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Sphere-Covering, Measure Concentration, and
Source Coding

Ioannis Kontoyiannis

Abstract— Suppose A is a finite set, let P be a discrete dis-
tribution on A, and let M be an arbitrary “mass” function
on A. We give a precise characterization of the most effi-
cient way in which An can be almost-covered using spheres
of a fixed radius. An almost-covering is a subset Cn of An,
such that the union of the spheres centered at the points of
Cn has probability close to one with respect to the product
distribution Pn. Spheres are defined in terms of a single-
letter distortion measure on An, and an efficient covering
is one with small mass Mn(Cn). In information-theoretic
terms the sets Cn are rate-distortion codebooks, but instead
of minimizing their size we seek to minimize their mass.
With different choices for M and the distortion measure on
A our results give various corollaries as special cases, includ-
ing Shannon’s classical rate-distortion theorem, a version of
Stein’s lemma (in hypothesis testing), and a new converse to
some measure-concentration inequalities on discrete spaces.
Under mild conditions, we generalize our results to abstract
spaces and non-product measures.

Keywords— Sphere covering, measure-concentration, data
compression, large deviations.

I. Introduction

SUPPOSE A is a finite set and let P a discrete prob-
ability mass function on A (more general probability

spaces are considered later). Assume that the distortion
(or distance) ρ(x, y) between x and y is measured by a fixed
ρ : A×A→ [0,∞), and for each n ≥ 1 define a single-letter
distortion measure (or coordinate-wise distance function)
ρn by

ρn(xn1 , y
n
1 ) =

1
n

n∑
i=1

ρ(xi, yi), (1)

for xn1 = (x1, x2, . . . , xn) and yn1 = (y1, y2, . . . , yn) in An.
Given a D ≥ 0, we want to “almost” cover the prod-

uct space An using a finite number of balls (or “spheres”)
B(yn1 , D), where

B(yn1 , D) = {xn1 ∈ An : ρn(xn1 , y
n
1 ) ≤ D} (2)

is the (closed) ball of distortion-radius D centered at yn1 ∈
An. For our purposes, an “almost covering” is a subset C ⊂
An, such that the union of the balls of radius D centered
at the points of C have large Pn-probability, that is,

Pn ([C]
D

) is close to 1, (3)

where [C]
D

is the D-blowup of C defined as

[C]
D

4
= {xn1 : ρn(xn1 , y

n
1 ) ≤ D for some yn1 ∈ C}.
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More specifically, given a “mass function” M : A→ (0,∞),
we are interested in covering An efficiently, namely, finding
sets C that satisfy (3) and also have small mass

Mn(C) =
∑
yn1 ∈C

Mn(yn1 ) =
∑
yn1 ∈C

n∏
i=1

M(yi).

Our main question of interest is the following:

(∗)

 If the sets {Cn} asymptotically D-cover An,
i.e., Pn ([Cn]

D
)→ 1as n→∞,

how small can their masses Mn(Cn) be?

This is partly motivated by the fact that several interesting
questions can be easily restated in this form. Three such
examples are presented below, and in the remainder of the
paper (∗) is addressed and answered in detail. In partic-
ular, it is shown that Mn(Cn) typically grows (or decays)
exponentially in n, and an explicit lower bound, valid for
all finite n, is given for the exponent (1/n) logMn(Cn) of
the mass of an arbitrary Cn. [Throughout the paper, ‘log’
denotes the natural logarithm.] Moreover, a sequence of
sets Cn asymptotically achieving this lower bound is ex-
hibited, showing that it is best possible. The outline of the
proofs follows, to some extent, along similar lines as the
proof of Shannon’s rate-distortion theorem [16]. In par-
ticular, the “extremal” sets Cn achieving the lower bound
are constructed probabilistically; each Cn consists of a col-
lection of points yn1 generated by taking independent and
identically distributed (i.i.d.) samples from a suitable dis-
tribution on An.

Example 1. Measure Concentration on the Binary Cube:
Take A = {0, 1} so that An is the n-dimensional binary
cube consisting of all binary strings of length n, and let
Pn be a product probability distribution on An. Write
ρn(xn1 , y

n
1 ) for the normalized Hamming distortion between

xn1 and yn1 , so that ρn(xn1 , y
n
1 ) is the proportion of mis-

matches between the two strings; formally:

ρn(xn1 , y
n
1 ) =

1
n

n∑
i=1

I{xi 6=yi}, xn1 , y
n
1 ∈ An. (4)

Geometrically, if An is given the usual nearest-neighbor
graph structure (two points are connected if and only if
they differ in exactly one coordinate), then ρn(xn1 , y

n
1 ) is

the graph distance between xn1 and yn1 , normalized by n.
A well-known measure-concentration inequality for sub-

sets Cn of An states that, for any D ≥ 0,

Pn([Cn]
D

) ≥ 1− e−nD
2/2

Pn(Cn)
. (5)
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[See Proposition 2.1.1 in the comprehensive account by Ta-
lagrand [18], or Theorem 3.5 in the review paper by McDi-
armid [13], and the references therein.] Roughly speaking,
(5) says that “if Cn is not too small, [Cn]

D
is almost ev-

erything.” In particular, it implies that for any sequence
of sets Cn ⊂ An and any D ≥ 0,

if lim inf
n→∞

1
n

logPn(Cn) > −D2/2,

then Pn([Cn]
D

)→ 1. (6)

A natural question to ask is whether there is a converse to
the above statement: If Pn([Cn]

D
)→ 1, how small can the

probabilities of the Cn be? Taking M ≡ P , this reduces
to question (∗) above. In this context, (∗) can be thought
of as the opposite of the usual isoperimetric problem. We
are looking for sets with the “largest possible boundary”;
sets Cn whose D-blowups (asymptotically) cover the entire
space, but whose volumes Pn(Cn) are as small as possible.
A precise answer for this problem is given in Corollary 3
and the discussion following it, in the next section.

Example 2. Lossy Data Compression: Let A be a finite
alphabet so that An consists of all possible messages of
length n from A, and assume that messages are generated
by a memoryless source with distribution Pn on An. A
code for these messages consists of a codebook Cn ⊂ An

and an encoder φn : An → Cn. If we think of ρn(xn1 , y
n
1 ) as

the distortion between a message xn1 and its reproduction
yn1 , then for any given codebook Cn the best choice for the
encoder is clearly the map φn taking each xn1 to the yn1
in Cn which minimizes the distortion ρn(xn1 , y

n
1 ). Hence,

at least conceptually, finding good codes is the same as
finding good codebooks. More specifically, if D ≥ 0 is the
maximum amount of distortion we are willing to tolerate,
then a sequence of good codebooks {Cn} is one with the
following properties:

(a) The probability of encoding a message with dis-
tortion exceeding D is asymptotically negligible:

Pn([Cn]
D

)→ 1.

(b) Good compression is achieved, that is, the sizes
|Cn| of the codebooks are small.

What is the best achievable compression performance?
That is, if the codebooks {Cn} satisfy (a), how small can
their sizes be? Shannon’s classical source coding theorem
(cf. [16][2]) answers this question. In our notation, taking
M ≡ 1 reduces the question to a special case of (∗), and
in Corollary 2 in the next section we recover Shannon’s
theorem as a special case of Theorems 1 and 2.

Example 3. Hypothesis Testing: Let A be a finite set and
P1, P2 be two probability distributions on A. Suppose that
the null hypothesis that a sample Xn

1 = (X1, X2, . . . , Xn)
of n independent observations comes from P1 is to be tested
against the simple alternative hypothesis that Xn

1 comes
from P2. A test between these two hypotheses can be
thought of as a decision region Cn ⊂ An: If Xn

1 ∈ Cn

we declare that Xn
1 ∼ Pn1 , otherwise we declare Xn

1 ∼ Pn2 .
The two probabilities of error associated with this test are

αn = Pn1 (Ccn) and βn = Pn2 (Cn). (7)

A good test has these two probabilities vanishing as fast
as possible, and we may ask, if αn → 0, how fast can
βn decay to zero? Taking ρ to be Hamming distortion,
D = 0, P = P1, and M = P2, this reduces to our original
question (∗). In Corollary 1 in the next section we answer
this question by deducing a version of Stein’s lemma from
Theorems 1 and 2. It is worth noting that the connection
between questions in hypothesis testing and information
theory goes at least as far back as Strassen’s 1964 paper
[17] (see also Blahut’s paper [3] in 1974, and Csiszár and
Körner’s book [6] for a detailed discussion).

The rest of the paper is organized as follows. In Sec-
tion II, Theorems 1 and 2 provide an answer to question
(∗). In the remarks and corollaries following Theorem 2 we
discuss and interpret this answer, and we present various
applications along the lines of the three examples above.
In Section III we consider the same problem in a much
more general setting. We let A be an abstract space,
and instead of product measures Pn we consider the n-
dimensional marginals Pn of a stationary measure P on AN.
In Theorems 3 and 4 we give analogs of Theorems 1 and 2,
which hold essentially as long as the spaces (An, Pn) can be
almost-covered by countably many ρn-balls. Since the re-
sults of Section II are essentially subsumed by Theorems 3
and 4, we only give the proofs of the more general state-
ments, Theorems 3 and 4; they are proved in Section IV,
and the Appendix contains the proofs of various technical
steps needed along the way.

II. The Discrete Memoryless Case

Let A be a finite set and P be a discrete probabil-
ity mass function on A. Fix a ρ : A×A → [0,∞),
and for each n ≥ 1 let ρn be the corresponding single-
letter distortion measure on An defined as in (1). Also
let M : A → (0,∞) be an arbitrary positive mass func-
tion on A. We assume, without loss of generality, that
P (a) > 0 for all a ∈ A, and also that for each a ∈ A there
exists a b ∈ A with ρ(a, b) = 0 (otherwise we may con-
sider ρ′(x, y) = [ρ(x, y)−minz∈A ρ(x, z)] instead of ρ). Let
{Xn} denote a sequence of i.i.d. random variables with dis-
tribution P , and write P = PN for the product measure on
AN equipped with the usual σ-algebra generated by finite-
dimensional cylinders. We write Xj

i for vectors of random
variables (Xi, Xi+1, . . . , Xj), 1 ≤ i ≤ j ≤ ∞, and similarly
xji = (xi, xi+1, . . . , xj) ∈ Aj−i+1 for realizations of these
random variables.

Next we define the rate function R(D) that will provide
the lower bound on the exponent of the mass of an arbitrary
Cn ⊂ An. For D ≥ 0 and Q a probability measure on A,
let

I(P,Q,D) = inf
W∈M(P,Q,D)

H(W‖P×Q) (8)

where H(µ‖ν) denotes the relative entropy between the
probability measures µ and ν, and M(P,Q,D) consists of
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all probability measures W on A×A such that WX , the first
marginal of W , is equal to P , WY , the second marginal, is
Q, and EW [ρ(X,Y )] ≤ D; if M(P,Q,D) is empty, we let
I(P,Q,D) =∞. The rate function R(D) is defined by

R(D) = R(D;P,M)
= inf

Q
{I(P,Q,D) + EQ[logM(Y )]} , (9)

where the infimum is over all probability distributions Q
on A. Recalling the definition of mutual information and
combining the two infima in (8) and (9), R(D) can equiv-
alently be written in a more information-theoretic way as

inf
(X,Y ): X∼P, Eρ(X,Y )≤D

{I(X;Y ) + E[logM(Y )]} (10)

where the infimum is taken over all jointly distributed ran-
dom variables (X,Y ) such that X has distribution P and
Eρ(X,Y ) ≤ D. For any xn1 ∈ An and Cn ⊂ An, write

ρn(xn1 , Cn) = min
yn1 ∈Cn

ρn(xn1 , y
n
1 ).

In the following two Theorems we answer question (∗)
stated in the Introduction. Theorem 1 contains a lower
bound (valid for all n) on the mass of an arbitrary Cn ⊂ An,
and Theorem 2 shows that this bound is asymptotically
tight. In information-theoretic terms, Theorems 1 and 2
are generalized direct and converse coding theorems, for
minimal-mass (rather than minimal-size) codebooks.

Theorem 1. Let Cn ⊂ An be arbitrary and write D =
EPn [ρn(Xn

1 , Cn)]. Then

1
n

logMn(Cn) ≥ R(D).

Theorem 2. Assume that ρ(x, y) = 0 if and only if x = y.
For any D ≥ 0 and any ε > 0 there is a sequence of sets
{Cn} such that:

(i)
1
n

logMn(Cn) ≤ R(D) + ε for all n ≥ 1

(ii) ρn(Xn
1 , Cn) ≤ D eventually, P− a.s.

Remark 1. From part (ii) of Theorem 2 we have that
I[Cn]

D
(Xn

1 )→ 1 with probability one, so by Fatou’s lemma,
Pn ([Cn]

D
)→ 1. From this and (i) it is easy to deduce the

following alternative version of Theorem 2 (see [11] for a
proof): For any D ≥ 0 there is a sequence of sets {C∗n}
such that:

(i′) lim sup
n→∞

1
n

logMn(C∗n) ≤ R(D)

(ii′) Pn([C∗n]
D

)→ 1, and
(iii′) lim sup

n→∞
EPn [ρn(Xn

1 , C
∗
n)] ≤ D

Remark 2. The additional assumption on ρ in Theo-
rem 2 is only made for the sake of simplicity, and it is not
necessary for the validity of the result.

Theorems 3 and 4 in the following section give more gen-
eral versions of Theorems 1 and 2, so their proofs are post-
poned until then. However, it is worth mentioning here
that in the discrete case, Theorems 1 and 2 can be given
much simpler proofs. In particular, Theorem 2 can be
given an elementary proof by a direct application of Sanov’s
theorem (see [11]). Alternatively, Theorem 2 follows from
Csiszár and Körner’s type-covering lemma [6, p. 151].

Although the proof of Theorem 2 (and the more gen-
eral version in Theorem 4) is somewhat technical, the idea
behind the construction of the extremal sets Cn is simple:
Suppose Q∗ is a probability measure on A achieving the
infimum in the definition of R(D), so that

R(D) = I(P,Q∗, D) + EQ∗ [logM(Y )]
4
= I∗ + L∗.

Write Q∗n for the product measure (Q∗)n, and let Q̂n be the
measure obtained by conditioning Q∗n to the set of points
yn1 ∈ An whose empirical measures (“types”) are uniformly
close to Q∗. Then let Cn consist of approximately enI

∗

points yn1 drawn i.i.d. from Q̂n. Each point in the support
of Q̂n has mass Mn(yn1 ) ≈ enL∗ and Cn contains about enI

∗

of them, so Mn(Cn) is close to enI
∗
enL

∗
= enR(D). The

main technical content of the proof is therefore to prove
(ii), namely, that enI

∗
points indeed suffice to almost D-

cover An.
The above construction also provides a nice interpreta-

tion for R(D). If we had started with a different measure
Q in place of Q∗, we would have ended up with sets C ′n
of size ≈ exp(nI(P,Q,D)), consisting of points yn1 of mass
Mn(yn1 ) ≈ exp(nEQ(logM(Y ))), and the total mass of C ′n
would be

Mn(C ′n) ≈ exp{n[I(P,Q,D) + EQ(logM(Y ))]}.

By optimizing over the choice of Q in (9) we are balancing
the tradeoff between the size and the weight of the set Cn,
between a few heavy points and many light ones.

It is also worth noting that the extremal sets Cn above
were constructed by taking samples yn1 from the measure
Q̂n. Unlike the usual proofs of the data compression theo-
rem, here we cannot simply use the product measure Q∗n.
This is because we are not just interested in how many
points yn1 are needed to almost cover An, but also we
need to control their masses Mn(yn1 ). Since exponentially
many yn1 ’s are required to cover An, if they are generated
from Q∗n then there are bound to be some atypically heavy
ones, and this drastically increases the total mass Mn(Cn).
Therefore, by restricting Q∗n to be supported on the set of
yn1 ∈ An whose empirical measures are uniformly close to
Q∗, we are ensuring that the masses of the yn1 will be es-
sentially constant, and all approximately equal to enL

∗
.

Next we derive corollaries from Theorems 1 and 2, along
the lines of the examples in the Introduction. First, in the
context of hypothesis testing, let P1, P2 be two probability
distributions on A with all positive probabilities. Suppose
that the null hypothesis that Xn

1 ∼ Pn1 is to be tested
against the alternative Xn

1 ∼ Pn2 . Given a test with an
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associated decision region Cn ⊂ An, its two probabilities
of error αn and βn are defined as in (7). In the notation
of this section, let ρn be Hamming distortion as in (4),
P = P1 and M = P2. Observe that, here,

EPn1 [ρn(Xn
1 , Cn)] ≤ EPn1 [ICcn(Xn

1 )] = Pn1 (Ccn),

and define, in the notation of (9), the error exponent

ε(α) = −R(α;P1, P2), α ∈ [0, 1].

Noting that ε(0) = H(P1‖P2), from Theorems 1 and 2
and Remark 1 we obtain the following version of Stein’s
lemma (see Lemma 6.1 in Bahadur’s monograph [1], or
Theorem 12.8.1 in [5]).

Corollary 1. Hypothesis Testing: Let α = αn = Pn1 (Ccn)
and β = βn = Pn2 (Cn) be the two error probabilities asso-
ciated with an arbitrary sequence of tests {Cn}.

(a) For all n ≥ 1, β ≥ e−nε(α).

(b) If αn → 0, then

lim inf
n→∞

1
n

log βn ≥ −H(P1‖P2).

(c) There exists a sequence of decision regions Cn
with associated tests whose error probabilities
achieve αn → 0 and (1/n) log βn → −H(P1‖P2),
as n→∞.

Note that, although the decision regions Cn in (c) above
achieve the best exponent in the error probability, they are
not the overall optimal decision regions in the Neyman-
Pearson sense [6].

In the case of data compression, we have random data
Xn

1 generated by some product distribution Pn. Given a
single-letter distortion measure ρn and a maximum allow-
able distortion level D ≥ 0, our objective is to find good
codebooks Cn. As discussed in Example 2 above, good
codebooks are those that asymptotically cover An, i.e.,
Pn([Cn]

D
) → 1, and whose sizes |Cn| are relatively small.

In our notation, if we take M(·) ≡ 1, then Mn(Cn) = |Cn|
and the rate function R(D) (from (9) or (10)) reduces to
Shannon’s rate-distortion function

RS(D) = inf
Q

inf
W∈M(P,Q,D)

H(W‖P×Q)

= inf
(X,Y ): X∼P, Eρ(X,Y )≤D

I(X;Y ).

From Theorems 1 and 2 and Remark 1 we recover Shan-
non’s source coding theorem (see [16][2]).

Corollary 2. Data Compression: For any n ≥ 1, if
the average distortion achieved by a codebook Cn is D =
EPn [ρn(Xn

1 , Cn)], then

1
n

log |Cn| ≥ RS(D).

Moreover, for any D ≥ 0, there is a sequence of codebooks
{Cn} such that EPn [ρn(Xn

1 , Cn)] → D, the codebooks Cn
asymptotically cover An, Pn([Cn]

D
)→ 1, and

lim
n→∞

1
n

log |Cn| = RS(D).

Finally, in the context of measure-concentration, taking
M = P and writing RC(D) for the concentration exponent
R(D;P, P ), we get:

Corollary 3. Converse Measure Concentration: Let {Cn}
be arbitrary sets.

(i) For any n ≥ 1, if D = EPn [ρn(Xn
1 , Cn)], then

Pn(Cn) ≥ enRC(D).
(ii) If Pn([Cn]

D
)→ 1, then

lim inf
n→∞

1
n

logPn(Cn) ≥ RC(D).

(iii) There is a sequence of sets {Cn} that satisfy
Pn([Cn]

D
) → 1 and (1/n) logPn(Cn) → RC(D), as

n→∞.

In particular, in the case of the binary cube, part (ii) of
the corollary provides a precise converse to the measure-
concentration statement in (6). Although the concentra-
tion exponent RC(D) = R(D;P, P ) is not as explicit as the
exponent −D2/2 in (6), RC(D) is a well-behaved function
and it is easy to evaluate it numerically. For example, Fig-
ure 1 shows the graph of RC(D) in the case of the binary
cube, with P being the Bernoulli measure with P (1) = 0.4.

Fig. 1. Graph of the function RC(D) = R(D;P, P ) for 0 ≤ D ≤ 1,
in the case of the binary cube An = {0, 1}n, with P (1) = 0.4.

In contrast with the measure concentration exponent
−D2/2 in (6), the quantity RC(D) actually depends on the
distribution P . This is not a shortcoming of our method –
it is part of the intrinsic structure of the problem.

Various easily checked properties of R(D) = R(D;P,M)
are stated without proof in Lemma 1 below – see [11] for a
proof.

As mentioned in the Introduction, the question consid-
ered in Corollary 3 can be thought of as the opposite
of the usual isoperimetric problem. Instead of large sets
with small boundaries, we are looking for small sets with
the largest possible boundary. It is therefore not surpris-
ing that the extremal sets in (6) and in Corollary 3 are
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very different. In the classical isoperimetric problem, the
extremal sets typically look like Hamming balls around
0n = (0, 0, . . . , 0) ∈ An, Bn = {xn1 : ρn(xn1 , 0

n) ≤ r/n}
(see the discussions in Section 2.3 of [18], p. 174 in [12], or
the original paper by Harper [9]), while the extremal sets
in our case are collections of vectors yn1 drawn i.i.d. from
the measure Q̂n on An.

Lemma 1.
(i) R(D) is finite, nonincreasing, convex, and continuous

for all D ≥ 0.
(ii) If we let Rmin = min{logM(y) : y ∈ A} and define

Dmax = Dmax(P ) as

min{EP [ρ(X, y)] : y such that logM(y) = Rmin},

then

R(D) is
{

= Rmin for D ≥ Dmax

> Rmin for 0 ≤ D < Dmax.

III. The General Case

Let A be a Polish space (namely, a complete, separable
metric space) equipped with its associated Borel σ-algebra
A, and let P be a probability measure on (AN,AN). Also
let (Â, Â) be a (possibly different) Polish space. Given a
nonnegative measurable function ρ : A×Â→ [0,∞), define
ρn : An×Ân → [0,∞) as in (1).

Let {Xn} be a sequence of random variables distributed
according to P, and for each n ≥ 1 write Pn for the n-
dimensional marginal distribution of Xn

1 . We say that P
is a stationary measure if Xn

1 has the same distribution as
Xn+k

1+k , for any n, k. Let M : Â → (0,∞) be a measurable
“mass” function on Â, and for each n ≥ 1 define

Mn(yn1 )
4
=

n∏
i=1

M(yi) yn1 ∈ Ân.

In order to avoid uninteresting technicalities we will assume
throughout that M is bounded above and below, that is,

| logM(y)| ≤ Lmax <∞ for all y ∈ Â

for some constant Lmax. Next we define the natural analogs
of the rate functions I(P,Q,D) and R(D). For n ≥ 1,
D ≥ 0 and Qn a probability measure on (Ân, Ân), let

In(Pn, Qn, D) = inf
Wn∈Mn(Pn,Qn,D)

H(Wn‖Pn×Qn) (11)

where Mn(Pn, Qn, D) consists of all probability measures
Wn on (An × Ân,An × Ân) such that Wn,X , the first
marginal of Wn, is equal to Pn, the second marginal Wn,Y

is Qn, and
∫
ρn dWn ≤ D; if Mn(Pn, Qn, D) is empty, let

In(Pn, Qn, D) = ∞. Then Rn(D) = Rn(D;Pn,M) is de-
fined by

inf
Qn
{In(Pn, Qn, D) + EQn [logMn(Y n1 )]} , (12)

where the infimum is over all probability measures Qn on
(Ân, Ân). Note that since In(Pn, Qn, D) is nonnegative
and M is bounded away from zero, Rn(D) is always well-
defined. Recalling the definition of mutual information,
Rn(D) can also be written in a form analogous to (10) in
the discrete case

Rn(D) = inf
(Xn1 ,Y

n
1 )
{I(Xn

1 ;Y n1 ) + E[logMn(Y n1 )]} (13)

where the infimum is taken over all jointly distributed
(Xn

1 , Y
n
1 ) such that Xn

1 ∼ Pn and Eρn(Xn
1 , Y

n
1 ) ≤ D. Fi-

nally, the rate function R(D) is defined by

R(D) = lim
n→∞

1
n
Rn(D)

whenever the limit exists. Next we state some simple prop-
erties of Rn(D) and R(D), proved in the Appendix.

Lemma 2.
(i) For each n ≥ 1, Rn(D) is nonincreasing and convex

in D ≥ 0, and therefore also continuous at all D except
possibly at the point

D
(n)
min = inf{D ≥ 0 : Rn(D) < +∞}.

(ii) If R(D) exists for all D ≥ 0 then it is nonincreasing
and convex in D ≥ 0, and therefore also continuous at all
D except possibly at the point

Dmin = inf{D ≥ 0 : R(D) < +∞}.

(iii) If P is a stationary measure, then

R(D) = lim
n→∞

1
n
Rn(D) = inf

n≥1

1
n
Rn(D) exists,

and Dmin = infnD
(n)
min.

(iv) The mutual information I(Xn
1 ;Y n1 ) is concave in the

marginal distribution Pn of Xn
1 for a fixed conditional dis-

tribution of Y n1 given Xn
1 , and convex in the conditional

distribution of Y n1 given Xn
1 for a fixed marginal distribu-

tion of Xn
1 .

Next we state analogs of Theorems 1 and 2 in the general
case. As before, we are interested in sets Cn that have large
blowups but small masses; since M is bounded away from
zero we may restrict our attention to finite sets Cn.

Theorem 3. Let Cn ⊂ Ân be an arbitrary finite set and
write D = EPn [ρn(Xn

1 , Cn)]. Then

logMn(Cn) ≥ Rn(D). (14)

If P is a stationary measure, then for all n ≥ 1

logMn(Cn) ≥ nR(D).

As will become apparent from its proof (in the following
section), Theorem 3 remains true in great generality. The
exact same proof works for arbitrary (non-product) posi-
tive mass functions Mn in place of Mn, and more general
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distortion measures ρn, not necessarily of the form in (1).
Moreover, as long as Rn(D) is well-defined, the assumption
that M is bounded away from zero is unnecessary. In that
case we can also consider countably infinite sets Cn, and
(14) remains valid as long as Rn(D) is continuous in D (see
Lemma 2).

In the special case when P is a product measure it is not
hard to check that Rn(D) = nR(D) for all n ≥ 1, so we
can recover Theorem 1 from Theorem 3.

For Theorem 4 some additional assumptions are needed.
We will assume that the function ρ is bounded, i.e., that
there for some finite constant ρmax, ρ(x, y) ≤ ρmax for
all x ∈ A, y ∈ Â. For k ≥ 1, we say that P is sta-
tionary (respectively, ergodic) in k-blocks if the process
{X̃(k)

n ; n ≥ 0} = {X(n+1)k
nk+1 ; n ≥ 0} is stationary (resp.

ergodic). If P is stationary then it is stationary in k-blocks
for every k. But an ergodic measure P may not be ergodic
in k-blocks. For the second part of the Theorem we will
assume that P is ergodic in blocks, that is, that it is ergodic
in k-blocks for all k ≥ 1. Also, since R(D) =∞ for D be-
low Dmin, we restrict our attention to the case D > Dmin.
Theorem 4 is proved in the next section.

Theorem 4. Assume that the functions ρ and logM are
bounded, and that P is a stationary ergodic measure. For
any D > Dmin and any ε > 0, there is a sequence of sets
{Cn} such that:

(i)
1
n

logMn(Cn) ≤ R(D) + ε for all n ≥ 1

(ii) Pn([Cn]
D

)→ 1 as n→∞.

If, moreover, P is ergodic in blocks, there are sets {Cn}
that satisfy (i) and

(iii) ρn(Xn
1 , Cn) ≤ D eventually, P− a.s.

Remark 3. A corresponding version of the asymptotic
form of Theorems 1 and 2 given in Remark 1 of the previous
section can also be derived here, and it holds for every
stationary ergodic P.

Remark 4. The assumptions on the boundedness of ρ and
logM are made for the purpose of technical convenience,
and can probably be relaxed to appropriate moment con-
ditions. Similarly, the assumption that Mn is a product
measure can be relaxed to include sequences of measures
Mn that have rapid mixing properties. Finally, the as-
sumption that P is ergodic in blocks is not as severe as it
may sound. For example, it is easy to see that any weakly
mixing measure (in the ergodic-theoretic sense – see [14])
is ergodic in blocks.

IV. Proofs of Theorems 3 and 4

Proof of Theorem 3: Given an arbitrary Cn, let φn :
An → Cn be a function that maps each xn1 ∈ An to
the closest yn1 in Cn, i.e., ρn(xn1 , φ(xn1 )) = ρn(xn1 , Cn).
For Xn

1 ∼ Pn define Y n1 = φn(Xn
1 ), write Qn for

the (discrete) distribution of Y n1 , and Wn(dxn1 , dy
n
1 ) =

Pn(dxn1 )δφn(xn1 )(dyn1 ) for the joint distribution of (Xn
1 , Y

n
1 ).

Then EWn
[ρn(Xn

1 , Y
n
1 )] = D, and by Jensen’s inequality:

logMn(Cn) ≥
∑

yn1 ∈Cn

Qn(yn1 ) log
Mn(yn1 )
Qn(yn1 )

=
∫

dWn(xn1 , y
n
1 ) log

dWn(xn1 , y
n
1 )

d(Pn×Qn)

+
∑

yn1 ∈Cn

Qn(yn1 ) logMn(yn1 )

= I(Xn
1 ;Y n1 ) + EQn [logMn(Y n1 )].

By the definition of Rn(D), this is bounded below by
Rn(D). The second part follows immediately from the fact
that Rn(D) ≥ nR(D), by Lemma 2 (ii). 2

Before giving the proof of Theorem 4 we make some re-
marks on the methodology of the proof. The main techni-
cal step is established by an application of the Gärtner-Ellis
theorem from large deviations. This is used to determine
the asymptotics of the probability of distortion-balls. The
same strategy has been applied by various authors in the
recent literature in order to prove direct coding theorems;
see, e.g., [19], [10] and the references therein, as well as the
early work of Bucklew in [4]. The main difference here is
that we are not only interested in the case of i.i.d. sources,
and that the measures for which we need large deviations
results are not product measures, making the application of
the Gärtner-Ellis theorem more delicate. Finally we men-
tion that in the random coding argument we employ, rather
than generating a fixed number of codewords we gener-
ate infinitely many of them and look for the first “D-close
match.” This idea has already been used by [19] and [10],
among others.

Proof of Theorem 4: The proof is given in 3 steps. First,
for any D > D

(1)
min we construct sets Cn satisfying (i) and

(iii) with R1(D) in place of R(D). In the second step,
assuming that P is ergodic in blocks, for each D > Dmin

we construct sets Cn satisfying (i) and (iii). In Step 3 we
drop the assumption of the ergodicity in blocks, and for
any D > Dmin we construct sets Cn satisfying (i) and (ii).

A. Step 1:

Let P and D > D
(1)
min be fixed, and let an arbitrary ε > 0

be given. By Lemma 2 we can choose a D′ ∈ (Dmin, D)
such that R1(D′) ≤ R1(D)+ε/8 and a probability measure
Q∗ on (Â, Â) such that

I∗ + L∗
4
= I1(P1, Q

∗, D′) + EQ∗ [logM(Y )]
≤ R1(D) + ε/8 ≤ R1(D) + ε/4. (15)

Also we can pick a W ∗ ∈M1(P1, Q
∗, D′) such that

H(W ∗‖P1×Q∗) ≤ I∗ + ε/4. (16)

For n ≥ 1, write Q∗n for the product measure (Q∗)n, and
define

Hn =

{
yn1 ∈ Ân :

1
n

n∑
i=1

logM(yi) ≤ L∗ + ε/4

}
.
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Let Q̃n be the measure Q∗n conditioned on Hn, Q̃n(F ) =
Q∗n(F ∩ Hn)/Q∗n(Hn), for F ∈ Ân. For each n ≥ 1, let
{Y (i) = (Y1(i), Y2(i), . . . , Yn(i)) ; i ≥ 1} be i.i.d. random
vectors Y (i) ∼ Q̃n, and define

Cn = {Y (i) : 1 ≤ i ≤ en(I∗+ε/2)}.

By the definition of Hn, any yn1 ∈ Gn has Mn(yn1 ) ≤
en(L∗+ε/4), so by (15)

Mn(Cn) ≤ en(I∗+ε/2)en(L∗+ε/4) ≤ en(R1(D)+ε)

and (i) of the Theorem is satisfied with R1(D) in place of
R(D). Let Xn

1 be a random vector with distribution Pn,
and let in be the index of the first Y (i) that matches Xn

1

within ρn-distortion D. To verify (iii) we will show that

in ≤ en(I∗+ε/2) eventually, P×Q− a.s.

where Q =
∏
n≥1(Q̃n)N, and this will follow from the fol-

lowing two statements:

lim sup
n→∞

1
n

log
[
in Q̃n(B(Xn

1 , D))
]
≤ 0 P×Q− a.s. (17)

lim inf
n→∞

1
n

log Q̃n(B(Xn
1 , D)) ≥ −(I∗ + ε/4) P− a.s. (18)

The proof of (17) follows easily from the observation that,
conditional on Xn

1 , the distribution of in is geometric with
parameter p = Q̃n(B(Xn

1 , D)); see, e.g., the derivation of
(31) in [10].

To prove (18), first note that by the law of large numbers
Q∗n(Hn)→ 1, as n→∞, so (18) is equivalent to

lim inf
n→∞

1
n

logQ∗n (B(Xn
1 , D) ∩Hn) ≥ −(I∗ + ε/4), (19)

P−a.s. Let Y1, Y2, . . . be i.i.d. random variables with com-
mon distribution Q∗. For any realization x∞1 of P, define
the random vectors ξi and Zn by

ξi = (ρ(xi, Yi), logM(Yi)) , i ≥ 1

Zn =
1
n

n∑
i=1

ξi, n ≥ 1.

Also let Λn(λ) be the log-moment generating function of
Zn,

Λn(λ) = logE
[
e(λ,Zn)

]
, λ = (λ1, λ2) ∈ R2,

where (·, ·) denotes the usual inner product in R2. Then
for P-almost any x∞1 , by the ergodic theorem,

1
n

Λn(nλ) =
1
n

logE
[
e
∑n
i=1(λ,ξi)

]
=

1
n

n∑
i=1

logEQ∗
[
eλ1ρ(xi,Y )+λ2 logM(Y )

]
→ EP1

{
logEQ∗

[
eλ1ρ(X,Y )+λ2 logM(Y )

]}
(20)

where X and Y above are independent random variables
with distributions P1 and Q∗, respectively. Next we will
need the following lemma. Its proof is a simple applica-
tion of the dominated convergence theorem, using Jensen’s
inequality and the boundedness of ρ and logM .

Lemma 3. For k ≥ 1 and probability measures µ and ν
on (Ak,Ak) and (Âk, Âk), respectively, define Λµ,ν(λ) by∫

log
{∫

[exp(λ1ρk(xk1 , y
k
1 )+

λ2
1
k

logMk(yk1 ))]dν(yk1 )
}
dµ(xk1),

for λ = (λ1, λ2) ∈ R2. Then Λµ,ν is convex, finite, and
differentiable for all λ ∈ R2.

From Lemma 3 we have that the limiting expression in
(20), which equals ΛP1,Q∗ , is finite and differentiable every-
where. Therefore we can apply the Gärtner-Ellis theorem
(Theorem 2.3.6 in [7]) to the sequence of random vectors
Zn, along P-almost any x∞1 , to get that

lim inf
n→∞

1
n

logQ∗n (B(xn1 , D) ∩Hn)

is equal to

lim inf
n→∞

1
n

log Pr(Zn ∈ F ) ≥ − inf
z∈F

Λ∗(z) P− a.s. (21)

where F = {z = (z1, z2) ∈ R2 : z1 < D, z2 < L∗ + ε/4}
and

Λ∗P1,Q∗(z) = sup
λ∈R2

[(λ, z)− ΛP1,Q∗(λ)]

is the Fenchel-Legendre transform of ΛP1,Q∗(λ). Recall our
choice of W ∗ in (16). Then for any bounded measurable
function φ : Â→ R and any fixed x ∈ A,

H(W ∗(·|x)‖Q∗(·)) ≥
∫
φ(y)dW ∗(y|x)− log

∫
eφ(y)dQ∗(y)

(see, e.g., Lemma 6.2.13 in [7]). Fixing x ∈ A and λ ∈ R2

for a moment, take φ(y) = λ1ρ(x, y) + λ2 logM(y), and
integrate both sides dP1(x) to get that

H(W ∗‖P1×Q∗)

is bounded below by

λ1EW∗(ρ) + λ2EQ∗ [logM(Y )]− ΛP1,Q∗(λ).

Taking the supremum over all λ ∈ R2 and recalling (16)
this becomes

I∗ + ε/4 ≥ H(W ∗‖P1×Q∗) ≥ Λ∗P1,Q∗(D
∗, L∗)

where D∗ =
∫
ρ dW ∗ ≤ D′ < D, so

I∗ + ε/4 ≥ inf
z∈F

Λ∗P1,Q∗(z).

Combining this with the bound (21) yields (19) as required,
and completes the proof of this step.
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B. Step 2:

Assume P is ergodic in blocks, and let P and D > Dmin

be fixed and an arbitrary ε > 0 be given. By Lemma 2
we can pick k ≥ 1 large enough so that D(k)

min < D and
(1/k)Rk(D) ≤ R(D)+ ε/8. This step consists of essentially
repeating the argument of Step 1 along blocks of length k.
Choose a D′ ∈ (D(k)

min, D) such that

1
k
Rk(D′) ≤ 1

k
Rk(D) + ε/16, (22)

and a probability measure Q∗k on (Âk, Âk) achieving

I∗k + L∗k
4
=

1
k
Ik(Pk, Q∗k, D

′) +
1
k
EQ∗k [logMk(Y k1 )]

≤ 1
k
Rk(D′), (23)

so that

I∗k + L∗k ≤ R(D) + ε/4. (24)

Also pick a W ∗k ∈Mk(Pk, Q∗k, D
′) such that

1
k
H(W ∗k ‖Pk×Q∗k) ≤ I∗k + ε/4. (25)

For any n ≥ 1 write n = mk + r for integers m ≥ 0 and
0 ≤ r < k, and define

Hn,k =

{
yn1 ∈ Ân :

1
n

n∑
i=1

logM(yi) ≤ L∗k + ε/4

}
.

Write Q∗n,k for the measure[
m∏
i=1

Q∗k

]
×[Q∗k]r,

where [Q∗k]r denotes the restriction of Q∗k to (Âr, Âr), and
let Q̃n,k be the measure Q∗n,k conditioned on Hn,k. For
each n ≥ 1, let {Y (i) = (Y1(i), Y2(i), . . . , Yn(i)) ; i ≥ 1}
be i.i.d. random vectors Y (i) ∼ Q̃n, and let Cn consist of
the first en(I∗k+ε/2) of them. As before, by the definitions
of Hn,k and Cn, and using (24), it easily follows that

1
n

logMn(Cn) ≤ R(D) + ε

so (i) of the Theorem is satisfied. Let Y1, Y2, . . . , Yn be
distributed according to Q∗n,k, and note that the random

vectors Y (i+1)k
ik+1 are i.i.d. with distribution Q∗k (for i =

0, 1, . . . ,m− 1). Therefore, as n→∞, by the law of large
numbers we have that with probability 1,

lim sup
n→∞

1
n

n∑
i=1

logM(Yi) ≤

(m
n

) 1
m

m−1∑
i=0

logMk(Y (i+1)k
ik+1 ) +

kLmax

n
→ L∗k. (26)

Following the same steps as before, to verify (iii) it suffices
to show that

lim inf
n→∞

1
n

log Q̃n,k(B(Xn
1 , D)) ≥ −(I∗k + ε/4) P− a.s.

and, in view of (26), this reduces to

lim inf
n→∞

1
n

logQ∗n,k (B(Xn
1 , D) ∩Hn,k) ≥ −(I∗k + ε/4), (27)

P−a.s. For an arbitrary realization x∞1 from P and with Y n1
as above, consider blocks of length k. For i = 0, 1, . . . ,m−
1, we write

Ỹ
(k)
i = Y

(i+1)k
ik+1 and x̃

(k)
i = x

(i+1)k
ik+1

so that the probability Q∗n,k (B(Xn
1 , D) ∩Hn,k) can be

written as

Q∗n,k

{(
mk

n

)
1
m

m−1∑
i=0

ρk(Ỹ (k)
i , x̃

(k)
i )

+
r

n
ρr(Y nn−r+1, x

n
n−r+1) ≤ D

and
(
mk

n

)
1
m

m−1∑
i=0

1
k

logMk(Ỹ (k)
i )

+
1
n

logMr(Y nn−r+1) ≤ L∗k + ε/4
}
.

Since we assume ρ(x, y) ≤ ρmax and | logM(y)| ≤ Lmax for
all x ∈ A, y ∈ Â, then for all n large enough (uniformly in
x∞1 ) the above probability is bounded below by

(Q∗k)m
{

1
m

m−1∑
i=0

ρk(Ỹ (k)
i , x̃

(k)
i ) ≤ D′ + ε/8

and
1
m

m−1∑
i=0

1
k

logMk(Ỹ (k)
i ) ≤ L∗k + ε/8

}
.

Now we are in the same situation as in the previous step,
with the i.i.d. random variables Ỹ (k)

i in place of the Yi, the
ergodic process {X̃(k)

i } in place of {Xi}, and D′ + ε/8 in
place of D. Repeating the same argument as in Step 1 and
invoking Lemma 3 and the Gärtner-Ellis theorem,

lim inf
n→∞

1
n

logQ∗n,k (B(Xn
1 , D) ∩Hn,k) ≥

− inf
z1<D′+ε/8, z2<L∗k+ε/8

Λ∗k(z1, z2) P− a.s. (28)

where, in the notation of Lemma 3, Λ∗k(z) is the Fenchel-
Legendre transform of ΛPk,Q∗k(λ). Recall our choice of
W ∗k in (25) and write D∗k =

∫
ρk dW

∗
k ≤ D′. Then by

Lemma 6.2.13 from [7] together with (25) we get

I∗k + ε/4 ≥ 1
k
H(W ∗k ‖Pk×Q∗k) ≥ Λ∗k(D∗, L∗k),

and this together with (28) proves (27), concluding this
step.
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C. Step 3:

In this part we invoke the ergodic decomposition theo-
rem to remove the assumption that P is ergodic in blocks.
Although similar to Berger’s proof of the abstract coding
theorem (see pp. 278-281 in [2]), the argument below is sig-
nificantly more delicate. [In particular we need to avoid ap-
pealing to Perez’s “generalized AEP” which subsequently
turned out to be incorrect at that level of generality.]

As in Step 2, let P and D > Dmin be fixed, and let an
ε > 0 be given. Pick k ≥ 1 large enough so that D(k)

min < D

and 1
kRk(D) ≤ R(D) + ε/8, and pick D′ ∈ (D(k)

min, D) such
that (22) holds. Also choose Q∗k and W ∗k as in Step 2 so
that (23), (24) and (25) all hold.

Let Ω = (Ak)N, F = (Ak)N, and note that there is a
natural 1-1 correspondence between sets in F ∈ AN and
sets in F̃ ∈ (Ak)N: Writing x̃i = x

(i+1)k
ik+1 ,

F̃ = {x̃∞1 : x∞1 ∈ F}. (29)

Let µ be the stationary measure on (Ω,F) describing the
distribution of the “blocked” process {X̃i = X

(i+1)k
ik+1 ; i ≥

0}, where, since k is fixed throughout the rest of the proof,
we have dropped the superscript in X̃(k)

i . Although µ may
not be ergodic, from the ergodic decomposition theorem
we get the following information (see pp. 278-279 in [2]).

Lemma 4. There is an integer k′ dividing k, and proba-
bility measures µi, i = 0, 1, . . . , k′ − 1 on (Ω,F) with the
following properties:

(i) µ = (1/k′)
∑k′−1
i=0 µi.

(ii) Each µi is stationary and ergodic.
(iii) For each i, let P(i) denote the measure on (AN,AN)

induced by µi:

P
(i)(F ) = µi(F̃ ), F ∈ AN

[recall the notation of (29)]. Then P = (1/k′)
∑k′−1
i=0 P

(i),
and each P(i) is stationary in k′-blocks and ergodic in k′-
blocks.

(iv) For each 0 ≤ i ≤ k′ and j ≥ 0, the distribution that
P

(i) induces on the process {Xj+n ; n ≥ 1} is P(i+jmod k′).

For each i = 0, 1, . . . , k′ − 1, let µi,1 denote the first-
order marginal of µi and write R(D|i) = R1(D;µi,1, M̃)
for the first-order rate function of the measure µi, with
respect to the distortion measure ρk, and with mass func-
tion M̃ = Mk. Since W ∗k chosen as above has its Ak-
marginal equal to Pk we can write it as W ∗k = V ∗k ◦ Pk
where V ∗k (·|Xn

1 ) denote the regular conditional probability
distributions. Write P (i)

k for the k-dimensional marginals of
the measures P(i), and define probability measures W (i)

k on
(An×Ân,An×Ân) by W (i)

k = V ∗k ◦P
(i)
k . Let Di =

∫
ρk dW

(i)
k

so that by Lemma 4 (iii),

1
k′

k′−1∑
i=0

Di =
∫
ρk dW

∗
k ≤ D′. (30)

Similarly, writing Q
(i)
k for the Âk-marginal of W (i)

k and
applying Lemma 4 (iii),

1
k′

k′−1∑
i=0

∫
logMk(yk1 ) dQ(i)

k (yk1 ) =∫
logMk(yk1 ) dQ∗k(yk1 ) (31)

and using the concavity of mutual information (Lemma 2),

1
k′

k′−1∑
i=0

H(W (i)
k ‖P

(i)
k ×Q

(i)
k ) ≤ H(W ∗k ‖Pk×Q∗k). (32)

For N ≥ 1 large enough we can use the result of Step 2 to
get N -dimensional sets Bi that almost-cover (Âk)N with
respect to µi. Specifically, consider N large enough so that

max{ρmax, Lmax, 1}
kN

< min{ε/8, (D −D′)/2}. (33)

For any such N , by the result of Step 2 we can choose sets
Bi ⊂ (Âk)N such that, for each i,

µi
(
[Bi]Di

)
≥ 1− εN , εN → 0 as N →∞, (34)

and M̃N (Bi) ≤ exp{N(R(Di|i) + ε/8)}. (35)

Now choose and fix an arbitrary y∗ ∈ Â, and for n =
k′(Nk + 1) define new sets B∗i ⊂ Ân by

B∗i =
k′−1∏
j=0

[Bi+jmod k′×{y∗}] ,

where
∏

denotes the cartesian product. Then, by (33), for
any xn1 , ρn(xn1 , B

∗
i ) is strictly less than

D −D′

2
+

1
k′

k′−1∑
j=0

ρkN

(
x
j(kN+1)+kN
j(kN+1)+1 , Bi+jmod k′

)
.

Note that each one of the blocks xj(kN+1)+kN
j(kN+1)+1 above be-

longs to a different ergodic mode of the blocked process
{X̃i}, explaining the role of the letters y∗ in the construc-
tion of the new codebooks B∗i . Now, by a simple union
bound,

P
(i)([B∗i ]

D
)

(a)

≥ 1−
k′−1∑
j=0

[
1− P(i+jmod k′)

(
[Bi+jmod k′ ]Di

)]
(b)
= 1−

k′−1∑
i=0

[
1− µi

(
[Bi]Di

) ]
(c)

≥ 1− k′εN , (36)

where we used (30) in (a), Lemma 4 (iv) in (b), and (34) in
(c). Also, using the definition of B∗i and the bounds (33)
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and (35), (1/n) logMn(B∗i ) is bounded above by

logM(Y ∗)
kN + 1

+
1
k′

k′−1∑
j=0

[
1
kN

log M̃N (Bi+jmod k′)
]

≤ ε/8 +
1
k′

k′−1∑
j=0

[
1
k

(R(Dj |j) + ε/8)
]
,

but from the definition of R(D|j) and (32) and (31) this is

≤ ε/4 +
1
k′

k′−1∑
j=0

[
1
k
H(W (j)

k ‖P
(j)
k ×Q

(j)
k )

+
1
k

∫
logMk(yk1 ) dQ(j)

k (yk1 )
]
.

Therefore,

1
n

logMn(B∗i ) ≤ I∗k + L∗k + ε/2

≤ R(D) + 3ε/4, (37)

where the last inequality follows from (24). So in (36) and
(37) we have shown that, for all i = 0, 1, . . . , k′ − 1,

P
(i) ([B∗i ]

D
) ≥ 1− k′εN and (38)

1
n

logMn(B∗i ) ≤ R(D) + 3ε/4. (39)

Finally we define sets Cn ⊂ Ân by

Cn = ∪k
′−1
i=0 B∗i .

From the last two bounds above and (33), the sets Cn have

1
n

logMn(Cn) ≤ log k′

n
+R(D) + 3ε/4 ≤ R(D) + ε,

and by Lemma 4 (iii), Pn ([Cn]
D

) equals

1
k′

k′−1∑
i=0

P
(i) ([Cn]

D
) ≥ 1

k′

k′−1∑
i=0

P
(i) ([B∗i ]

D
) ≥ 1− ε′n

where ε′n = k′εN when n = k′(Nk + 1).
In short, we have shown that for any D > Dmin and any

ε > 0, there exist (fixed) integers k, k′ and N0 such that:
There is a sequence of sets Cn, for n = k′(Nk+1), N ≥ N0,
satisfying:

(1/n) logMn(Cn) ≤ R(D) + ε for all n,
and Pn ([Cn]

D
)→ 1 as n→∞.

Since this is an asymptotic result, it is not hard to see that
the restriction on n being of the form n = k′(Nk+1) can be
easily dropped to produce a sequence of sets {Cn ; n ≥ 1}
satisfying (i) and (ii) of Theorem 4. To see this, note that
for intermediate values of the form n′ = k′(Nk + 1) + s
with 1 ≤ s ≤ kk′−1 we can generate an efficient codebook
Cn′ simply by adding an arbitrary block of length s, say
(y∗, y∗, . . . , y∗) ∈ Âs, to the end of each codeword in Cn.

Since the distortion measure ρ is bounded, the additional
distortion achieved by the new codebook will be at most of
order 1/n, and this is asymptotically negligible. Similarly,
since the number of codewords remains unchanged and the
mass function M is bounded, the mass of each individual
codeword will increase by no more than a constant factor
in the exponent, and therefore the mass of the codebook
codebook will increase by an amount that is at most of
order 1/n. 2
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Appendix

Proof of Lemma 2: First recall that part (iv) is a well-
known information theoretic fact; see, e.g., Corollary 5.5.5
in [8].

Since the sets Mn(Pn, Qn, D) are increasing in D,
Rn(D) is nonincreasing in D. Next we claim that rela-
tive entropy is jointly convex in its two arguments. Let µ,
ν be two probability measures over a Polish space (S,S).
In the case when µ and ν both consist of only a finite num-
ber of atoms, the joint convexity of H(µ‖ν) is well-known
(see, e.g., Theorem 2.7.2 in [5]). In general, H(µ‖ν) can be
written as

H(µ‖ν) = sup
{Ei}

∑
i

µ(Ei) log
µ(Ei)
ν(Ei)

where the supremum is over all finite measurable partitions
of S (see Theorem 2.4.1 in [15]). Therefore H(µ‖ν) is the
pointwise supremum of convex functions, hence itself con-
vex. Combining the two infima, Rn(D) can equivalently be
written as the infimum of

H(Wn‖Wn,X×Wn,Y ) + EWn,Y
[logMn(Y n1 )] (40)

over all Wn ∈Mn(Pn, D), where

Mn(Pn, D) = ∪QnMn(Pn, Qn, D).

Using this together with the joint convexity of relative en-
tropy shows that Rn(D) is convex. Since it is also nonin-
creasing and bounded away from −∞, Rn(D) is also con-
tinuous at all D except possibly at D(n)

min. This proves (i).
For part (ii) notice that if R(D) exists for all D then

it must also be nonincreasing and convex in D ≥ 0 since
Rn(D) is; therefore, it must also be continuous except pos-
sibly at Dmin.

For part (iii), let m,n ≥ 1 arbitrary, and let Wm ∈
Mm(Pm, D) and Wn ∈ Mn(Pn, D). Define a probability
measure Wm+n on (Am+n×Âm+nAm+n×Âm+n) by

Wm+n(dxm+n
1 , dym+n

1 ) =
Wm(dym1 |xm1 )Wn(dym+n

m+1 |x
m+n
m+1 )P (dxm+n

1 ).

Notice that Wm+n ∈ Mm+n(Pm+n, D), and that, if
(Xm+n

1 , Y m+n
1 ) are random vectors distributed according
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to Wm+n, then Y m1 and Y m+n
m+1 are conditionally indepen-

dent given Xm+n
1 . Therefore, Rm+n(D) is

(a)

≤ H(Wm+n‖Wm+n,X×Wm+n,Y )
+EWm+n,Y [logMm+n(Y m+n

1 )]

= I(Xm+n
1 ;Y m+n

1 ) + EWm+n,Y [logMm+n(Y m+n
1 )]

(b)

≤ I(Xm
1 ;Y m1 ) + I(Xm+n

m+1 ;Y m+n
m+1 )

+EWm,Y
[logMm(Y m1 )] + EWn,Y

[logMn(Y n1 )]

where (a) follows from (40) and (b) follows from the con-
ditional independence of Y m1 and Y m+n

m+1 given Xm+n
1 (see,

e.g., Lemma 9.4.2 in [8]). So we have shown that Rm+n(D)
is bounded above by

H(Wm‖Wm,X×Wm,Y ) + EWm,Y
[logMm(Y m1 )]

+H(Wn‖Wn,X×Wn,Y ) + EWn,Y
[logMn(Y n1 )],

and taking the infimum over all Wm ∈ Mm(Pm, D) and
Wn ∈Mn(Pn, D) yields

Rm+n(D) ≤ Rm(D) +Rn(D). (41)

[Note that in the above argument we implicitly assumed
that we could find some Wm ∈ Mm(Pm, D) and a Wn ∈
Mn(Pn, D); if this was not the case, then either Rm(D) or
Rn(D) would be equal to +∞, and (41) would still trivially
hold.] Therefore the sequence {Rn(D)} is subadditive.

Next we claim that if Rn(D) < ∞ for some D, then
RN (D) < ∞ for all N ≥ n. To see this first note that,
by the boundedness of M we need only worry about the
mutual information term in the definition of Rn(D) in
(13). Assuming Rn(D) < ∞ implies that there exist
(Xn

1 , Y
n
1 ) with I(Xn

1 ;Y n1 ) < ∞ and E[ρn(Xn
1 , Y

n
1 )] ≤ D.

In fact, by the convexity of mutual information in the con-
ditional distributions (part (iv) of this Lemma) we can re-
strict ourselves to stationary vectors (Xn

1 , Y
n
1 ). Based on

(Xn
1 , Y

n
1 ) we define (Xn+1

1 , Y n+1
1 ) as follows: Let Xn+1

1

have the source distribution, and, given Xn+1
1 , define two

conditionally independent random vectors Y n1 and Ỹ n+1
2

so that Y n1 has the same distribution as before, and Ỹ n+1
2

has the same distribution given Xn+1
2 as Y n1 given Xn

1 .
Let Yn+1 = Ỹn+1. Then by the chain rule for mutual in-
formation we have that I(Xn+1

1 ;Y n+1
1 ) = I(Xn

1 ;Y n1 ) +
I(Xn+1

1 ; Ỹn+1|Y n1 ) ≤ I(Xn
1 ;Y n1 ) + I(Xn+1

1 ; Ỹ n+1
2 ) ≤

2I(Xn
1 ;Y n1 ). Therefore I(Xn+1

1 ;Y n+1
1 ) < ∞, and by sta-

tionarity E[ρn+1(Xn+1
1 , Y n+1

1 )] ≤ D. This implies that
D

(n)
min is nonincreasing in n, so it follows that Dmin, when-

ever defined is equal to infnD
(n)
min as claimed. Finally, sub-

additivity and the fact that D(n)
min is nonincreasing in n im-

ply that limn(1/n)Rn(D) = infn(1/n)Rn(D) for all D ≥ 0.
2
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