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A Gibbs-Sampler Approach to Estimate the Number
of Faults in a System Using Capture-Recapture

Sampling

Yu Hayakawa and Paul S. F. Yip

Abstract—A new recapture debugging model is suggested to es- 7 (-|*)
timate the number of faults in a systemp, and the failure intensity 3

of each fa}ult, ¢> .The Gibbs sampler and the M.etro.polis algorithm G(a /3)
are used in this |r_1ference procedure. A nl_Jmer_lcaI illustration sug- )\(t)7
gests a notable improvement on the estimation of and ¢ com-
pared with that of a removal debugging model. M_(t)
Index Terms—Capture-recapture sampling, credible interval, poi(w)
Gibbs sampler, metropolis algorithm. 6;(t)
|. INTRODUCTION g
A. Acronyms T
CODA  Convergence Diagnosis and Output Analysis soft-
ware for Gibbs sampling output ‘
HPP homogeneous Poisson process M
H-Y Hayakawa-Yip model (developed in this paper) N
J-M Jelinski-Moranda model
L-V Littlewood-Verrall model Nunin
MLE maximum likelihood estimate
PCPO prequential conditional predictive ordinate
TTT total time on test ;
B. Notation Ai
¢ failure intensity for each fault zé(l)
v number of faults in a system <
{N;(t); counting process of failure occurrences caused %)é
t> 0} fault 4
Yi(t) indicator function of the event that faulis unde-
tected or its counter is not removed on¢]O,
Fi o-algebra generated byN;(s); s € [0,¢], ¢ =
1,---,v}
Si j encounter-time#; caused by fault
X; Si1
N {N(¢); t > 0} of encounter times caused by alll
faults in a systemiV(¢t) = >°7_, Ni(¢)
TTT;(t)  TTT with respect to fault

conditional distribution, giver

[shape, scale] parameter

Gamma distribution with parametetis 3

intensity process foN (¢)

zero-mean martingale

Poisson distribution with mean

indicator function: at least 1 failure caused by fault
¢ occurs in[o, ¢]

remaining number of faults in a system

quantile to be estimated

desired accuracy of an estimateqof

Pr{an estimate of within 4 is obtained

thinning interval of the Gibbs chain

number of initial iterations to be discarded
number of further iterations required to estimate
to accuracy with probability s (Not A)

minimum number of iterations needed to esti-
mateq, when the samples in the Gibbs chain are
s-independent

N/Nmin

X, — X;_q: interfailure time#:

failure rate ofT; under the L-V model

scale parameter of the prior for

PCPO forT;

In the early 1970s software reliability models began to ap-
ar in the literatureg.g, [1, J-M], [2], and various models for
software reliability have been suggested since then. For a com-
prehensive study of software reliability models, see [3]-[5].

J-M is one of the most well-known and earliest models in
which the interfailure times are distributed {\it s}-independently
as exponential with failure rate proportional to the remaining
number of faults in the system, and the faults are removed per-
manently upon detection without introducing new faults. This
model can be interpreted as an exponential order statistic model
with a constant failure intensity [6].

Reference [7, Nayak] extends the J-M model [1]: a recapture

debugging model; the assumptions are the same as those for the
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ssed after their removal is recorded by using of counters in-
serted into the location of detected faults. Therefore, the faults
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that they can be estimated better. The MLE and moment estima-
tors ofr and¢ are based on the recapture sampling information
along with the first failure detection times of individual faults.
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Following the Nayak [7] suggestion, this paper constructs aTo account for removals of the counters, see the following

recapture debugging model which includes the Nayak modelstechastic processes: fbe= 1, .-, v,
a special case. The distinguishing properties of the H-Y model 1 iffault 1 is undetected or its counter is not
from the Nayak model are: Yi(t) = { removed in [07),

1. The removal of counters is allowed. 0 otherwise.

2. v and¢ are treated as random quantities. In the Nayak modely;(t) = 1 for anyt. From the definition of
The H-Y model can be considered as an extension of any Baygs,
version of the J-M modek.g, a model studied in Kuo & Yang
[8]. H-Y is studied via the Gibbs sampler and is compared with ~ Si1 < Si2 < -++ < 5 N, (1) i=1,---,1
a removal debugging model: a Bayes version of the J-M mOd‘Hﬁen the likelihood function is

The L-V model is also used to validate H-Y. :
V.

Section Il describes the H-Y assumptions in detail. L(¢,v|F,) =
Section I explains briefly the Gibbs sampler and the _ - ‘ '
Metropolis algorithm which are instrumental for our inference <’" Z 8i (t)> ’
on the remaining number of faults. y =
Section IV provides a numerical illustration of H-Y: first the ) H N - exp[—p{S; N, 0
assumption of exponentiality of failure times is validated via the im1
modified Anderson-Darling statistics; then another data set is +Yi(t) - (t— Sin)}
simulated to compare recapture and removal debugging models; 1 S <t
finally the posterior analysis on the parameters of interest is 8i(t) = {0 otherwise. @)
presented.

. ) TTi(t) = Sin, ) tYi(t) - (t — Sin,(p)) is the total time on
Section Vcompare; the removal and recapture versions OT E;ég with respect to fault If fault ¢ is detected and its counter
J-M model and a version of the L-V model based on the cntenqg

of the prequential conditional predictive ordinate.
Section VI presents the results.

removed before, say attimes (s < t), then TTT;(¢) = s.
Otherwise TTT(¢) = ¢ if fault ¢ is undetected ofD, ¢] or its
counter is never removed @, ¢].

Now consider the counting process, = {N(¢),t > 0}, of
all faults in the system:

Il. M ODEL ASSUMPTIONS il

N@) =>_Ni(t), t=o0.
Consider a system which contains an unknown number of =1
faults, ; {N;(t),t > 0} is the counting process for faulf Assume that, givem, ¢ has the gamma distributioa,priori:

1t =1,---,0v.
m(¢|Fo) ~ Glev, B).

A. Assumptions By Bayes theorem,
1. When a fault is detected for the first time, it is imme- w(P|F) o< w(P|Fo) - L(p, v|Fy)
diately removed without introducing new faults, and a x ¢ exp(—f - p)
counter is inserted so that the number of occurrences of v
failures caused by the fault can be counted as if it were JJ NP - expl—¢ - TTTi(2)]
still there. i=1
2. The CPU-clock is stopped each time a new fault is :¢a+2j:11\a-(t)_1
detected. After this fault is removed, the CPU-clock is N
restarted when the testing resumes. - exp <_¢ B+ Z TTT; (t)] ) i
3. Each fault has the samge P

4. Givenv and ¢, the N;(t) are s-independent HPP with
failure intensitye.

In practice, the assumptions of perfect repair, immediate cor- - -
rection, and identical fault-detection rate are unrealistic. These m(@F) ~ G <O‘ + 2 Ni(), 6 + 2 TTTi(t)) )
would likely lead to an optimistic estimate for the remaining s =
number of faults in the system [5, pp. 32—-33, 54-56]. However, M) dt = B{dN(1)| 7},
[9] shows that some software reliability models can be deriveiV(¢) is the increment oV over the intervalt, ¢ + dt), [10].
from Bayes versions of the J-M model, and many models c@&iven ¢ andv, then N(¢) is the sum ofs-independent HPP;
be considered as generalizations of the J-M model. Hence, akénce the failure intensity faW (¢) is:
[7], the J-M model is used as a starting point to present the ap- 5
proach to estimation and prediction in software reliability. This {Z Y;(t)} - .
approach can be extended to other models. —

Therefore,
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The posterior mean of given #; is: is effectively a sample from the posterior marginal @f,
v f(91|Ft)!J:177d
a+ z_; Ni(t) B. Metropolis Algorithm
7 Begin with initial values
B4+ TTT(¢
Therefore, Then the sampling proceeds as:fet 0,1, - - -, k—1, generate
y from the candidate generating density*, v); accepty as
ul G+1) Wi ili
) at Z Ni(t) the value ofd with probability
At) = ZYz(t) : Iiz—l min [1, M} ,
= FOD|F)
B+ TTTi(t)
Py otherwise the value of the chain remains unchanged; repeat this
t procedure to create a chaf?), - .. g},
M(t) = N(t) - /0 A(s) ds. @ Fork large enoughg® = (6% ... 6" is effectively a

sample from the target densifyi¢|.7;), the joint posterior den-
The intensity processes of the J-M model and the Littlewoagky of § = (61,---,64).
model [11] are in [10, pp. 133-134], which are relevant to (2). Although one can never conclude with certainty when these
The intensity processes of some other models are in [12]-[18]procedures should be terminated and the simulated values used
for analyses of unobservables, it is advisable to perform conver-
[ll. | NFERENCEPROCEDURES gence diagnostics on the simulated values. For a numerical illus-
Inference on the ‘remaining number of faults’ and the ‘failyrdation OT this iqference proce_dqre in Section 1V, the diagnostic
intensity per fault is made from a Bayes perspective. Assign@ethod in [24] is chosen and is implemented by@@D/soft-
distribution tor, and assume a hierarchical model fargs- Ware (Convergence Diagnosis and Output Analysis Software for
timates of¢ andv are obtained using the Gibbs sampler [17'\;"bbS sa‘mpllng output) [_25]’ [25] which is a set of S'P.‘Il,JS rou-
along with the Metropolis algorithm [18]; these are Marko$"€S for convergence diagnostics and output analysis’ for the
chain Monte Carlo methods. As explained in [19], the Gibl%'a_rkov chain Monte C_arlo me.thods. Reference [27] compares
sampler is a special case of the Metropolis algorithm which w¥&r'eus convergence diagnostic methods. , ,
generalized in [20]. The Gibbs sampler enables one to generatE©" the example in Section 1V, assume the following priors
random samples from the target density, in our setting posf@ the parameters.
rior densities of the parameters, by iteratively simulating values

from the full conditionals. It was popularized in [17] and has had m(¢lo, B) ~ Gla, ) )
a great impact on some of the statistical literature. References m(al A, ) ~ G(A, ) (4)
on both practical and theoretical issues of the Gibbs sampler 7(Bly,68) ~ G(v,6) (5)
are apundane.g, [21]-[23]. Both algorithms are now briefly 7(v]w) ~ poi(w) (6)
described.

) The full posterior conditionals necessary to implement the
A. Gibbs Sampler Gibbs sampler are:
We want to generate samples from the posterior density of
(61,---,64) given informationF,. Begin with initial values - -
; i 3, F—) ~G N;(t), B TTT,(¢
6°,....6(). Then sample iteratively as follows: For (v, B, Fi-) O‘JF; (), [ +; (t)
i=01,- k-1, (B, ¢, 0, Frs) ~ Gy + 0,6 + )

samples" ) from f(6,, 1657 -+, 6%, F); 7(Cl¢, ar, B, Fi—) ~ poilw - exp(—¢ - 1)]
sampledSt from f(6,, |08 650 . 9((;)’ Fo);s (=v— Z 5:(1), )
.. =1
sampled{ ™ from f(8,, 16T, 65D 7y, viz, the remaining number of faults in the system. Asdoiits
(i+1) (i41) 4(0) 0 full posterior conditional can be obtained up to a proportionality
(8516, L R FOTERL ' Ft) constant:
= posfe_m?lr full c;ndltlonal densities &f;, (el Fo)B - ot
Under certain conditions [22], a6 — oo, (95’“),~~~,95k)) Following the studies [8], [28], use the Metropolis algorithm to
converges to(f,---,6,) in distribution, whose density generate samples from the full posterior conditional distribution

is f(61,---,04|F). Likewise, for k large enough,eﬁk) of «.
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TABLE |
FAILURE DATA FOR AN INFORMATION SYSTEM AND SIMULATED ENCOUNTERTIMES

Simulated Subsequent Failure Times

Fault # 15t
1 380
2 4310
3 7170
4] 18930
5| 23680
6 | 23920
71 26220
8 | 34790
9 | 39410

10 | 40470
11| 44290
12 | 59090
13| 60860
14 | 85130
15 | 89930
16 | 90400
17 | 90440
18 | 100610
19 | 101730
20 | 102710
21 | 127010
22 | 128760
23 | 133210
24 | 138070
25 | 138710
26 | 142700
27 | 169540
28 | 171810
29 | 172010
30 | 211190
31 | 226100
32 | 240770
33 | 257080
34 | 295490
35 | 296610
36 | 327170
37 | 333380
38 | 333500
39 | 353710
40 | 380110
41 | 417910
42 | 492130
43 | 576570

64653
305937
563910
186946
259496
126072
251385
353576

53878
371824

83996

61435

75630

205224
228283
511836
367520
162480
194399
555065

167108
307101
232743
215589
299094
404887
288750

378185
266322
374384
364952
374032
480020

433074
422153

329685
428364

195476
469180
252204

147409
466719
327296
222288
576386

292321
334152
511967
429213
534444
294708

370739

451668

428902

446070
459440

430077

479514

520016
432134

473206

371939

515884

352035
546577

294935

360218

295030

520533

449665

511308

576243

395324

342811
368811

360344

494037

536573
377529

511025

553312
547048

IV. A NUMERICAL EXAMPLE

To illustrate the proposed inference procedure, the data-§8
from [10, p. 43] (originally reported in [29]) is used. It has 43 oc-

345

141-145]. The Table | data-set is assumed to be right (type 2)
psored. A test procedure [31] is given next.

Xy, .-, X, are failure times, and

currence times (in seconds CPU time) of first failures caused by X1, - - -, X(,,) are the corresponding order statistics.
43 distinct faults of an information system for registering aifopservation is stopped af,.

craft movements; these numbers are in column 2 of Table I.

1. Compute

Step 1. Anderson-Darling statistics are computed to check

if failure times in this data-set are identically expo-

nentially distributed.

Step 2. The data-set is augmented by simulating subsequent
failure times of each detected fault by treating
failure-time #43 as a stopping time.

Step 3. CODAs explained and the Gibbs sampler is used to

conduct analyzes om and¢ regarding both recap-

ture and removal debugging models.
A modified version of Anderson-Darling statistics is used to
test the exponentiality of failure times [30], [31, pp. 114-115,

2. Calculate

~

p=

Z(z) =1- exXp <—

r

1=

X
1

+ (v —7) X

A3

XE”) i=1,-
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TABLE I TABLE I
MODIFIED ANDERSONDARLING STATISTICS HYPERPARAMETERVALUES
v 2AZ v 242, selection | A vy é w
43  0.2706479 | 52 0.4914793 (A) 5 100 100 0.01 58
44  0.1759536 | 53 0.5621464 (B) 5 100 100 0.01 73

45 0.1408457 | 54  0.6315637
46  0.1455952 | 55  0.6990203
47 0.1768338 | 56  0.7640453
48 02253955 | 57 0.8263412
49 0.2849368 | 58  0.8857355 RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:
50 0.3510377 | 59  0.9421463 :

Iterations used = 1:8000

51 0.42 .
06065 | 60 0.9955566 Thinning interval = 1, Sample size per chain = 8000

Quantile = 0.025
Accuracy = £ 0.0125,  Probability = 0.95

Chain: chain.1

TABLE IV
AN OUTPUT OFCODA-RAFTERY & LEWIS METHOD [24]

3. Calculate a modified version of Anderson-Darling

statistics:
9 1 < ) o Variable | & M N Npin [T
e = O ) ) AHEE
. ¢ 1 4 749 600 1.25
—2) log(Z) — = ¢ 1 3 1078 600 18

i=1

(r—n)?- 10g(7(,,)) _ 2. log(Z () + nZ. Zw; could choose values_for the hyper_parameters using estimates of
Z =17 the parameters obtained by classical methods such as MLE.
(=720 The method in [24] is implemented KYODAo detect con-
) ) ) ) vergence to the stationary distribution, and is used to determine
Sincer is unknovx_/n, computeA; , forvarious values of = the number of iterations to achieve a prespecified accuracy of
43; the results are in Table II. an estimate, the spacing between iterations, and the number of
Refer theQAfjn values in Table Il to the percentage pointgyrn-in iterations.
in [31, Table 4.16, pp. 143-144];" the hypothesis of exponen- Next is an analysis based on [24] regarding a Gibbs chain,
tiality of X,,---, X, i, S1,1,---,5,,1 cannot be rejected aty sequence of samples simulated by the Gibbs sampler, of the
the 5%S'S|gn|f|cance |eVe| fOV/ = 43, sty 58, nor at the 2.5% recapture model W|th prior Choice (B)

s-significance level for = 59, 60, based on interpolated per- Thjs method requires a quantilg,to be estimated, a desired

centage points, which does not reject the assumption. accuracy,, of the estimate of;, and a probabilitys, of ob-
From column 2 of Table I, compute [10, GPP 418-419] thgyining an estimate af within +r. N represents the number of
MLE for ¢ of individual faults:$ = 5.40 - 10~ further iterations required to estimajeo a prespecified accu-

Now generate interfailure t|mes for each fault from the eXP@acy + with probability s. Ny, is the minimum number of it-
nential distribution with failure rat¢ Column 3 of Table | con- grations needed to estimateassuming that the samples in the
tains the simulated failure encounter times between the first €8ipbs chain are- independent measures the increase in the
counter time of individual faults and the stopping time, 576 57,mber of iterations needed for estimationgadue to depen-
seconds in CPU time. dence in the Gibbs chain. Ah:> 1 often indicates a high level

If the removal of counters was allowed, the T;{#l) and/or of correlation in the Gibbs chain. Reference [24] shows that
N;(t) would be changed. For example, consider fault 15; sup- . 5 often indicates difficulties and suggests changes in the
pose that its counter is removed at 400 000 seconds in CPU ti'FﬂﬁpIementation such as starting values and reparameterization.
Then, For example, from the results associated witim Table 1V,

discard the initial 4 iterations and require 749 further iterations
TTT15(576 570) = 400000, N15(576570) =5 with the thinning interval of 1 to estimate 0.025 quantilegof
to within 0.0125 with 0.95 probability. The chain af values
instead of 576570 and 7, respectively. The only change §@nverges to the stationary distribution very quicklys close
implementation of the Gibbs sampler in this case would B 1, hence the iterates of the chain do not show a high level of
through the full posterior conditional @f, because it dependscorrelation.
on TTT,(¢)s andN;(t)s (7). For convergence diagnostics of all the Gibbs chains simu-

For both recapture and removal debugging models, two skted to analyze this numerical example, chogse- 0.025,
of priors, (A) and (B), are used; see (3)—(6) for notation. To study = 0.0125,s = 0.95. In most cases, the number of burn-in
the effect of prior means far, denoted by, the only difference iterations are less 5, and 2000 iterations are more than sufficient
between the (A) and (B) priors is the valueuaf to achieve the accuracy in the previous paragraph.

If there exist past data of similar software, then the parametersfable V summarizes the results frdd®D/4s output analysis
of the prior (referred to as hyperparameters) can be determinetthe Gibbs chains, which contain estimates of the:
based on such data. See [32, chapter 3] for various methodse posterior mean
on elicitation of prior information. As aad hocapproach, one * posterior standard deviation
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TABLE V
ESTIMATES OF POSTERIORMEANS, STANDARD DEVIATIONS AND PERCENTILES
var data w post. SD 2.5% 97.5%
mean
¢ original 58 5.72 4.19 0 16
¢ original 73 15.15 8.60 2 34
¢ generated 58 4.27 2.39 1 10
¢ generated 73 5.78 2.87 1 12
) original 58 | 4.33-107% 1.09-100° 241.107% 6.57-10~°
@ original 73 | 3.00-107% 1.05.10% 1.47.10~%® 5.50.10~°
¢  generated 58 | 4.61.10~% 4.70.10-7 3.73.10°% 5.57.10°°
¢  pgenerated 73 | 4.47.10~% 4.77.10-7 3.59.107° 5.45.107°
omega=58, generated data omega=>58, original data
Posterior density for zeta Posterior density for zeta
S
G
8
o
o [~
3 5 o " 0 10 20 30 40

zeta

Fig. 1. Posterior (A)—Generated. Fig. 3. Posterior (A)—Original.

omega=73, original data
omega=73, generated data
Posterior density for zeta

Posterior density for zeta

0.04

0.1
0.02

0.05

o
-
(=)
n
o

zeta
zeta

] ] Fig. 4. Posterior (B)—Original.
Fig. 2. Posterior (B)—Generated.

¢ are approximately 4.27 and 5.78 for the prior choices of (A)

* 2.5 percentile and (B), respectively.

* 97.5 percentile For the removal model (denoted by ‘Original’ in Table V and
of ¢ and¢. The estimates of 95% credible intervals foand¢ Figs. 3—4), the prior distributions efcorresponding to (A) and
can be obtained using the last 2 columns of Table II. In additiofB) have more bearing on the posterior estimatestbfin those
the graphs of estimates of the posterior densitieg fmoduced for the recapture debugging model.
by CODAare in Figs. 1-4. The posterior standard deviations fpof the recapture de-

Under the quadratic loss function, the posterior mean is thagging model are noticeably reduced compared with those of
Bayes point estimate; thus compare the posterior meags ahe removal debugging model. The posterior estimatesfof
and ¢ in regard to the choice of model and prior distributionthe recapture debugging model &té1 - 10~° and4.47 - 10~¢
With respect to the recapture debugging model (denoted tgrresponding to the prior choices (A) and (B), and those for
“Generated” in Table V and Figs. 1-2), the point estimates tfe removal debugging model a4e33 - 10~6 and3.00 - 1076,



348 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 4, DECEMBER 2000

respectively. Similar to the posterior estimates;pthe prior o
distributions of¢ for the removal model have more effect on
the posterior estimates gfthan those for the recapture model.
The uncertainty aboup with respect to the recapture debug-
ging model for both (A) and (B) is greatly reduced as oppose f g~ gl
to those with respect to the removal debugging model. Consg
guently, the credible intervals @f for the removal debugging & R
model are wider than those for the recapture debugging mod ] 5 n,
The removal debugging model tends to give lower point est
mates ofyp than the recapture debugging model.

From these observations we conclude that the effect of i R R a8y
noring subsequent encounter times of failures has a great il
pact on the estimation of and ¢. With the recapture model, 7 T . . '
the estimates are likely to be more robust to prior selection « .
hyperparameters (parameters of the prior) values and are mi 0 IMremoval, CrSMecapture, A: LV
accurate in the sense that the posterior distributions of the pa-
rameters have smaller standard-deviations compared to thosg®®- PCPO of J-M Removal and Recapture Models and L-V Model.
the removal model. Hence, one should use the information oh-

0.00015
i
x
°

0.00010
|
o>
>

Pi
>

0.00005
|
»

@>
o
®
»
=

0
L]
»
-
]

®
o
=

['s]
tained from re-encounter times in practice in pursuit of mor &
robust and accurate estimates of the parameters of interest. z )
s
V. MODEL COMPARISON > b ‘
: w
In order to validate the approach in this paper, the removal arg 8 - .
recapture versions of the J-M model and a version of the L-' t :
model are compared, based on the criterion of PCPO (definiz & | .
in this section). g © C L.
The L-V model [2] assumes that: < LI e e e s
1. The interfailure times,7;, ¢ = 1,---,n, are g R ’ .
s-independent and exponentially distributed with 2,’ 1 - .
failure rates);. &
2. The),; ares-independent; each; is gamma distributed . . . . .
with shape parameter and scale parameter 10 20 80 40
failures
P(i) = fo+ B it o+ Pidt Fig. 6. (PCPO of J-M Recapture Model)—(PCPO of L-V Model).

for somek > 0. Hence, the unconditional marginal dis-

(4 &)
tribution of 7; is Pareto with density ¢V and ¢! denote the sampleg; of the Gibbs chains of

and¢, and assumét;, ---,t;_1} is given after a convergence
a- [ diagnostic is conducted.
W (8)  For the L-V model, the linear function fog(i) is used:
Y(i) = fo + 1 - i. To approximate;, first estimatev, 3o, 51

Unlike the J-M model, the L-V model allows imperfect debugUSing a least squares method. The estimaitesp, 4, can be
ging. Because(4) is increasing ir, the E7;] increases in. obtained by minimizing
Reference [8] uses the PCPO for model selection. This paper el 2
follows that approach for comparison of the H-Y model two Z <tj _ P() ) ;
other models. The PCPO for observatiois [8, p. 74] of the = a—1
H-Y model with

f(tile, (i) =

¥(4)/(a—1)is thes-expected value df; [3, pp. 107-108]¢; is
= p(tilt1, -+, tiz1), 1> 2 approximated by substitutirig, /30,/31 fora Bo, B1 respectively

e1 = p(ty). in (8).
Fig. 5 plots the PCPO of the J-M removal and recapture

For the removal and recapture versions of the J-M model;;themodels with prior option of (A) and the L-V model. The PCPO

are approximated using the Gibbs chains by of all models are larger for about the first 30 interfailure times,
then they decrease for the remainder of the data points.
G = ptity, - tim1) The difference between the PCPO of the J-M recapture model
: and the L-V model is plotted in Fig. 6. Fig. 7 plots the differ-
— 1 Z ¢ ). exp[—C(j) . (/)(i)] ence between those of the J-M recapture model and the removal

model. In Fig. 6, the number of points above and below zero are
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failures

TABLE VI

MODEL COMPARISON

J-M Recapture

J-M Removal

30

40

L-V

349

reduced in comparison with the removal model’s counterparts.
Hence, the recapture debugging models offers more robust es-
timates forr and¢ with less posterior standard-deviation than
those based on the removal model.
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