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TABLE I
STANDARD DEVIATIONS

In the next example, the signal vector randomization method
(SVR1) as given in (9), the deterministic SVR method (SVR2) as
given in (11), the frequency estimation method (TK) outlined in
Section III, and the spatial smoothing methods are compared.

All three sources are perfectly correlated, i.e., they have a zero
relative phase angle at each iteration, e.g., multipath propagation
where the path delays are the same. The analyses using SVR1, SVR2,
and TK start by estimating the bearings with the frequency estimation
method using one snapshot. The analysis using spatial smothing uses
the first ten snapshots to estimate the spatial smoothing (SS) matrix.
The results in Fig. 2 indicate the following.

• The frequency method is less accurate than the SVR and SS
methods at an SNR of 10 dB. This is because the TK method
uses a single snapshot, whereas SVR uses a weighted sum of,
effectively, [1=(1 � �)] snapshots ([�] is the smallest integer
larger than �), which is the equivalent window width for
exponential averaging.

• The performance of the SVR1, SVR2, and SS methods is about
the same.

In the final example, bearings are tracked for 500 snapshots. The
SNR is 10 dB, and the sources are stationary at 60�, 80�, and 100�.
In Table I, standard deviations for each of the three source bearings
are listed for the SVR1, SVR2, frequency estimation, and spatial
smoothing methods.

V. CONCLUSION

Two algorithms for the tracking of correlated signals have been
presented. A frequency estimator is used to obtain the initial estimate
of the DOA’s in the presence of signal correlation. Signal vector
randomization (SVR) can be employed to eliminate any correlation
during the subspace tracking process, and this can be done auto-
matically without any knowledge of the presence or absence of
correlation. The SVR method does not reduce the effective array
aperture as the spatial smoothing method does, and this becomes
important in situations where the number of sensors in the array is
small.
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The Quality of Models for ARMA Processes

P. M. T. Broersen

Abstract—The model error (ME) is an objective measure for assessing
the quality of different models of a given ARMA process. The expression
for ME can be evaluated easily in the time domain. This quality measure
for known and given processes is necessary for an objective comparison of
the performance of estimation algorithms and of order selection criteria.

I. INTRODUCTION

A measure for the quality of models is important in a comparative
study of algorithms in statistical time series. It is necessary for an
objective comparison of the performance of the various estimation
methods and of order selection criteria. The estimation algorithms
and order selection criteria that provide models with the best average
quality over a range of known processes are expected to also be the
best when applied to unknown data. Classic measures are a tradeoff
of bias and variance, but for specific purposes like control, a variety
of error quantifications has been developed [1].

A measure for the accuracy of models for ARMA processes is
introduced: the model error ME. The model error is based on the
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prediction error, which is defined as the mathematical expectation of
the squared fit of an estimated model to new data that are generated
by the same process as the data used for estimation of the model.
ME can be applied to ARMA models as well as to pure AR or
MA models by using zero-valued parameters. Moreover, it can also
be used for the evaluation of the periodogram by determining the
unique MA representation of the finite correlation function involved
[2]. Several computational elements for the new quality measure
have been described before [3], [4]. The result was a computer
program or a labor-intensive recursive scheme. This analysis gives
an easy computation and interpretation of the prediction error in
the time domain as the variance of a specific ARMA process. The
Fourier transform theory shows that the minimum of the prediction
error agrees in the frequency domain with the maximum whiteness
or flatness of the spectrum of the prediction error. Therefore, the
integrated ratio of the true and the estimated spectrum over the whole
frequency interval is as close as possible to one for the model with
the smallest prediction error or model error.

Finally, the results of simulations demonstrate the use of an
objective measure. The average quality of estimated and selected
AR, MA, and ARMA models is evaluated. In addition, the influence
of the length of the windowed correlation function on periodogram
estimates [5] is shown and compared with the popular approach with
multiple prolate spheriodal tapers [6].

II. A CCURACY OF PREDICTION

In studying algorithms for statistical signal processing, it is impor-
tant to have an objective measure for the quality of different models
for a known process to calibrate estimation algorithms and selection
criteria as well as to make mutual comparisons. That evaluation for
known processes can be used as a guideline to decide what can be
expected when algorithms and order selection criteria are applied to
unknown data. In many applications, the model that can predict future
values of the time series with the highest accuracy will be a good
model. Those applications include

• prediction in the time domain;
• parametric spectral modeling;
• the detection of errors or changes;
• the classification of data into categories;
• the quantization of parameters for speech coding.

For AR models from AR processes, a quality measure has been intro-
duced that has been used to detect the differences between estimation
methods in finite samples [7]. It has a sensible interpretation in the
time and in the frequency domain, and it can be computed efficiently
in the time domain. A similar measure will be defined for the more
general class of ARMA processes.

Suppose that the ARMA(p; q) processxn is given by [5]:

AAA(zzz)xnnn = BBB(zzz)"""nnn (1)

or

xxxnnn + aaa1xxxnnn�1 + � � � + aaapppxxxnnn�ppp

= """nnn + bbb1"""nnn�1 + � � � bbbqqq"""nnn�qqq (2)

where"n is a white noise sequence with variance���2
"
, andA(z) is

defined as [5]

AAA(zzz) = 1+ aaa1zzz
�1 + aaa2zzz

�2 + � � � + aaapppzzz
�ppp

: (3)

Likewise, a polynomialB(z) is defined as a polynomial inz�1

of order q: The process is stationary ifA(z) has no poles forz
on or outside the unit circle. Model parametersA0(z) and B0(z)

of ordersp0 andq0, respectively, which are not necessarily equal to
p and q, are generally found by estimation of parameters fromN
observationsyn; n = 1; � � � ; N ; the observations can be a realization
of the process (1), but this is not necessary. Future predictions of
the process (1) with this model can be made by substitution of those
estimated parameters into new dataxn, which can be written as

BBB
0(zzz)"̂n = AAA

0(zzz)xxxnnn (4)

where the signal̂"n can be seen as the output of the estimated model
with xn used as input signal; the estimatedB0(z) is used as AR
part andA0(z) as MA part in this derivation of̂"n: The squared
error of prediction PE is defined as the expectationE["̂2

n
] with the

condition thatxn is a realization of the process (1) that is independent
of the observationsyn that had been used to estimate the parameters.
The output"̂n of the model withA0(z) andB0(z) can be found by
substitutingxn with (1)

"̂n =
AAA0(zzz)

BBB0(zzz)
xxxnnn =

AAA0(zzz)BBB(zzz)

AAA(zzz)BBB0(zzz)
"nnn =

DDD(zzz)

CCC(zzz)
"n: (5)

Therefore, the relation between the error output"̂n of the model
(4) and the innovations"n that generated the true process is given by
an ARMA(p+ q0; p0+ q) processD(z)=C(z): By considering (5) as
a filtering operation [5], it follows elementarily that the covariance
of "̂n is given as the inverse discrete-time Fourier transform of the
power spectral density of a process with the white noise"n as input.
This yields

RRR"̂"""̂""(���) =
���2"""
2���

���

����

AAA0(eeejjj!!!)BBB(eeejjj!!!)

AAA(eeejjj!!!)BBB0(eeejjj!!!)

2

eee
jjj!!!���

ddd!!! (6)

if all poles ofA(z)B0(z) are inside the unit circle, which is assumed
throughout this correspondence. In the derivation of (6), from (5),
it is essential that the estimated polynomialsA0(z) andB0(z) are
stochastically independent of"n. Hence, (6) does not describe the
covariance of the residuals that are minimized in the estimation of
the parameters because the estimated parameters are then correlated
with the specific realization of"n that was used for the estimation.
However, the squared error of prediction or, in short, the prediction
error PE, because it is the variance of"̂n, follows from (6) for� = 0:

That integral can be approximated by a finite sum in the frequency
domain, which will be quite accurate unless the true poles or the
estimated zeros are close to the unit circle. The integral can also be
solved with calculus in the complex plane. An efficient numerical
solution for a similar complex integral has been given [3] as has a
time domain solution [4]. Those solutions are available as computer
programs or as a complicated recursive schemes. An easier derivation
of the same result in the time domain is given here with some filter
theory.

The output of the ARMA process in (5) can be described with a
realization of the filter operation by separating it in two consecutive
filters with an intermediate signalvn as

vvvnnn+ccc1vvvnnn�1 + � � � + cccppp+qqq vvvnnn�ppp�qqq = """nnn

"̂""nnn =vvvnnn + ddd1vvvnnn�1 + � � � + dddppp +qqqvvvnnn�ppp �qqq: (7)
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The covarianceRvv(k) = E[vnvn+k] can be computed with
the well-known Yule–Walker relations for autoregressive processes
[5]. Extra terms ofRvv(k) for k > p + q0 can be computed
by extrapolating the autoregressive covariance function with the
Yule–Walker relations [5, p. 133]. Afterwards, the second relation
in (7) can be used to express the covarianceE["̂n"̂nnn+kkk] in the
covariances ofvn, yielding (8), shown at the bottom of the page. The
squared error of prediction PE, which is defined as the expectation
E["̂2nnn] or ���2"̂"", follows as the result of this equation fork = 0: The
interpretation of PE in the time domain and in the frequency domain
is illustrated in (6) for� = 0. The model with the smallest possible
value for���2"̂"" (a minimum that is equal to���2""") is also the model where
the integrated ratio of the true and the estimated spectrum in the
frequency domain equals one everywhere with an equal numerator
and denominator polynomial [8].

III. M ODEL ERROR

The asymptotical value for the prediction error PE is���2""" f1 +
(p0 + q0)=Ng for all models wherep0 � p andq0 � q and if A0(z)
andB0(z) of the model are estimated fromN observations. Those
complete or overcomplete models have no bias contribution to PE,
and each estimated parameter adds���2"""=N due to its variance. The
constant���2""" in the PE is given by the variance of the innovations
in (1). This scaling factor and constant contribution���2""" gives no
relevant information about the quality of different models for the
same process. Moreover, the sample sizeN has influence on the PE.
However, it is often important that estimation algorithms have a good
performance for all sample sizes. To obtain a measure for the model
quality that is not explicitly dependent on the sample size, at least
not in the asymptotic theory, the ME is defined as

MMMEEE = NNN
PPPEEE � ���2"""

���2"""
= NNN

���2"̂""
���2"""

� 1 : (9)

The ME is a scaled version of the prediction error after subtraction
of the innovation variance. The asymptotical expectation isp0+q0 for
models wherep0 � p andq0 � q: The ME will be positive if all poles
of C(z) are strictly inside the unit circle; otherwise, the ME gives no
useful result. It can only become zero if the polynomialsC(z) and
D(z) in (5) are equal; otherwise, it can be shown that it is always
positive [8]. The ME is a useful measure for the model accuracy, with
a significance in time and in frequency domain. The ME simplifies to
an autoregressive measure [7] when the MA parameters are absent,
and it can also be used for the fit of the MA models to the MA data
by using zero values for the AR parameters.

The ME has been used in the statistical evaluation of estimation
algorithms and order selection criteria for MA models [9], for ARMA
models [10], and for a comparison of AR and MA models. An
important result is that the ME approaches1 if an estimated MA
polynomial inC(z) has zeros that approach the unit circle, unless of
course they are canceled by poles inD(z): This means that MA or
ARMA algorithms that can possibly produce estimated zeros on or
even outside the unit circle (without the process having a zero there)

have an objective average quality ME that will become infinitely bad
for some processes.

IV. SIMULATION RESULTS

Simulations have been carried out with an ARMA(2; 1) process
given by

xxxnnn + 0:39xxxnnn�1 + 0:30xxxnnn�2 = """nnn � 0:90"""nnn�1: (10)

Different spectral models have been compared by determining the
average ME of ARMA(2, 1) models and of estimated AR, MA, and
ARMA models with selected orders. The models are

• AR model estimated with the Burg technique [2] and with order
selected with penalty factor 3 in the order selection criterion
[11];

• MA model estimated with a sliding window modification of
Durbin’s method and MA order selected with penalty factor 3
[9];

• ARMA(2, 1) model estimated with a sliding window improve-
ment on Durbin’s iterative method of sequentially updating AR
and MA parts of the estimate [10];

• ARMA model estimated like the previous one but with orderp

selected with penalty factor 3 from estimated ARMA(p; p� 1)
models;

• PER(N=2): periodogram with a cosine taper over the first and
last 10% of the data and with Parzen window [5] with length
N=2 over the correlation function;

• similar periodograms with cosine taper and Parzen window with
lengthsN=4; N=8; andN=16;

• PER(mtap): periodogram with multiple prolate spheriodal ta-
pers [6]; the given periodogram is the mean of the periodograms
with the first seven spheroidal tapers.

Each periodogram has been computed with at least as many zeros
added to the signal as the original length of the observations to ensure
that the inverse Fourier transform of the periodogram was the biased
estimate of the true covariance function [5]. This covariance function,
of lengthN � 1 or less if a window is used, has an unique relation
with a MA model [2]. The parameters of that MA model can be
determined with a nonlinear factorization algorithm [12]. This MA
representation for given data can be used to compute the quality of
the spectral periodogram estimate with the model error ME. In this
way, periodograms and time series models are compared objectively.

The use of an objective measure is demonstrated in Fig. 1, where
different spectral representations for one single realization of the
ARMA process of (10) are given. The estimated variance of the
process is the same for all methods; therefore, the variance can be
left out of the comparison, and the normalized spectral densities
are shown in Fig. 1. The ME values for this realization are 14.5,
3.6, 13.8, and 11.6 for AR, ARMA, PER(N=8), and PER(mtap),
respectively. The ME of the periodogram with only a taper was
430.1 in this example. Therefore, each of the four presented spectra
is a much better approximation than the periodogram. However, a
mutual comparison of the spectra based on the lines in Fig. 1 is quite
difficult: A certain ratio between true and estimated spectra looks

RRR"̂"""̂""(kkk) = (1 ddd1 � � �dddppp +qqq)

RRRvvvvvv(kkk) RRRvvvvvv(kkk + 1) � � � RRRvvvvvv(kkk + ppp0 + qqq)
RRRvvvvvv(kkk � 1) RRRvvvvvv(kkk)

...
...

. ..
RRRvvvvvv(kkk � ppp0 � qqq) RRRvvvvvv(kkk � ppp0 � qqq � 1) � � � RRRvvvvvv(kkk)

1

ddd1
...

dddppp +qqq

(8)



1752 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 6, JUNE 1998

Fig. 1. True power spectral density of an ARMA(2, 1) process and four
estimates obtained from one realization of 128 observations.

TABLE I
AVERAGE ME OF NINE SPECTRAL ESTIMATES AS A FUNCTION OF THE SAMPLE

SIZE N IN 5000 SIMULATION RUNS WITH AN ARMA(2, 1) PROCESS

much smaller for normalized frequency 0.1 than for 0.3, but it has
the same influence on the prediction error, as measured in the ME.
It is already difficult to obtain a proper comparison of the quality
of the different algorithms for a single realization, e.g., it seems
surprising that the twisting multitaper approximation PER(mtap) is
better than PER(N=8), which is the periodogram with windowN=8:

It will almost be impossible to carry out a visual comparison for
many realizations and for different sample sizes.

The average of ME for different spectral estimates in simulations is
given in Table I. This objective quality measure for spectral models
gives a good impression of the accuracy and of the influence of the
sample size. By includingN in the definition of ME in (9), the
numbers in the table are all of the same order of magnitude and
are easier to interpret than the prediction error PE, which depends
much more strongly on the sample size. It is remarkable that the ME
increases with the sample sizeN for AR models, remains more or
less a constant for MA models, and decreases for ARMA models. The
average difference between the ME of the true order ARMA(2, 1)
model and of ARMA models with selected orders becomes smaller
for greaterN: The result of multitaper approximations is not very
different from usual windowed approximations; PER(mtap) with the
average of seven tapers remains close to PER(N=4) for all sample
sizes. The best length for windows depends on the sample size. Its
optimum is about 16 for the first three columns in the table and
something longer for more observations. It is neither a constant nor a
fixed proportion ofN ; therefore, it would be impossible to determine
the optimum for unknown data. The best choice for the window
length gives a reasonable spectral estimate for all sample sizes for
the process in (10), although the quality of the best choice decreases

as a function of the number of observations. Estimated ARMA spectra
are best for this true ARMA process. The quality of AR spectra is
something less than that of the best window choice in periodograms,
but it is better than that of the wrong choices.

However, a major disadvantage of the spectral descriptions based
on the periodogram is the absence of a good and objective statistical
rule for the choice of the window size for unknown data. Order
selection criteria can be used in time series models to find good AR
models [11], good MA models [9], and good ARMA models [10].
For the window size, there is no statistically reliable equivalent.

V. CONCLUSIONS

The model error is a useful measure for the quality of selected
models for known ARMA processes. It is a normalized and scaled
version of the prediction error, and it can be computed with an exact
expression in the time domain. In the frequency domain, it represents
a number that can be used for an objective comparison of the quality
of spectral estimates from time series models and from windowed
periodograms over the whole frequency interval.
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