 41-2p)) - I T 2 ( € ) .  

I ( C ; T )  - I ( C ;  T )  

Hence by (40) and (41) one gets 

< d s  
1-H2(c) - H2(P+EE(1--p))-H2(E) 

where I ( C  T) = H ( C ) -  H(C(T) .  

APPENDIX IV 

The form of the delta-entropy rule given in Section VI will 
only work when the original class distribution at the root node is 
uniform. In general, however, the distribution is nonuniform, and 
a more general form of the rule is required. The general form 
works with normalized probability components p (  c , )  relative to 
the root node, Le., before applying the delta-entropy rule, divide 
each nonzero probability component p ( c , )  at the node by its 
original value po(c,)  at the root node. Then renormalize the 
distribution. Effectively, 

Then proceed to apply the simple delta-entropy rule as previously 
given to the normalized class distribution at the node. The reason 
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