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A Gibbs-Sampler Approach to Estimate the Number
of Faults in a System Using Capture-Recapture

Sampling
Yu Hayakawa and Paul S. F. Yip

Abstract—A new recapture debugging model is suggested to es-
timate the number of faults in a system, , and the failure intensity
of each fault, . The Gibbs sampler and the Metropolis algorithm
are used in this inference procedure. A numerical illustration sug-
gests a notable improvement on the estimation of and com-
pared with that of a removal debugging model.

Index Terms—Capture-recapture sampling, credible interval,
Gibbs sampler, metropolis algorithm.

I. INTRODUCTION

A. Acronyms1

CODA Convergence Diagnosis and Output Analysis soft-
ware for Gibbs sampling output

HPP homogeneous Poisson process
H-Y Hayakawa-Yip model (developed in this paper)
J-M Jelinski-Moranda model
L-V Littlewood-Verrall model
MLE maximum likelihood estimate
PCPO prequential conditional predictive ordinate
TTT total time on test

B. Notation

failure intensity for each fault
number of faults in a system

; counting process of failure occurrences caused by
fault
indicator function of the event that faultis unde-
tected or its counter is not removed on [0,]

-algebra generated by ; ,

encounter-time caused by fault

; of encounter times caused by all
faults in a system:

TTT TTT with respect to fault
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1The singular and plural of an acronym are always spelled the same.

conditional distribution, given
[shape, scale] parameter
Gamma distribution with parameters
intensity process for
zero-mean martingale

poi Poisson distribution with mean
indicator function: at least 1 failure caused by fault

occurs in
remaining number of faults in a system
quantile to be estimated
desired accuracy of an estimate of
Pr an estimate of within is obtained
thinning interval of the Gibbs chain
number of initial iterations to be discarded
number of further iterations required to estimate
to accuracy with probability (Not )
minimum number of iterations needed to esti-
mate , when the samples in the Gibbs chain are
-independent

: interfailure time
failure rate of under the L-V model
scale parameter of the prior for
PCPO for

In the early 1970s software reliability models began to ap-
pear in the literature,e.g., [1, J-M], [2], and various models for
software reliability have been suggested since then. For a com-
prehensive study of software reliability models, see [3]–[5].

J-M is one of the most well-known and earliest models in
which the interfailure times are distributed {\it s}-independently
as exponential with failure rate proportional to the remaining
number of faults in the system, and the faults are removed per-
manently upon detection without introducing new faults. This
model can be interpreted as an exponential order statistic model
with a constant failure intensity [6].

Reference [7, Nayak] extends the J-M model [1]: a recapture
debugging model; the assumptions are the same as those for the
J-M model except that the number of times the “faults” are ac-
cessed after their removal is recorded by using of counters in-
serted into the location of detected faults. Therefore, the faults
in a system are accessed according to-independent HPP with
the same failure intensity. The motivation for the recapture
debugging model is to obtain extra information onand , so
that they can be estimated better. The MLE and moment estima-
tors of and are based on the recapture sampling information
along with the first failure detection times of individual faults.
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Following the Nayak [7] suggestion, this paper constructs a
recapture debugging model which includes the Nayak model as
a special case. The distinguishing properties of the H-Y model
from the Nayak model are:

1. The removal of counters is allowed.
2. and are treated as random quantities.

The H-Y model can be considered as an extension of any Bayes
version of the J-M model,e.g., a model studied in Kuo & Yang
[8]. H-Y is studied via the Gibbs sampler and is compared with
a removal debugging model: a Bayes version of the J-M model.
The L-V model is also used to validate H-Y.

Section II describes the H-Y assumptions in detail.
Section III explains briefly the Gibbs sampler and the

Metropolis algorithm which are instrumental for our inference
on the remaining number of faults.

Section IV provides a numerical illustration of H-Y: first the
assumption of exponentiality of failure times is validated via the
modified Anderson-Darling statistics; then another data set is
simulated to compare recapture and removal debugging models;
finally the posterior analysis on the parameters of interest is
presented.

Section V compares the removal and recapture versions of the
J-M model and a version of the L-V model based on the criterion
of the prequential conditional predictive ordinate.

Section VI presents the results.

II. M ODEL ASSUMPTIONS

Consider a system which contains an unknown number of
faults, ; is the counting process for fault,

.

A. Assumptions

1. When a fault is detected for the first time, it is imme-
diately removed without introducing new faults, and a
counter is inserted so that the number of occurrences of
failures caused by the fault can be counted as if it were
still there.

2. The CPU-clock is stopped each time a new fault is
detected. After this fault is removed, the CPU-clock is
restarted when the testing resumes.

3. Each fault has the same.
4. Given and , the are -independent HPP with

failure intensity .
In practice, the assumptions of perfect repair, immediate cor-

rection, and identical fault-detection rate are unrealistic. These
would likely lead to an optimistic estimate for the remaining
number of faults in the system [5, pp. 32–33, 54–56]. However,
[9] shows that some software reliability models can be derived
from Bayes versions of the J-M model, and many models can
be considered as generalizations of the J-M model. Hence, as in
[7], the J-M model is used as a starting point to present the ap-
proach to estimation and prediction in software reliability. This
approach can be extended to other models.

To account for removals of the counters, see the following
stochastic processes: for ,

if fault is undetected or its counter is not
removed in [0, ),
otherwise.

In the Nayak model, for any . From the definition of
,

Then the likelihood function is

if
otherwise.

(1)

TTT is the total time on
test with respect to fault. If fault is detected and its counter
is removed before, say at time , then TTT .
Otherwise TTT if fault is undetected on or its
counter is never removed on .

Now consider the counting process, , of
all faults in the system:

Assume that, given, has the gamma distribution,a priori:

By Bayes theorem,

TTT

TTT

Therefore,

TTT

E

is the increment of over the interval , [10].
Given and , then is the sum of -independent HPP;
hence the failure intensity for is:



344 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 4, DECEMBER 2000

The posterior mean of given is:

TTT

Therefore,

TTT

(2)

The intensity processes of the J-M model and the Littlewood
model [11] are in [10, pp. 133–134], which are relevant to (2).
The intensity processes of some other models are in [12]–[16].

III. I NFERENCEPROCEDURES

Inference on the ‘remaining number of faults’ and the ‘failure
intensity per fault’ is made from a Bayes perspective. Assign a
distribution to , and assume a hierarchical model for. Es-
timates of and are obtained using the Gibbs sampler [17]
along with the Metropolis algorithm [18]; these are Markov
chain Monte Carlo methods. As explained in [19], the Gibbs
sampler is a special case of the Metropolis algorithm which was
generalized in [20]. The Gibbs sampler enables one to generate
random samples from the target density, in our setting poste-
rior densities of the parameters, by iteratively simulating values
from the full conditionals. It was popularized in [17] and has had
a great impact on some of the statistical literature. References
on both practical and theoretical issues of the Gibbs sampler
are abundant,e.g., [21]–[23]. Both algorithms are now briefly
described.

A. Gibbs Sampler

We want to generate samples from the posterior density of
given information . Begin with initial values

. Then sample iteratively as follows: For
,

sample from

sample from

...

sample from

posterior full conditional densities of

Under certain conditions [22], as ,
converges to in distribution, whose density
is . Likewise, for large enough,

is effectively a sample from the posterior marginal of,
, .

B. Metropolis Algorithm

Begin with initial values

Then the sampling proceeds as: for , generate
from the candidate generating density ; accept as

the value of with probability

otherwise the value of the chain remains unchanged; repeat this
procedure to create a chain .

For large enough, is effectively a
sample from the target density , the joint posterior den-
sity of .

Although one can never conclude with certainty when these
2 procedures should be terminated and the simulated values used
for analyses of unobservables, it is advisable to perform conver-
gence diagnostics on the simulated values. For a numerical illus-
tration of this inference procedure in Section IV, the diagnostic
method in [24] is chosen and is implemented by theCODAsoft-
ware (Convergence Diagnosis and Output Analysis Software for
Gibbs sampling output) [25], [26] which is a set of S-Plus rou-
tines for ‘convergence diagnostics and output analysis’ for the
Markov chain Monte Carlo methods. Reference [27] compares
various convergence diagnostic methods.

For the example in Section IV, assume the following priors
for the parameters.

(3)

(4)

(5)

poi (6)

The full posterior conditionals necessary to implement the
Gibbs sampler are:

TTT

poi

(7)

viz, the remaining number of faults in the system. As for, its
full posterior conditional can be obtained up to a proportionality
constant:

Following the studies [8], [28], use the Metropolis algorithm to
generate samples from the full posterior conditional distribution
of .
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TABLE I
FAILURE DATA FOR AN INFORMATION SYSTEM AND SIMULATED ENCOUNTERTIMES

IV. A N UMERICAL EXAMPLE

To illustrate the proposed inference procedure, the data-set
from [10, p. 43] (originally reported in [29]) is used. It has 43 oc-
currence times (in seconds CPU time) of first failures caused by
43 distinct faults of an information system for registering air-
craft movements; these numbers are in column 2 of Table I.

Step 1. Anderson-Darling statistics are computed to check
if failure times in this data-set are identically expo-
nentially distributed.

Step 2. The data-set is augmented by simulating subsequent
failure times of each detected fault by treating
failure-time #43 as a stopping time.

Step 3. CODAis explained and the Gibbs sampler is used to
conduct analyzes on and regarding both recap-
ture and removal debugging models.

A modified version of Anderson-Darling statistics is used to
test the exponentiality of failure times [30], [31, pp. 114–115,

141–145]. The Table I data-set is assumed to be right (type 2)
censored. A test procedure [31] is given next.

are failure times, and
are the corresponding order statistics.

Observation is stopped at .

1. Compute

2. Calculate
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TABLE II
MODIFIED ANDERSON-DARLING STATISTICS

3. Calculate a modified version of Anderson-Darling
statistics:

Since is unknown, compute for various values of
; the results are in Table II.
Refer the values in Table II to the percentage points

in ‘[31, Table 4.16, pp. 143–144];’ the hypothesis of exponen-
tiality of , ie, cannot be rejected at
the 5% -significance level for , nor at the 2.5%
-significance level for = 59, 60, based on interpolated per-

centage points, which does not reject the assumption.
From column 2 of Table I, compute [10, pp. 418–419] the

MLE for of individual faults: .
Now generate interfailure times for each fault from the expo-

nential distribution with failure rate. Column 3 of Table I con-
tains the simulated failure encounter times between the first en-
counter time of individual faults and the stopping time, 576 570
seconds in CPU time.

If the removal of counters was allowed, the TTT and/or
would be changed. For example, consider fault 15; sup-

pose that its counter is removed at 400 000 seconds in CPU time.
Then,

TTT

instead of 576 570 and 7, respectively. The only change in
implementation of the Gibbs sampler in this case would be
through the full posterior conditional of, because it depends
on TTT s and s (7).

For both recapture and removal debugging models, two sets
of priors, (A) and (B), are used; see (3)–(6) for notation. To study
the effect of prior means for, denoted by , the only difference
between the (A) and (B) priors is the value of.

If there exist past data of similar software, then the parameters
of the prior (referred to as hyperparameters) can be determined,
based on such data. See [32, chapter 3] for various methods
on elicitation of prior information. As anad hocapproach, one

TABLE III
HYPERPARAMETERVALUES

TABLE IV
AN OUTPUT OFCODA—RAFTERY & LEWIS METHOD [24]

could choose values for the hyperparameters using estimates of
the parameters obtained by classical methods such as MLE.

The method in [24] is implemented byCODAto detect con-
vergence to the stationary distribution, and is used to determine
the number of iterations to achieve a prespecified accuracy of
an estimate, the spacing between iterations, and the number of
burn-in iterations.

Next is an analysis based on [24] regarding a Gibbs chain,
a sequence of samples simulated by the Gibbs sampler, of the
recapture model with prior choice (B).

This method requires a quantile,, to be estimated, a desired
accuracy, , of the estimate of , and a probability, , of ob-
taining an estimate of within . represents the number of
further iterations required to estimateto a prespecified accu-
racy with probability . is the minimum number of it-
erations needed to estimate, assuming that the samples in the
Gibbs chain are-independent. measures the increase in the
number of iterations needed for estimation ofdue to depen-
dence in the Gibbs chain. An often indicates a high level
of correlation in the Gibbs chain. Reference [24] shows that

often indicates difficulties and suggests changes in the
implementation such as starting values and reparameterization.

For example, from the results associated within Table IV,
discard the initial 4 iterations and require 749 further iterations
with the thinning interval of 1 to estimate 0.025 quantile of
to within with 0.95 probability. The chain of values
converges to the stationary distribution very quickly.is close
to 1, hence the iterates of the chain do not show a high level of
correlation.

For convergence diagnostics of all the Gibbs chains simu-
lated to analyze this numerical example, choose 0.025,

0.0125, 0.95. In most cases, the number of burn-in
iterations are less 5, and 2000 iterations are more than sufficient
to achieve the accuracy in the previous paragraph.

Table V summarizes the results fromCODA’s output analysis
of the Gibbs chains, which contain estimates of the:

• posterior mean
• posterior standard deviation
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TABLE V
ESTIMATES OFPOSTERIORMEANS, STANDARD DEVIATIONS AND PERCENTILES

Fig. 1. Posterior (A)—Generated.

Fig. 2. Posterior (B)—Generated.

• 2.5 percentile
• 97.5 percentile

of and . The estimates of 95% credible intervals forand
can be obtained using the last 2 columns of Table II. In addition,
the graphs of estimates of the posterior densities forproduced
by CODAare in Figs. 1–4.

Under the quadratic loss function, the posterior mean is the
Bayes point estimate; thus compare the posterior means of
and in regard to the choice of model and prior distribution.
With respect to the recapture debugging model (denoted by
“Generated” in Table V and Figs. 1–2), the point estimates of

Fig. 3. Posterior (A)—Original.

Fig. 4. Posterior (B)—Original.

are approximately 4.27 and 5.78 for the prior choices of (A)
and (B), respectively.

For the removal model (denoted by ‘Original’ in Table V and
Figs. 3–4), the prior distributions ofcorresponding to (A) and
(B) have more bearing on the posterior estimates ofthan those
for the recapture debugging model.

The posterior standard deviations forof the recapture de-
bugging model are noticeably reduced compared with those of
the removal debugging model. The posterior estimates offor
the recapture debugging model are and
corresponding to the prior choices (A) and (B), and those for
the removal debugging model are and ,
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respectively. Similar to the posterior estimates of, the prior
distributions of for the removal model have more effect on
the posterior estimates ofthan those for the recapture model.
The uncertainty about with respect to the recapture debug-
ging model for both (A) and (B) is greatly reduced as opposed
to those with respect to the removal debugging model. Conse-
quently, the credible intervals of for the removal debugging
model are wider than those for the recapture debugging model.
The removal debugging model tends to give lower point esti-
mates of than the recapture debugging model.

From these observations we conclude that the effect of ig-
noring subsequent encounter times of failures has a great im-
pact on the estimation of and . With the recapture model,
the estimates are likely to be more robust to prior selection of
hyperparameters (parameters of the prior) values and are more
accurate in the sense that the posterior distributions of the pa-
rameters have smaller standard-deviations compared to those of
the removal model. Hence, one should use the information ob-
tained from re-encounter times in practice in pursuit of more
robust and accurate estimates of the parameters of interest.

V. MODEL COMPARISON

In order to validate the approach in this paper, the removal and
recapture versions of the J-M model and a version of the L-V
model are compared, based on the criterion of PCPO (defined
in this section).

The L-V model [2] assumes that:

1. The interfailure times, , , are
-independent and exponentially distributed with

failure rates .
2. The are -independent; each is gamma distributed

with shape parameter and scale parameter

for some . Hence, the unconditional marginal dis-
tribution of is Pareto with density

(8)

Unlike the J-M model, the L-V model allows imperfect debug-
ging. Because is increasing in, the E increases in.

Reference [8] uses the PCPO for model selection. This paper
follows that approach for comparison of the H-Y model two
other models. The PCPO for observationis [8, p. 74] of the
H-Y model with

For the removal and recapture versions of the J-M model, the
are approximated using the Gibbs chains by

Fig. 5. PCPO of J-M Removal and Recapture Models and L-V Model.

Fig. 6. (PCPO of J-M Recapture Model)—(PCPO of L-V Model).

and denote the samples of the Gibbs chains of
and , and assume is given after a convergence
diagnostic is conducted.

For the L-V model, the linear function for is used:
. To approximate , first estimate , ,

using a least squares method. The estimates,, , can be
obtained by minimizing

is the -expected value of [3, pp. 107–108]. is
approximated by substituting, , for , , respectively
in (8).

Fig. 5 plots the PCPO of the J-M removal and recapture
models with prior option of (A) and the L-V model. The PCPO
of all models are larger for about the first 30 interfailure times,
then they decrease for the remainder of the data points.

The difference between the PCPO of the J-M recapture model
and the L-V model is plotted in Fig. 6. Fig. 7 plots the differ-
ence between those of the J-M recapture model and the removal
model. In Fig. 6, the number of points above and below zero are
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Fig. 7. (PCPO of J-M Recapture Model)—(PCPO of J-M Removal Model).

TABLE VI
MODEL COMPARISON

about the same, but the average magnitude of the ‘points above
0’ appears to be slightly bigger than that of the ‘points below
0.’ This suggests that the J-M recapture model is preferred for
the data set. According to Fig. 7, the J-M removal and recapture
models are analogous.

As a model selection criterion [8, p. 74], this paper maximizes
the joint density of interfailure times of distinct faults,

Since there is no for the L-V model, compute for
all 3 models as well. These values are summarized in Table VI.
Based on , the J-M recapture model is the best. It again
is slightly more desirable than the J-M removal model by com-
paring the values of .

VI. RESULTS

The Nayak [7] recapture debugging model is generalized by
allowing the removal of counters and treating theand as
random quantities. The Gibbs sampler and the Metropolis algo-
rithm are used to analyze a data-set through both recapture and
removal debugging models. Two prior means for(denoted by

) are used to study the sensitivity of estimates. The results in
Section IV suggest that the removal model is likely to give lower
estimates of than the recapture debugging model. Inferential
results under the recapture debugging model are much less sen-
sitive to the prior specification of than those under the removal
model. Posterior standard deviations for bothand are greatly

reduced in comparison with the removal model’s counterparts.
Hence, the recapture debugging models offers more robust es-
timates for and with less posterior standard-deviation than
those based on the removal model.
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