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On SVD for Estimating Generalized Eigenvalues of
Singular Matrix Pencil in Noise

Yingbo Hua, Member, IEEE, and Tapan K. Sarkar, Senior Member, IEEE

Abstract—We review several algorithms for estimating generalized
eigenvalues (GE’s) of singular matrix pencils perturbed by noise. The
ingular value d ition (SVD) is explored as the common struc-
ture in the three basic algorithms: direct matrix pencil algorithm, Pro-
ESPRIT, and TLS-ESPRIT. We show that several SVD-based steps
inherent in those algorithms are equivalent to the first-order approxi-
mation. In particular, the Pro-ESPRIT and its variant TLS-Pro-
ESPRIT are shown to be equivalent, and the TLS-ESPRIT and its ear-
lier version LS-ESPRIT are shown to be asymptotically equivalent to
the first-order approximation. For the problem of estimating super-
imposed complex exponential signals, the state space algorithm is shown
to be also equivalent to the previous matrix pencil algorithms to the
first-order approximation. The second-order perturbation and the
threshold phenomenon are illustrated by simulation results based on a
damped sinusoidal signal. An improved state space algorithm is found
to be the most robust to noise.

B

[. INTRODUCTION

MATHEMATICAL entity called matrix pencil has been

utilized by many researchers [1]-[15], [22] in array pro-
cessing and spectral estimation. The matrix pencil is simply a
linearly combined two matrices, i.e., ¥; — z¥, where z is a
scalar variable, and Y, and Y, are two (square or rectangular)
N, by N, matrices. In applications [1]-[15], the matrix pencil
can generally be decomposed into the following form:

Y\, —z2h, = (X, + E)) — z(X, + E,)
=(Xy — 2X,) + (E, — zE,) (1.1)

where E, and E, are unknown small (in norm) perturbation ma-
trices due to some kinds of errors or noise. ¥; and Y, can be
two data matrices constructed directly from a data sequence (as
in our simulation shown in Section V) or two covariance ma-
trices with estimated noise covariance matrices removed (as
used in [1]-[3]). In any case, we assume that Y, and Y, have
been filtered by some means (e.g., low-pass or band-pass fil-
tering, and noise cleaning at the covariance level or at higher
order statistics level), and E, and E, represent small residue
errors.

In (1.1), X; and X, have the same column space and the same
row space, and the noiseless pencil X; — zX, decreases its rank
by one if and only if z is one of several (say M ) desired values.
These desired values will be called the desired generalized ei-
genvalues (GE’s) of ¥, — zY,, which are denoted by z,,
22, * * ', Zy. The desired GE’s contain the desired information
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like the directions of wave arrivals [1]-[8] and the signal poles
[9]-[13]. Because of the noise (or perturbation) matrices E, and
E,, only noisy estimates of the desired GE’s can be obtained
from Y, and Y,. X, and X, can be in general rectangular or/and
not of full rank so that (1.1) represents a (noiseless) singular
matrix pencil perturbed by noise.

This paper addresses several SVD-based techniques which
exploit the singular condition of X; — zX, to estimate the de-
sired GE’s. These techniques are TLS-ESPRIT [3], Pro-ES-
PRIT [5], [6], and direct matrix pencil algorithm [9]-[11]. Our
objective is to present some links and common features among
those algorithms as well as others to be mentioned in the con-
text. We need to emphasize that in the original Pro-ESPRIT and
the original TLS-ESPRIT, the noise cleaning at the covariance
level is incorporated with eigendecompositions. In the original
Pro-ESPRIT, the Procrustes unitary approximation is applied at
the data matrix level, but the eigendata of the noiseless data
matrices are estimated in an asymptotically unbiased way from
the eigendata of the covariance matrices. In the original TLS-
ESPRIT, the eigendecomposition is directly applied to the co-
variance matrices. In order to compare fairly the different ei-
gendecomposition or SVD-based steps inherent in the Pro-
ESPRIT, the TLS-ESPRIT, and the direct matrix pencil algo-
rithm, we shall not consider the effect of covariance filtering as
inherent in the Pro-ESPRIT and the TLS-ESPRIT. The names
Pro-ESPRIT and TLS-ESPRIT as called in the sequel only re-
flect the effects of the SVD’s inherent in the corresponding ~°
methods unless otherwise indicated.

In Section II, we shall present different SVD approaches to
estimating the desired GE’s from Y, and Y,. New insight will
be provided into several matrix pencil algorithms. In particular,
the Pro-ESPRIT and its variant TLS-Pro-ESPRIT proposed in
[51, [6] will be shown to be equivalent. Since the two methods
in their original versions employ the same covariance filtering
approach, the equivalence in the SVD steps also means that the
two methods are equivalent in their original versions.

Recently, we have studied the first-order perturbations of the
Prony’s method and the direct matrix pencil algorithm [9]-[11].
But we have not answered the puzzling question: Do the differ-
ent matrix pencil algorithms yield the same estimates of the de-
sired GE’s to the first-order approximation? This question was
prompted by many simulation results which show that various
matrix pencil algorithms yield very close estimation variances
at high SNR. In Section III, we shall show that all the SVD
steps inherent in the pro-ESPRIT, the TLS-ESPRIT, and the
direct matrix pencil algorithm have the same first-order pertur-
bations in their estimated GE’s. It implies, in particular, that
the TLS-ESPRIT and its earlier version LS-ESPRIT [1], [2]
both in their original forms are asymptotically equivalent to the
first-order approximation.

1053-587X/91/0400-0892$01.00 © 1991 IEEE
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For the problem of estimating parameters of the superim-
posed exponential signals, the state space algorithm [16], [17]
can be viewed as a matrix pencil algorithm which constructs a
matrix pencil in a way different from the direct matrix pencil
algorithm. In Section IV, we shall show that the above two ma-
trix pencil algorithms are also equivalent to the first-order ap-
proximation.

The first-order equivalence property implies that our analysis
carried out in [11] (for the direct matrix pencil algorithm) is
also valid for all the above mentioned matrix pencil algorithms.

In Section V, simulation results are used to illustrate the sec-
ond-order perturbations (as reflected in biases) and the thresh-
old phenomenon of five matrix pencil algorithms. The testing
data is a damped sinusoidal signal plus noise. It is observed that
an improved state space algorithm is the most robust to noise.

II. SVD’s IN THE MATRIX PENCIL ALGORITHMS

We apply the basic concept of SVD to present what we think
are three basic types of the matrix pencil algorithms: the Direct
Matrix Pencil Algorithm, the Pro-ESPRIT and the TLS-
ESPRIT. The three algorithms compress the N; by N, matrix
pencil ¥, — zY, into a smaller M-by-M matrix pencil in three
different ways. The desired GE’s are then estimated by the GE’s
of the compressed M-by-M matrix pencil.

A. Algorithm 1: Direct Matrix Pencil Algorithm [11]

In general, X, and X, are not of full rank. Hence, the tradi-
tional algorithm (e.g., the QZ algorithm {21]) for computing the
GE’s of Y, — zY, is not stable if E, and E, are small in norm.
To eliminate the stability problem, we replace Y, and Y, by their
truncated SVD’s. The truncated SVD’s of Y, and Y, are denoted
by Y,7and Y, respectively, and they are defined as follows:

Y, = Yy = UL VY (2.1)
Y, Yor = Uz):ng (2-2)

where = denotes the rank-M SVD truncation. L, is the M-
by-M diagonal matrix of the M principal singular values of Y,
U, consists of the M principal left singular vectors of ¥;, and
V, consists of the M principal right singular vectors of Y;. The
superscript 7 denotes the conjugate transposition. The notations
in (2.2) are similarly defined.

Based on the above two SVD truncations, we can write

Y, — z¥, = Y,y — 2Yor = U, L, V¥ — zU,E, V¥,

1

(2.3)

Since Y, is of rank M, the matrix pencil of (2.3) has M GE’s
(i.e., M rank reducing numbers). Without changing the GE’s,
we multiply (2.3) by U} from the left and by V, from the right
to obtain

ggUlle{{Vz — 25, ) (2.4)
which is an M-by-M matrix pencil. From this pencil, the M
GE’s can be easily obtained without the stability problem (e.g.,
using the IMSL EIGZC routine). The GE’s of (2.4) are the same
as the eigenvalues of £; ' (U¥ U, L, Vi V,) or (US U, E, VIV;)
£;'. The result of (2.4) was also presented in [4].
We now write (2.4) into the following form (employing (2.1)
and (2.2)):
Ugulzl VI]"VZ -z = 22V§I[Y2+T Y —dl Vs (2.5)

where the superscript * denotes the pseudoinverse. It is clear
from (2.5) that the GE’s of (2.4) are also the M nonzero eigen-

values of the N,-by-N, matrix: Y;7Y,,. This matrix has been
studied by the authors in [9]-[11] for estimating the parameters
of the exponentially damped or/and undamped sinusoids in
noise.

B. Algorithm 2: Pro-ESPRIT

Following the original pro-ESPRIT, the eigendata of the data
matrices Y, and ¥, (i.e., Uy, L, V;, U, I, and V,) would be
expressed in terms of eigendata of the covariance matrices of
Y, Y% Y,YY, and Y, Y¥ so that the estimated eigendata of the
noiseless matrices X, and X, are asymptotically unbiased in
some applications [5], [6]. In other words, a noise filtering at
the covariance level and an eigendecomposition filtering are
carried out at the same time in the original Pro-ESPRIT. In this
paper, the effectiveness of using the covariance filtering is not
considered, but rather the Procrustes unitary approximation (to
be shown) used in the Pro-ESPRIT is analyzed. It is mainly the
Procrustes approximation that distinguishes the Pro-ESPRIT
from other matrix pencil algorithms.

In [5], [6], another method called TLS-Pro-ESPRIT was pro-
posed as a refinement of the Pro-ESPRIT. Both of the two meth-
ods use the same covariance filtering method, and they differ
only in the way (to be shown) the SVD truncation is performed.
It will be shown in the following that the two (different in ap-
pearance) SVD truncations used in the Pro-ESPRIT and the
TLS-Pro-ESPRIT are, in fact, equivalent.

Without noise, ¥,7 = X, and Y,; = X,. Furthermore, the
column space of X, or/and X, is spanned by each of U, and U,
in the noiseless case, and the column space of X" or/and X¥ is
spanned by each of ¥, and V, in the noiseless case. Therefore,
the following joint rank-M SVD truncations of [U,, U,] and
[V:, V,] are valid if the noise level is low:

W, U] = U, La], = UyZy Vi = UsZulVin, Vil
(2.6)

Vi, Vol = [V, Vo], = ULy VY = U, Lo[VE, Vi,
(2.7)

where = denotes the rank-M SVD truncation. The notations

~ used in (2.6) and (2.7) are defined as in (2.1) and 2.2). Vyi,

Vya, Vin, and Vy,, are M-by-M matrices. Substituting (2.6) and
(2.7) into (2.3) yields

UL, V¥ - UL, VY

= UUEU[VZIEIVVI - ZVZz}:an]EVUIJ- (2.8)

This expression implies that the desired GE’s can be estimated
by the GE’s of the following M-by-M matrix pencil:

VglEIVVl - ZVZz):z Via- (2-9)

The GE’s of this M-by-M matrix pencil will be shown to be the
same as the estimates of the desired GE’s obtained in both the
Pro-ESPRIT and the TLS-Pro-ESPRIT.

Theorem: (Notations used here can be treated independently
although they are consistent with notations throughout the pa-
per.) IF each of U, and U, consists of M orthonormal vectors
and they have the complete joint SVD:

H
w U,]‘:EU HVU. V'w]
[24] U

£ulLve: Vi

Uyy[Vih, Vi) + UpZylVel, Vi

[U, U,] =

(2.10)




894

where the quantities without primes consist of the M principal
components and those with primes consist of the M nonprinci-
pal components (L < L, is assumed to hold in the strict

sense), then,
V. Vi G HY G, HY
["' Ul:|=1/\/§|: e ' 2} (2.11)
Vi Vi GHY -G,HY

where Gy, G,, H,, and H, are unitary matrices.

The proof is provided in the Appendix.

Applying the Theorem to (2.6) and (2.7) yields that V2V,
V2Vy,, V2Vy,, and V2V, are all unitary matrices. Notice that
those unitary matrices are used in the matrix pencil of (2.9).

1) The Pro-ESPRIT: According to [5], [6], the Pro-ESPRIT
estimates the M desired GE’s from the following M-by-M ma-
trix pencil:

[ QI:’/' - zL,

where Qy is the Procrustes (‘‘best’’) unitary approximation of
U%U,, and Q, the Procrustes unitary approximation of V¥ V.
Specifically, @y is the SVD of U U, with all its singular values
set to one. Qy is similarly obtained.

Note that (2.12) is a direct modification of (2.4) based on the
fact that U5 U, and V¥V, are unitary in the noiseless case.

For convenience, we write

Qu = (USIUl)unimy (2.13)
Q= (VEV), iy (2.14)
From (2.13) and (2.10), it follows that
Qu = (Vo X4V + VinZg vl snitary” (2.15)
Invoking (2.11), (2.15) becomes
Qu = [Gy(1/2H{ Ty H, ~ 1/2HI L Hy) G,y
= G,(1/2HYLYH, - 1 /21&!1;’:;,21%)umy GY.
(2.16)

The validity of taking the unitary matrices G, and G, out of the
operator ( * )yniary €an be easily proved.

For a symmetrical positive definite matrix, the left singular
vectors are the same as the right singular vectors, and hence the
unitary operator on a symmetrical positive definite matrix yields
an identity matrix. It is a simple matter to show that the matrix
inside the unitary operator in (2.16) is symmetrical positive def-
inite (because L, — Ly, and H, and H, are unitary ). Therefore,
(2.16) becomes

Qu = GG = V'V, (2.17)

where the superscript ~¥ denotes the inverse and the conjugate
transpose. Similarly, we can show

Qv = Vii'vi. (2.18)

If we multiply (2.9) by V¥ from the left and by V! from
the right, and substituting (2.17) and (2.18) into (2.12), it fol-
lows immediately that (2.9) and (2.12) are equivalent.

2) The TLS-Pro-ESPRIT: According to [5], [6], the TLS-Pro-
ESPRIT estimates the desired GE’s from the following M-by-
M matrix pencil:

QUIEIQI;I - ZQUZEZQ{/IZ (2-19)

(2.12)
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where
Qui = (UGU1) iy (2.20)
Quz = (UGU1) iy (2.21)
1 = (UVV) iy (2.22)
Qv, = (UPV,) (2.23)

unitary
Substituting (2.10) into (2.20) for U,, we can write (2.20) as

O = (EyVE) = 2vH,. (2.24)

unitary
Similarly, @, = V2V, Q,, = ¥2V#, and Q,, = V2V%,.
Therefore, (2.19) and (2.9) are also equivalent.

We have now shown that the Pro-ESPRIT and the TLS-Pro-
ESPRIT proposed in [5], [6] are equivalent provided that the
eigendata of Y, and Y, are estimated in the same way and the
estimated singular vectors (i.e., U, U,, V|, and V,) are or-
thonormal. But it can be easily observed that the Pro-ESPRIT
requires less computations than the TLS-Pro-ESPRIT.

C. Algorithm 3: TLS-ESPRIT

The noise robustness of the TLS-ESPRIT proposed in [3] is
uniquely due to the SVD-based steps to be shown in the follow-
ing. As we mentioned before, the noise filtering at the covari-
ance level inherent in the original ESPRIT algorithms is not
addressed in this paper.

According to one of the earliest versions of the ESPRIT al-
gorithm [1], [2], the rank-M joint SVD truncation of [Y,, ¥,]
is carried out in order to reduce the noise effect. This is based
on the fact that ¥; and Y, span the same column space (of di-
mension M ) in the noiseless case. The rank-M SVD truncation
of [Y,, Y,] is defined as follows:

[, ] = [¥,, 1], = UyEyVy = UyEy[ VY, V]

(2.25)

where the SVD notations are defined similarly as for (2.6) and
(2.7). Vy, and Vy, are N,-by-M matrices. The LS-ESPRIT (as
called in [3]) computes the GE’s of the pencil Vy, — zVy, to
obtain the estimates of the desired GE’s.

In the TLS-ESPRIT [3], an additional rank-M joint SVD
truncation is in effect performed on [ Vy,, Vy,] before the GE’s
are computed. This is due to that Vy, and Vy, span the same
column space in the noiseless case. This SVD truncation can be
again written into the following familiar form:

[Vyi, V2] = [VY\, VY2]T = UpyInViv

UYVEYV[VgVI’ VIYiVZ] (2‘26)

where the M principal components are kept in the truncation as
before. Yyy, and Vy,, are M-by-M matrices.

From (2.25) and (2.26), we have the approximation
Y, - zY, = UyLy[Vin — ZVyvz]EYVU;IV- (2.27)

This approximation suggests that the desired GE’s can be esti-
mated by the GE’s of the M-by-M matrix pencil:

(2.28)

It is simple to show that (2.28) is equivalent to the following
matrix pencil which is the exact pencil used in the TLS-

Vo — ZVyvo.
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ESPRIT:

Viva + 2Vin (2.29)

where Vyy,; and Vi, consist of the M nonprincipal right singular
vectors of [Vy,, Vy,]. The equivalence between (2.28) and
(2.29) can be seen by observing Vi, Vyy + Vifl, Vyy, = 0.
Equation (2.29) was derived in [3] from a different approach.
But from the numerical point of view, (2.28) is preferred to
(2.29) since the principal components are often easier to obtain
than the nonprincipal components.

It is worth noting that the original TLS-ESPRIT differs from
the original LS-ESPRIT only in the additional SVD truncation
(2.26). It will be shown that the SVD truncation does not change
the first-order perturbations in the estimates of the desired GE’s.
It implies that the original LS-ESPRIT and the original TLS-
ESPRIT are asymptotically equivalent in the estimation vari-
ances to the first order approximation. (In the original ESPRIT
setting, E, and E, would represent analytically the residue er-
rors in the cleaned data matrices Y, and Y, after the estimated
noise covariance matrix is subtracted from Y, Y, ¥, Y%, and
Y, Y2 and the variances of the residue errors would be inversely
proportional to the large number of columns available in Y, and
Y,.)

III. FIRST-ORDER EQUIVALENCE

Although Algorithms 1-3 presented in the previous section
generally yield different estimates of the desired GE’s, we now
show that those estimates are equally perturbed by the noise
matrices E; and E, to the first-order approximation.

We define the following equations for the noiseless case:

pH(X, - 2X%) =0 (3.1a)
(X, —2X,)q; =0 (3.1b)

where i = 1, 2, + -+, M; z; is a GE of the pencil X, — zX;; p;
is a left generalized eigenvector restricted within the column
space of X; (or X,); and g¢; is a right generalized eigenvector
restricted within the column space of X " (or X5).

A. For Algorithm 1

We can show by following our approach in [9]-[11] that the
first-order perturbation in the GE z; of Y, — z¥,r is given by

_ pxﬁAYqui - Zipi”aY2Tqi
piXaq;
where 8 denotes the first-order approximation operator; 6Y,rand
8Y,r are perturbations, respectively, in Y,; and Y,, due to E,
and E,. In (3.2), all quantities are noiseless except those pre-
ceded by 8.
Now we need to show that

6z; (3.2)

plAY,rq; = plloY,q; = plEq; (3.3a)
pi'oY,rq; = pi'dYaq; = plExgq;. (3.3b)

Write the complete SVD of Y, as
Y, = Yir + Yip = UL VY + ULV (3.4)

where the first term consists of the M principal components of
Y,, and the second term consists of the rest nonprincipals of ;.
. Taking the first-order perturbation of Y; leads to

8Y, = 8Y,p + &Y,
= 8Y,y + SUITIVH + UjsEi Vi + U LioviH
(3.5)
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where all quantities are noiseless except those preceded by 4.
Since in the noiseless case, p; belongs to the column space of
U,, and g; belongs to the column space of V,, it follows that
pfU; =0 and Vg, =0

in the noiseless case. Also notice that Ij is the zero matrix in
the noiseless case. Therefore, multiplying 8Y, in (3.5) by p; and
q; leads to

pioY,q; = pfoYirq; (3.6)
which implies (3.3a), (3.3b) can be proved in a similar fashion.

The two equations of (3.3a) and (3.3b) suggest that the SVD
truncation on each of Y, and Y, does not affect the first-order
approximations in the estimates of the desired GE’s.

In the applications of the matrix pencil, X, and X, are often
known. In that case, further analysis of (3.2) can be carried out
as the authors did in [9]-[11] for the problem of estimating the
complex exponential signals.

B. For Algorithm 2

We now show that the estimates of the desired GE’s of Al-
gorithm 2 are the GE’s of a matrix pencil which is equivalent
in the first-order approximation to the matrix pencil used in Al-
gorithm 1.

As shown in Section II, the GE estimates of Algorithm 2 are
the GE’s of the matrix pencil of (2.9). Furthermore, (2.9) is
equivalent to the second expression in (2.8). Hence, we can
define an equivalent matrix pencil for Algorithm 2 as

UL, V{’T — Uy, V?T (3.7)
where U, 1, U,r, V7 and V, are defined by the following equa-
tions (refer to (2.6) and (27)):

[U,, U;] =[U,, Uz]T + [0, Ualr

[UIT’ UZT] + [U{T’ UéT]

1l

= UyZy[Vi, V] + UuLul Vil Vil (3.8)
[Vi, Vo] = [V), Vz]T + [V, Vz]’T

= [Vir, Var] [Vir, Virl

= UyLp[Vih, Via] + UENVA, WL (3.9)

The terms with primes consist of the nonprincipal components
while those without the primes consist of the M principal com-
ponents. It is known that the perturbations in singular values
and singular vectors are linearly proportional to the small per-
turbations in the matrix to the first-order approximation [20].
Therefore, L}, and I}, are linearly proportional to E; and E, to
the first-order approximation.

The GE’s of (3.7) are not changed after it is left multiplied
by U%, and right multiplied by V,;, which yields

(UngUlT)El(VlliTV2T) - Z(U§TU2T)22(V£ITV21)- (3.10)

Using (3.8), we have

USU, = UnEyVi + Vi Eg Vi

I

URU,; + Vi, ERUH. (3.11)
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Neglecting the second-order terms of E; and E,, we have
U%U,r = USU,.
Similarly, it can be shown that to the first-order approximation
V?TVIT = Vng
U3 Uy = Uﬁ"Uz =1
V?TVzr = V¥V2 =1L

Now comparing (2.4) of Algorithm 1 to (3.10) of Algorithm
2 implies that the two algorithms are equivalent to the first-
order approximation. Hence, the perturbation expression of
(3.2), (3.3) also applies to the Pro-ESPRIT.

3) For Algorithm 3: 1t suffices to show that neither the SVD
truncation of (2.25) for the LS-ESPRIT nor the SVD truncation
of (2.26) for the TLS-ESPRIT yields different first-order per-
turbations in the estimated GE’s.

According to (2.25), the matrix pencil of the LS-ESPRIT can
be written as

Yirs — 2Yors (3.12)

where ¥ 73 = UyLy V¥, and Y,75 = U, L, V%, Note that (3.12)
has the same GE’s as the pencil Vy,; — zVy,.

Following the approach in [9]-[11], the first-order perturba-
tions in the GE’s of the (3.12) are given by (3.2) with AY,and
0Y,r replaced by 8Y,75 and 8,5, respectively. Following the
same approach as for (3.3), it is easy to verify the following:

P?‘sersqi = P?EI% (3.13a)

P:HaYsz‘Ii = P?Ezqi- (3.13b)

These two equations implies that the joint SVD truncation as in
(2.25) does not either affect the first-order perturbations in the
estimated GE’s.

Equation (2.26) for the TLS-ESPRIT is simply a further step
of the joint SVD truncation. Hence, it can be similarly shown
that the GE’s of the pencil ¥y, — zVy, are equally perturbed in
the first-order approximation as the GE’s of the pencil Vy,, —
ZVyy2. In other words, the LS-ESPRIT and the TLS-ESPRIT
are equivalent to the first-order approximation, and they are
equivalent in the first-order approximation to Algorithms 1, 2.

We have now considered Algorithms 1-3 without knowing
the detailed structure of ¥, and Y,. In the next section, we shall
discuss the complex exponential signal problem for which the
detailed structures of Y, and Y, are known.

IV. THE STATE SPACE METHOD AND THE MATRIX
PENCIL METHOD

For estimating the parameters of the complex exponential
signals, several researchers [14]-[19] have studied the state
space method. Compared to the matrix pencil algorithms, as
shown in Section II, the state space algorithm [16] also exploits
a matrix pencil structure but in a different way as shown in the
following.

Let the data sequence be

M
y(k) = 2 azt + n,
i=1

where k = 0, 1, - -+ , N — 1, and z;’s are called the signal
poles. The state space algorithm estimates the signal poles by
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starting with the following data matrix:

¥(0)
y(1)

¥(1)
¥(2)

coe (L + 1)

Y= (4.1)

y(IN-L—-1) y(N=-L) +-- y(N-1)

where L is restricted by M < L < N — M. The SVD of this
matrix is then computed:

Y=ULVv? + vt (4.2)
where the first term consists of the M principal components, and
the second term consists of the remaining nonprincipals. The
signal poles are then estimated by the GE’s of the full rank
matrix pencil:

Sl - ZS2 (43)

where S, is V with the first row deleted, and S, is V with the
last row deleted. In [16], the GE’s of (4.3) are computed by
computing the eigenvalues of the matrix §5 8, = (§75,)"!
(S7S)).

After the discussions in Section II, it becomes trivial to re-
alize that the original state space method can be improved in
the following way. Since in the noiseless case, S, and S, each
span the same column space, we can extract out the M principal
components from S, and S, by the joint SVD:

181, &1 =[S, 8], = UsEs[V§h, Vsa). (4.4)
Then we estimate the signal poles from the GE’s of the M-
by-M matrix pencil Vs, — zVg,. This algorithm will be referred
to as improved state space algorithm or Algorithm 5. The orig-
inal state space method will be called Algorithm 4.

In the direct matrix pencil algorithm [9]-[11], we construct
a matrix pencil directly from the data as

Y, - zY, (4.5)

where Y, is Y with the first column deleted, and Y, is Y with the
last column deleted. Since (4.5) has all the properties stated for
(1.1) in Section I, the three algorithms presented in Section II
can be applied to extract the signal poles from (4.5).

To show the first-order equivalence between the state space
algorithm and algorithms 1-3, we may write (4.3) into the
equivalent matrix pencil:

Yizs — zlors (4.6)

where Y75 = ULS, and Y, = ULS,. Then following the ap-
proach presented in Section III, it is clear that the GE’s of (4.6)
have the same first-order permutations as the estimated GE’s
obtained by Algorithms 1-3 applied to (4.5).

It is needless to show that Algorithm 5 is equivalent to Al-
gorithms 1-4 to the first-order approximation.

In addition to the noise sensitivity analysis of the state space
algorithm carried out by researchers like Rao [19] and Kot [18],
our work in [9]-[11] for the direct matrix pencil algorithm has
now been shown to be valid also for the state space algorithm.

The major computations required by the five algorithms (if
all applied to (4.5)) can be summarized in the following: In
addition to solving for the GE’s of an M-by-M matrix pencil,

Algorithm 1 requires SVD’s of two ‘‘independent’” (N — L)
by L matrices;



HUA AND SARKAR: SVD FOR ESTIMATING EIGENVALUES OF SINGULAR MATRIX PENCIL

Algorithm 2 requires SVD’s of two ‘‘independent’’ (N — L)
by L matrices and two ‘‘independent’” M-by-M
matrices;

Algorithm 3 requires SVD’s of one (N — L) by 2L matrix
and one L-by-2M matrix (or SVD’s of one 2(N
— L)-by-L matrix and one (N — L)-by-2M ma-
trix);

Algorithm 4 requires SVD of one (N — L)-by-(L + 1) ma-
trix;

Algorithm 5 requires SVD’s of one (N — L)-by-(L + 1)
matrix and one L-by-2M matrix.

Here the ‘‘independent’’ means that the two matrices can be
processed in parallel, which is a property stressed in [5], [6] for
the Pro-ESPRIT.

It is clear that the amount of computation required by each
algorithm depends on the free parameter L. It is known [9]-
[11], however, that the choice of L greatly affects the noise sen-
sitivity of the estimated signal poles. In terms of the noise sen-
sitivity, the good choices of L are normally between N/3 and
2N/3.

Finally, we like to mention the case where the underlying
signals are undamped pure sinusoids. For this case, the follow-
ing forward-and-backward data matrix can be used in place of

4.1
Y
Yep =
Y*p

where Y* denotes the complex conjugate of Y, and P is the
permutation matrix (i.e., with ones on its cross diagonal axis).
It can be shown that the five algorithms are also equivalent to
the first-order approximation when applied to Ypz.

V. SIMULATIONS

In our Monte Carlo simulation, we considered the superim-
posed damped sinusoidal signal:

2
y(k) = ~§ 2b,r% cos (wik + ¢;) + an(k)

wherek = 0,1, - -+ ,25,b,=b,=1,¢, =0, ¢, = 45, r,
=0.8,r, =0.9, v, = 0.7, and w, = 0.5. n(k) is pseudowhite
Gaussian with unit deviation, which was generated by the IMSL
GGNML routine with DSEED = 123457. Two hundred inde-
pendent runs were computed. The same data were applied to
each of the five algorithms: 1) the direct matrix pencil algo-
rithm; 2) the Pro-ESPRIT; 3) the TLS-ESPRIT; 4) the state
space algorithm, and 5) the improved state space algorithm.
Again we mention that following the original Pro-ESPRIT or
the original TLS-ESPRIT, we would have to compute the co-
variance matrices Y, Y}, ¥, Y% and Y, Y¥ (or the larger covari-
ance matrix [Y,, Y,]1[Y,, Y,17) and remove the estimated noise
covariance from the above covariance matrices. But our interest
here is to illustrate the effectiveness of the SVD based trunca-
tion steps in all the five algorithms. (For the problem of only
26 data points, the covariance filtering may not do any good.)
Due to the numerical instability of the IMSL LSVDF routine,
all singular values and singular vectors were computed through
the IMSL EIGRS routine which computes the eigen decompo-
sition of real symmetrical matrices. The GE’s of the M-by-M
matrix pencil were computed by the IMSL EIGZF. The whole
simulation was run in FORTRAN-77 double precision.
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0.008
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Fig. 1. Sample deviations of the estimate of r, versus the parameter L for
Algorithms 1-5. The deviations for L = 8, 10, 12, 14, 16, 18 are plotted.
The deviations for the five algorithms are close.
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Fig. 1 shows the sample deviation of the estimated r, versus -

the free parameter L with the noise deviation ¢ = 0.01. r; and
w; were obtained from z; according to r; = |z;| and w; = Im
{ln (z;)}. Im { -} denotes the imaginary part. Because there
are two complex conjugate pairs of the desired GE’s, M was
chosen to be 4. It is seen from Fig. 1 that the deviations are
very close for all the five algorithms. This is because the devia-
tions (or variations) are dominated by the first order perturba-
tions if the noise level is not too high (i.e., not above a thresh-
old). Fig. 2 shows the sample bias of r, versus L with ¢ = 0.01.
It appears from this plot that the second-order perturbations of
the five algorithms are all different since the biases are domi-
nated by the second-order perturbations when the noise level is
not too high. Figs. 1, 2 confirm our observation (made in [9]-
[11] for Algorithm 1) that the good choices of L are between
N/3 and 2N /3. Fig. 2 also shows that Algorithm 3 has the least
bias, followed by Algorithms 5 and 4.

Since r, was observed to be much more sensitive to the noise
than the other parameters (r,, w,, and w,), similar plots for
those parameters should be of less interest. We like to stress
that each of the five algorithms could be judged to be the most
accurate based on some isolated cases. But our experience shows
that Algorithms 3-5 tend to be more accurate than Algorithms
1, 2.

To present the threshold effect, we provide Figs. 3 and 4.
Fig. 3 shows the deviation of r; versus ¢ with L = 13. Fig. 4
shows the deviation of w, versus o with L = 13. It is interesting
to observe that although Algorithm 2 appears to be robust in
estimating r, (from Fig. 3), it breaks down as early as Algo-
rithm 1 in estimating w, (from Fig. 4). In plotting Fig. 4, the
deviations were limited to the value 0.1.

The large deviations of the estimated frequencies, when the
noise level is above the threshold, were due to the false real
valued GE’s obtained from the M-by-M matrix pencil. The pos-
itive real valued GE’s yield zero frequency, and the negative
real valued GE’s yield the frequency =. When the false real
valued GE’s occur, we call the corresponding run a ‘‘bad run.”’
In Table I, the bad runs are listed for each algorithm as func-
tions of the noise level . It is interesting to see from this table
that the noise robustness of the five algorithms can be ranked
according to their current order.

VI. CONCLUSION

We have reviewed the contemporary algorithms, the direct
matrix pencil algorithm, the Pro-ESPRIT, and the TLS-
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Fig. 2. Sample biases of the estimate of r, versus the parameter L for Al-
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biases for the five algorithms are quite different.
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Fig. 3. Sample deviations of the estimate of r, versus the noise deviation
o for Algorithms 1-5. L = 13. Algorithm 1 appears to have the worst
threshold while Algorithm 2 appears to have the best.
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Fig. 4. Sample deviations of the estimate of w, versus the noise deviation
o for Algorithms 1-5. L = 13. In this plot, both Algorithms 1, 2 have a
close threshold which is worse than that for Algorithms 3-5.

ESPRIT, for estimating the Ge’s of the singular matrix pencils
perturbed by noise.

The SVD truncations have been presented as the basic prin-
ciple inherent in all the algorithms. An in-depth look into the
Pro-ESPRIT and the TLS-Pro-ESPRIT has been made possible
with the theorem shown in Section II, which shows that the two
algorithms are equivalent. We have also shown that the SVD
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TABLE 1
NuMBER OF Bap Runs Out oF 200
0= Algrm. 1 Algrm. 2 Algrm. 3 Algmm. 4 Algrm. 5
0.032 0 0 0 0 0
0.034 1 0 0 0 0
0.036 5 3 0 0 0
0.038 7 4 0 0 0
0.040 9 5 1 1 0
0.042 11 7 2 1 1
0.044 13 7 3 3 2
0.046 13 7 4 3 3
0.048 17 8 5 3 3

truncations employed in all the algorithms do not the change
the first-order perturbations in the estimated GE’s. It implies in
particular that the LS-ESPRIT and the TLS-ESPRIT are asymp-
totically equivalent to the first-order approximation. For the
special problem of estimating the parameters of the complex
exponential signals, the state space algorithm has also been re-
viewed. It has been shown that the state space algorithm is
equivalent in the first-order approximation to all the other ma-
trix pencil algorithms. We have also presented an improved state
space algorithm which turns out to be the most robust algorithm
among the five matrix pencil algorithms compared.

APPENDIX
PROOF OF THEOREM 1|

First, we let the M-by-M matrix V, have the SVD:

Vy, = G,LHY (A.1)

where G, and H, are unitary left and right, respectively, sin-
gular vector matrices, and I is the diagonal matrix of the sin-
gular values of Vy,. It is easy to show that each singular value
of Vy, is larger than zero and less than one. Due to the ortho-
normality of the singular vectors

VoV + ViVys = I (A2)
So
ViB.Vy, =1 — HL?HY = H|[I - L*|HY. (A.3)
Hence, we can write the SVD of Vi, as
Vs = G(I — ) HY (A.4)

where G, is the unitary left singular vector matrix of Vy,. In
the similar manner, (A.1) together with

VoiVor + Vo Vg = 1 (A.5)
enables us to write the SVD of Vj;, as
Vi, = G(I - %) HY (A.6)

where H, is another unitary matrix. Furthermore, (A.4) and
(A.6) together with

Vi VB, + Vip Vil =1 (A7)
and
VAV, + VBV, =1 (A.8)
lead to .
Vil = G,L?GY (A.9)
ViV, = H,L?HY. (A.10)
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Equations (A.9) and (A.10) force Vy, to have the SVD
Vi, = G,KLHY (A.11)

where K is a unitary diagonal matrix (due to the fact that each
singular vector is unique up to a complex scalar of the magni-
tude one, and the left singular vector is absolutely unique if the
corresponding right singular vector is given, and vice versa).
But we know that

Vo Ve + Vo Vs = 0. (A.12)

Substituting (A.1), (A.4), (A.6), and (A.11) into (A.12) leads
to

G,I(I - £%)?G, + GL(I - £)'’KG, =0 (A.13)

which implies K = —1I.
Now, we need to show that

L =1/v21 (A.14)

Since each of U, and U, consists of M orthonormal vectors, we
can write (using (2.10)):

UTU, = Vi ZYVE + Vi Zg Ve =1

(A.15)
and
UZU, = Vy,Z3VE, + Vi, LRVt = (A.16)

We denote by 8> Bai» hy;, and h,; the ith column of G,, G,, H,,
and H,, respectively, and by o; the ith diagonal element of .
Then, it is easy to verify that (using (A.1), (A.6) and (A.15)):

gﬁUII"UIgli = U?hﬁz%/hli + (1 - sz)hngjzhz.' =1

(A.17)
and (using (A.4), (A.11) and (A.16))

gluiu, g, = (1 ~ oHRETLh,; + o2 HET2 R, = 1.
(A.18)
Since
RiELhy > WETEh, (A.19)
it follows from (A.17) and (A.18) that 6 = 1 — ¢2, i.e., 0, =

1/42.
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