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effectively, [1/(1 — €)] snapshots[¢] is the smallest integer
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exponential averaging.

« The performance of the SVR1, SVR2, and SS methods is about

the game. , The Quality of Models for ARMA Processes
In the final example, bearings are tracked for 500 snapshots. The
SNR is 10 dB, and the sources are stationary &t 80°, and 100. P. M. T. Broersen

In Table |, standard deviations for each of the three source bearings

are listed for the SVR1, SVR2, frequency estimation, and spatial

smoothing methods. Abstract—The model error (ME) is an objective measure for assessing

the quality of different models of a given ARMA process. The expression

for ME can be evaluated easily in the time domain. This quality measure

for known and given processes is necessary for an objective comparison of

the performance of estimation algorithms and of order selection criteria.
Two algorithms for the tracking of correlated signals have been

presented. A frequency estimator is used to obtain the initial estimate

of the DOA’s in the presence of signal correlation. Signal vector . INTRODUCTION

randomization (SVR) can be employed to eliminate any (:orrelationA measure for the quality of models is important in a comparative
during the subspace tracking process, and this can be done ag{f

matlclaltly W'En? Utsil/ng kn(:;/]v Izdge of thte p(;esenz;e orﬁabfence jective comparison of the performance of the various estimation
correlation. The method does not reduce the enective armgya,oqs and of order selection criteria. The estimation algorithms

gpertl:retgs thte sé_patlal imootrl'ng met;[hodfdoes, a”‘_‘ tms beco'g‘ﬁ& order selection criteria that provide models with the best average
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V. CONCLUSION

dy of algorithms in statistical time series. It is necessary for an
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prediction error, which is defined as the mathematical expectation ofLikewise, a polynomialB(-) is defined as a polynomial in™"'

the squared fit of an estimated model to new data that are generaikarder . The process is stationary ifi(z) has no poles for:

by the same process as the data used for estimation of the modgl.or outside the unit circle. Model parametet(z) and B’(z)

ME can be applied to ARMA models as well as to pure AR obf ordersp’ andq’, respectively, which are not necessarily equal to
MA models by using zero-valued parameters. Moreover, it can algoand ¢, are generally found by estimation of parameters frdim

be used for the evaluation of the periodogram by determining t@@servationg,.,» = 1,- - -, N; the observations can be a realization
unique MA representation of the finite correlation function involvegs he process (1), but this is not necessary. Future predictions of

[2]. Several computational elements for the new quality measyjgs process (1) with this model can be made by substitution of those
have been described before [3], [4]. The result was a computey,

- ) ; A M- Bstimated parameters into new data which can be written as
program or a labor-intensive recursive scheme. This analysis gives
an easy computation and interpretation of the prediction error in
the time domain as the variance of a specific ARMA process. The
Fourier transform theory shows that the minimum of the prediction
error agrees in the frequency domain with the maximum whitenestere the signat,, can be seen as the output of the estimated model
or flatness of the spectrum of the prediction error. Therefore, thdth x, used as input signal; the estimaté&(z) is used as AR
integrated ratio of the true and the estimated spectrum over the whplgt and A’(») as MA part in this derivation of,. The squared
frequency interval is as close as possible to one for the model wWigfror of prediction PE is defined as the expectatiofi?] with the
the smallest prediction error or model error. condition thate,, is a realization of the process (1) that is independent
Finally, the results of simulations demonstrate the use of & the observations,, that had been used to estimate the parameters.

objective measure. The average quality of estimated and selecigf outputz, of the model withA’(=) and B' (=) can be found by
AR, MA, and ARMA models is evaluated. In addition, the inﬂuenc%ubstitutingxn with (1) )

of the length of the windowed correlation function on periodogram
it ot st o 6 O _ ), s
ple p p p : TTB () T A)B (2)

B'(z)én = A/(Z)ilfn 4

_ D(z) P
C(z) ™™

5]

®)

n

Therefore, the relation between the error outputof the model
(4) and the innovations,, that generated the true process is given by
an ARMA(p+¢',p' +¢q) processD(z)/C(z). By considering (5) as

In studying algorithms for statistical signal processing, it is impol fjitering operation [5], it follows elementarily that the covariance
tant to have an objective measure for the quality of different models - s given as the inverse discrete-time Fourier transform of the

for a known process to calibrate estimation algorithms and selectigp,, spectral density of a process with the white nejsas input
criteria as well as to make mutual comparisons. That evaluation Lis yields '

known processes can be used as a guideline to decide what can be
expected when algorithms and order selection criteria are applied to

Il. ACCURACY OF PREDICTION

unknown data. In many applications, the model that can predict future o (r) = 0% " A'(ejw)B(ejw) i YT g ©)
values of the time series with the highest accuracy will be a good e "o [ o A(ejw)B'(ejw)
model. Those applications include
* prediction in the time domain; if all poles of A(z)B'(z) are inside the unit circle, which is assumed
* parametric spectral modeling; throughout this correspondence. In the derivation of (6), from (5),

* the detection of errors or changes; it is essential that the estimated polynomial§z) and B'(z) are

i :Ee classtlflca;_tlon Off data |ntto cefltegorles;h i stochastically independent ef,. Hence, (6) does not describe the
© quanfization of parameters for sp'eec coding. _ covariance of the residuals that are minimized in the estimation of
For AR models from AR processes, a quality measure has been inffgs parameters because the estimated parameters are then correlated
duced that has been used to detect the differences between estimatian 1o specific realization of,, that was used for the estimation

methods in finite samples [7]. It has a sensible interpretation in t%wever, the squared error of prediction or, in short, the prediction
_time an_d in the fr_equenc_y QOmain, and it can be C(.)mpmed eﬁiCieng¥ror PE, because it is the variancezqaf follows from (6) forr = 0.
in the t;m? dom??é':‘/li'm"ar measure will be defined for the MOTeat integral can be approximated by a finite sum in the frequency
gegﬁ;iozss;ac: the ARM%?Z?S;I’EOSC.ESSTH is given by [5]; domain, which will be quite accurate unless the true poles or the
' estimated zeros are close to the unit circle. The integral can also be
solved with calculus in the complex plane. An efficient numerical

A(z)xn = B(z)en (@) solution for a similar complex integral has been given [3] as has a
time domain solution [4]. Those solutions are available as computer
or programs or as a complicated recursive schemes. An easier derivation
of the same result in the time domain is given here with some filter
Tn +a1Zp—1+---+aprn—p theory.
=éen+bien_1+ - -bgen_q 2 The output of the ARMA process in (5) can be described with a

realization of the filter operation by separating it in two consecutive

wheres,, is a white noise sequence with varianeg, and A(z) is filters with an intermediate signai, as

defined as [5]
’Un+61’l)'n71 + s —|— Oerq/’Un,piq/ —€n

A(Z) =1+ a1271 —+ a2z72 + -4+ apzfp. (3) én =vn +divn_1+---+ dpurq’l)n,p/,q. (7)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 6, JUNE 1998 1751

The covarianceR..,(k) = E[v,v,1%] can be computed with have an objective average quality ME that will become infinitely bad
the well-known Yule—Walker relations for autoregressive processfs some processes.
[5]. Extra terms of R,.(k) for & > p + ¢' can be computed
by extrapolating the autoregressive covariance function with the
Yule-Walker relations [5, p. 133]. Afterwards, the second relation
in (7) can be used to express the covariaitf,z, | in the Simulations have been carried out with an ARMAL) process
covariances of,, yielding (8), shown at the bottom of the page. Thgiven by
squared error of prediction PE, which is defined as the expectation
E[:3] or a2, follows as the result of this equation fér= 0. The Zn + 0.39z5n_1 + 0.30zp_2 = sp — 0.90s_1.  (10)
interpretation of PE in the time domain and in the frequency domain
is illustrated in (6) forr = 0. The model with the smallest possible

2 i f 2y i

valug foreZ (a mlnllmum that is equal teg) is a]so the model Whe.re verage ME of ARMA(2, 1) models and of estimated AR, MA, and
the integrated ratio of the true and the estimated spectrum in t BMA models with selected orders. The models are

frequency domain equals one everywhere with an equal numerator ) i ) )
and denominator polynomial [8]. * AR model estimated with the Burg technique [2] and with order

selected with penalty factor 3 in the order selection criterion

IV. SIMULATION RESULTS

Different spectral models have been compared by determining the

[11];
* MA model estimated with a sliding window modification of
IIl. M ODEL ERROR Durbin’s method and MA order selected with penalty factor 3
The asymptotical value for the prediction error PEois {1 + (91

« ARMA(2, 1) model estimated with a sliding window improve-
and B'(z) of the model are estimated frotv observations. Those ment on Durbin’s iterative method of sequentially updating AR

complete or overcomplete models have no bias contribution to PE, and MA parts of the estimate [10];

and each estimated parameter addg N due to its variance. The ° ARIMA ;noc_iil estm:atid like thfe previous Ong bUt,W'th orgler
constante? in the PE is given by the variance of the innovations selected with penalty factor 3 from estimated ARM#p — 1)

in (1). This scaling factor and constant contributiod gives no mOdel\§;2 ) iod ith . he fi d
relevant information about the quality of different models for the ° PERN/2): periodogram W't. a cosine ta_per over t e Irst an
same process. Moreover, the sample sizéas influence on the PE. last 10% of the data gnd Wlth_Parzen window [5] with length
However, it is often important that estimation algorithms have a good A'//Z'I over th correlathnh fungtlon; d ind ith
performance for all sample sizes. To obtain a measure for the model f'm' ir pwe;rl/o Nc:grams(;/vktf cosine taper and Parzen window wit
quality that is not explicitly dependent on the sample size, at least engths N/4, | /8_’ and. /163 . .
not in the asymptotic theory, the ME is defined as * PERmtap: periodogram with multiple prolate spheriodal ta-
pers [6]; the given periodogram is the mean of the periodograms

with the first seven spheroidal tapers.

2
) =N <0_€ — 1)_ 9) Each periodogram has been computed with at least as many zeros
added to the signal as the original length of the observations to ensure

that the inverse Fourier transform of the periodogram was the biased

The ME is a scaled version of the prediction error after subtracti@stimate of the true covariance function [5]. This covariance function,
of the innovation variance. The asymptotical expectatigriisq’ for  of length N — 1 or less if a window is used, has an unique relation
models wherg' > p andq’ > ¢. The ME will be positive if all poles with a MA model [2]. The parameters of that MA model can be
of C'(z) are strictly inside the unit circle; otherwise, the ME gives ndetermined with a nonlinear factorization algorithm [12]. This MA
useful result. It can only become zero if the polynomi@ls:) and representation for given data can be used to compute the quality of
D(z) in (5) are equal; otherwise, it can be shown that it is alwaytbe spectral periodogram estimate with the model error ME. In this
positive [8]. The ME is a useful measure for the model accuracy, withay, periodograms and time series models are compared objectively.
a significance in time and in frequency domain. The ME simplifies to The use of an objective measure is demonstrated in Fig. 1, where
an autoregressive measure [7] when the MA parameters are abseifferent spectral representations for one single realization of the
and it can also be used for the fit of the MA models to the MA datARMA process of (10) are given. The estimated variance of the
by using zero values for the AR parameters. process is the same for all methods; therefore, the variance can be

The ME has been used in the statistical evaluation of estimatitaft out of the comparison, and the normalized spectral densities
algorithms and order selection criteria for MA models [9], for ARMAare shown in Fig. 1. The ME values for this realization are 14.5,
models [10], and for a comparison of AR and MA models. A8.6, 13.8, and 11.6 for AR, ARMA, PER/8), and PER(mtap),
important result is that the ME approachss if an estimated MA respectively. The ME of the periodogram with only a taper was
polynomial inC'(z) has zeros that approach the unit circle, unless @f30.1 in this example. Therefore, each of the four presented spectra
course they are canceled by polesiifiz). This means that MA or is a much better approximation than the periodogram. However, a
ARMA algorithms that can possibly produce estimated zeros on mtual comparison of the spectra based on the lines in Fig. 1 is quite
even outside the unit circle (without the process having a zero thedifficult: A certain ratio between true and estimated spectra looks

(p + ¢')/N} for all models where' > p andq’ > ¢ and if A'(z)

PE — o2
2

ME:N<
0g

Ryu (k) Ryv(k+1) -+ Ryy(k +p’+q) 1
Ryy(k—1) Ryu (k) dq
Rep(k) = (1dy--dpiq) _ . , : ®)

Ryv(k—p' —q¢) Rvov(k—p' —q—-1) --- Ryv (k) dp'1q
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as a function of the number of observations. Estimated ARMA spectra
are best for this true ARMA process. The quality of AR spectra is
something less than that of the best window choice in periodograms,
but it is better than that of the wrong choices.

However, a major disadvantage of the spectral descriptions based
on the periodogram is the absence of a good and objective statistical
rule for the choice of the window size for unknown data. Order
selection criteria can be used in time series models to find good AR
models [11], good MA models [9], and good ARMA models [10].
For the window size, there is no statistically reliable equivalent.

V. CONCLUSIONS

The model error is a useful measure for the quality of selected
models for known ARMA processes. It is a normalized and scaled
version of the prediction error, and it can be computed with an exact
expression in the time domain. In the frequency domain, it represents
a number that can be used for an objective comparison of the quality

Fig. 1. True power spectral density of an ARMA(2, 1) process and fof spectral estimates from time series models and from windowed

estimates obtained from one realization of 128 observations.

TABLE |
AVERAGE ME OF NINE SPECTRAL ESTIMATES AS A FUNCTION OF THE SAMPLE
Size N IN 5000 SmuLATION Runs wiTH AN ARMA(2, 1) PrRocEss [1]
N 32 64 128 | 256 | 512 2]
AR 1321 153 181 212] 239
MA 9.3 9.2 8.9 8.7 7.4 (3]
ARMA(2,1) 64| 51| 42] a1 35
ARMA 8.6 6.2 4.8 4.5 3.7
PER(N/2) 77| 113] 210] 413] 846 [4]
PER(N/4) 9.7 8.3 11.1 199 40.1
PER(N/8) 23.7| 153 10.8 11.3 19.2
PER(N/16) 468 | 458 | 275 16.3 12.8 [5]
PER(mtap) 8.8 8.7 1251 219 430
(6]

much smaller for normalized frequency 0.1 than for 0.3, but it haﬁ]
the same influence on the prediction error, as measured in the ME.
It is already difficult to obtain a proper comparison of the quality
of the different algorithms for a single realization, e.g., it seemd®8l
surprising that the twisting multitaper approximation PER(mtap) is
better than PERV/8), which is the periodogram with window /8. 9]
It will almost be impossible to carry out a visual comparison for
many realizations and for different sample sizes.

The average of ME for different spectral estimates in simulations %0]
given in Table I. This objective quality measure for spectral mode|sy)
gives a good impression of the accuracy and of the influence of the
sample size. By includingV in the definition of ME in (9), the
numbers in the table are all of the same order of magnitude ahd!
are easier to interpret than the prediction error PE, which depends
much more strongly on the sample size. It is remarkable that the ME
increases with the sample si2é for AR models, remains more or
less a constant for MA models, and decreases for ARMA models. The
average difference between the ME of the true order ARMA(2, 1)
model and of ARMA models with selected orders becomes smaller
for greaterN. The result of multitaper approximations is not very
different from usual windowed approximations; PER(mtap) with the
average of seven tapers remains close to (PER) for all sample
sizes. The best length for windows depends on the sample size. Its
optimum is about 16 for the first three columns in the table and
something longer for more observations. It is neither a constant nor a
fixed proportion ofN'; therefore, it would be impossible to determine
the optimum for unknown data. The best choice for the window
length gives a reasonable spectral estimate for all sample sizes for
the process in (10), although the quality of the best choice decreases

periodograms over the whole frequency interval.
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