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Supervisory Control Using Failure Semantics 
and Partial Specifications 

Ard Overkamp 

Abstract-A framework is presented for the supervisory con­
trol of nondeterministic discrete-event systems based on failure 
semantics. It guarantees deadlock-free behavior under all circum­
stances, it allows for powerful specifications, it forms a sound 
basis for modular control, and it can handle nondeterminism 
without extra effort. A synthesis method to generate the least 
restrictive supervisor is presented. 

Secondly, the control problem with partial specification is 
formulated, and it is shown that this control problem can be 
rewritten to a control problem with full specification. Special 
care has to be taken for traces with an unbounded internal 
extension (divergence). A condition, denoted bounded recurrence, 
is introduced to handle these traces. It is shown that the exter­
nal behavior of the controlled system is not restricted by this 
condition. 

Index Terms- Failure semantics, nondeterministic discrete­
event systems, partial specifications, supervisory control. 

I. INTRODUCTION 

NONDETERMlNISM reflects the lack, or the deliberate 
hiding, of information. Reality may be considered deter­

ministic, but models are an abstraction of reality. Models stress 
some aspects of reality by hiding irrelevant details. The hiding 
of details causes systems to exhibit nondeterministic behavior. 
Therefore, we wish to use nondeterrninistic processes to model 
discrete-event systems. Of course, models can be made deter­
ministic by also including the unimportant details and stating 
which details are important and which are not. However, this 
will lead to unnecessarily complex models. 

Supervisory control of deterministic discrete-event systems 
was first introduced by Ramadge and Wonham [I]. In [2] 
the basic supervisory control problem for nondeterministic 
systems was introduced and solved. The approach is based 
on failure semantics. Failure semantics provides a theoretical 
foundation to reason about the behavior of nondeterministic 
discrete-event systems. It is introduced by Hoare [3]. In [ 4] 
the supervisory control problem for nondetenninistic systems 
with partial specification was formulated, and it was stated, 
without proofs, that it can be reduced to the basic control 
problem. In this paper a proof of this result is presented. 
Partial specifications allow for implementation-independent 
specifications, which are highly desired if specifications are 
used by different manufacturers or if new implementations 
are expected in the future. Partial specifications are also well 
suited for control problems in layered architectures such as 
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the ISO-OSI network model [5]. Protocol design problems in 
layered architectures can be treated as control problems by 
considering the lower level service as the uncontrolled system, 
the protocol as the supervisor, and the higher-level service as 
the specification. Usually the lower level uses implementation 
events that are not used in the higher level. This leads very 
naturally to a control problem with partial specification. 

A discussion on the motivation for the use of failure 
semantics will be given in Section IV. The approach based 
on failure semantics will be compared with frameworks based 
on deterministic systems with marking. It will be shown that 
the supervisory control framework based on failure semantics 
is a flexible and elegant method. It guarantees deadlock­
free behavior under all circumstances, it allows for powerful 
specifications, it forms a sound basis for modular control, and 
it can handle nondeterminism without extra effort. 

The control problem discussed in this paper is to find a 
supervisor such that the controlled system can replace a given 
specification in any environment. The precise meaning of this 
statement and the motivation for it are given in Section IV. 

The main difference between the approach presented in this 
paper and the approach presented by Kumar and Shayman 
[6] is that the latter uses the prioritized synchronization op­
erator. This more complex synchronization operator requires 
a stronger semantics than failure semantics. Therefore, they 
use trajectory semantics for their models. Future experience 
will provide information whether this enhanced complexity 
is required, or useful, to handle supervisory control prob­
lems. Kumar and Shayman use a language as specification, 
whereas in this paper a process is used. A process can 
specify nondeterministic properties, therefore the class of legal 
implementations can be more accurately specified by a process 
than by a language. 

Another control framework, which can handle nondeter­
ministic systems, is presented by DiBenedetto et al. [7]. This 
approach is based on input/output (I/0) automata. 

In [8] Inan presents the projected specification problem 
which is similar to the control problem with partial specifica­
tion discussed in this paper. Although Inan uses a nondetermin­
istic supervisor as a finite representation of the possibly infinite 
set of solutions, the approach is based on languages. He does 
not consider unbounded internal continuations (divergence, see 
Section III). 

II. PROCESSES 

Let L: denote the set of all possible events. A trace s is 
a finite sequence of events s == o-1 o-2 ... o-,,, with for all 

1 :::; i :S n, ai E L:. The length of a trace is the number of 
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Fig. I. Models of a vending machine. 

events in the trace. Let€ be the empty trace, i.e., the sequence 
of events with length zero. Let L;n denote the set of traces 

with length n:L:;" = {0'10'2 .. ·0",,:\il::; ·i '.S n,O'; EI;}. Let 
L;* denote the set of all traces: ).;* = U~=o ~,,. Let I;+ denote 

the set of all nonempty traces: ~+ = U~1 I;" = :B* - { c: }. 
A language is a subset of )_.:;*. 

A string v E )~* is a pre.fix of a string s E ~· if s = 1Jt 

for some I. E )~*. The set of all prefixes of string s will be 

denoted by :zi = { v E L:*: :Jt E ~· s.t. s = vt}. The prefix 
closure of a language K ~ ).:; is the set of all its prefixes: 
K :::: {v E 2.:*: :ls E K s.t. ·v E s}. A language is called 
prefix closed if it is equal to its prefix closure: K = K. The 
next event function ,\ gives all events that are possible after 
a string: ,\( K 8) = { O' E 2.:;: BO' E K}. The p-function is the 

complement of the next event function. It gives all events that 
cannot be executed after a string: p(IC s) = ~ - ,\( K, s). 

Deterministic processes can be uniquely described by the 
language they generate. For nondeterministic processes this is 
not enough [ 9 j. 

l\ampl e I: Consider a vending machine that hands out a 
cookie or a chocolate bar in exchange for a coin. In Fig. I 
the representations of three vending machines are given by 

finite-state automata. All three machines can generate the 
same language but will behave differently. Therefore, it is not 
sufficient to describe their behavior by the language that they 
can generate. How the machines behave is best illustrated by 
letting a user operate the machines. After a client inserts a coin, 
the first machine will always hand out what the user requests. 
It will never refuse to give a cookie or a chocolate bar. If the 
user wants to have a chocolate bar from the second machine, he 
might get disappointed because the machine can reach a state 
in which it cannot give a chocolate bar. It will, however, never 
refuse to hand out a cookie. The third machine can sometimes 
refuse to give a cookie and sometimes refuse to give a 

chocolate har, but it cannot refuse both at the same time. If a 
user requests either of the sweets, no matter if it is a cookie or 
chocolate bar, then the machine cannot refuse and it must hand 
out one of them. To describe the behavior of the machines it is 
necessary to not only describe the events that can be executed, 
i.e., the language, but also the event sets that can be refused. 
This is the basis of failure semantics [3 ]. A machine can refuse 
event set 1l ~ )~ after string s if it can reach a state by execut­
ing string 8, and it cannot execute any event of event set Hin 
this state. Note, however, that because of nondeterminism, the 
machine might also be able to reach another state after string 

s, and in this state it might be able to execute an event of event 
set R. So, it is possible that an event can be executed after a 
trace, although it can also be refused after the same trace. 

(b) 
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(c) 

The event sets that can be refused are called refusals. A set 
of refusals is called a refusal set. For instance, the refusal set 
of the third machine after a coin is inserted is the following: 

{ 0, {coin}, {cookie}, { choc}, {coin, cookie}, {coin, choc}}. 

As explained in Example I, the machine cannot refuse both 
the cookie and choc-event, so the event set {cookie, choc} is 
not an element of the refusal set. 

In the sequel the terms "process" and "system" are used 
interchangeably. 

Definition l: A process is defined as a triple A = 
(I:(A), L(A), ref (A)), where 

I;(A) ~I: is the set of event labels 

L(A) ~ I:(A)* is the language generated by A 

for s E L(A), ref (A, s) ~ 2E(A) 

is the refusal set after s 

and which satisfies the following five conditions [3]. 

I) c: E L(A). 
2) L(A) = L(A). 
3) s E L(A) => 0 E ref (A, s). 
4) RE ref (A, s) and R' ~ R => R' E ref (A, s). 
5) RE ref(A,s) => RUp(L(A),s) E ref(A,s). 

These conditions state, respectively, that the language has to 
be nonempty and prefix closed, the refusal sets have to be 
nonempty and closed under the operation of taking the subset, 
and events that cannot be refused must be in the language. 

For .'i rt, L(A) the refusal set ref (A, s) is defined to be 
2I:(Al. Let 11(~) be the set of all processes A with I:(A) ==I;, 

The ref-function associates to each string a set of subsets of 
~- If a subset R is an element of ref (A, s ), then the process 
has the possibility after trace s to block all events in R. That 
is, if a user offers (via the synchronous composition defined 
below) to the system a set of events which is in the refusal 
set, then the system has the possibility of blocking all these 
events. No event can be executed. This is called a deadlock. 

Definition 2: System A can deadlock after traces E L(A) 
if I:(A) E ref(A, .s). System A is deadlockfree after s if 
)~(A) if. ref (A, s). 

It will be assumed that if A is deadlock-free after trace .s, 
then eventually it will execute an event from .\(L(A), s). So 
·a system will continue unless it deadlocks. Note, however, 
that if a process can deadlock after a trace, then this does not 
mean that it actually will deadlock. If a process can deadlock 
after trace s, then it can reach a state q1 in which it cannot 
execute any further event. But, it could also be, because of 
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nondeterminism, that it reaches another state, say q2, in which 
it can execute an event. 

Deterministic Processes 

A discrete-event system A is considered deterministic if 
from each state there is at most one transition corresponding 
with each event a E 2.:(A). After observing a trace s E L(A) 
it is uniquely determined in which state the system is. So 
it is also uniquely determined which events can be executed 
after .'.! and which events are refused after s. We will consider 
a process deterministic if and only if any event that can be 
executed after a trace cannot be refused after the same trace. 

The class of nondeterministic processes strictly contains the 
class of deterministic processes. 

Definition 3: Process A is called deterministic if for all 
s E L(A) 

RE ref (A., s) {::} R ~ p(L(A), s). 

A prefix-closed language K ~ I:* uniquely defines the 
deterministic process Det (K), with 

L:(Det (K)) =I: 

L(Det (K)) = K 

ref (Det (K), s) = 2r(K,s). 

It is not difficult to prove that Det (K) satisfies the condi­
tions I )-5) of Definition I. It will be left without proof that 
all processes constructed in the rest of the paper satisfy these 
conditions. 

The class of deterministic processes does not correspond 
exactly with the class of deterministic automata. Consider 
an automaton that can make a nondeterministic choice, but 
in each option it behaves exactly the same as in the other 
1ptions. Thus, the nondeterministic choice cannot be detected 
rom the behavior of the automaton. This system is considered 
iondeterministic from an automaton point of view because it 

can make a nondeterministic choice. But, it is deterministic 
from a process point of view because it satisfies Definition 3. A 
system will be called deterministic if its process representation 
is deterministic. 

Synchronous Composition 

Control will be enforced by synchronization on common 
events. The controlled system (i.e., the synchronous composi­
tion of the plant and the supervisor) can only execute those 
events that both the supervisor and the plant can execute. 

Definition 4: Let A, B E II(L:). The synchronous composi­
tion of A and B is the process AllB E II(:E), with 

:E(AllB) =I: 

L(AllB) = L(A) n L(B) 

ref(AllB,s) ={RaURb:Ra E ref(A,s) and 

Rb E ref (B, s)}. 

Behavior State Representation 

For processes there is no canonical automaton representation 
such as the minimal state deterministic automaton represen­
tation used for languages. In this section we will define a 
representation that will be used in the rest of the paper as 
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Fig. 2. Behavior state representation of a vending machine. 

the automaton representation of processes. It will be used to 
describe processes and to perform computations on processes. 
The representation is based on an equivalence relation similar 
to the Nerode equivalence relation used for languages [ 10]. 

Let A/ s be the process that behaves as process A after it 
has executed trace s, Two traces s and s' can be considered 
equivalent if A/ s = A/s', that is, if the traces that A can 
execute and the event sets that A can refuse after s and s', 
and the event sets that A can refuse after any continuation of s 
and s' are the same. One can regard A/ s as the state reached 
after trace s. To differentiate this notion of state from the 
states used in regular nondeterministic automata, we will call 
A/ s the behavior state reached after trace s. These behavior 
states can be used to make a behavior state transition structure, 
where the set {A/s: s E L(A)} is the state space and the 
transition function is defined by A/ s !!.+A/ sa. The initial state 
is A = A/ s. Associated with each state is a set of refusals 
defined by 

ref(A/s) =ref(A./s,s) =ref(A,.s). 

This transition structure will be denoted the behavior state 
representation of process A. Note that this representation 
forms a deterministic transition structure because each pair 
(A/s, c7) uniquely defines the next state A/w. It can be seen 
as if the nondeterministic properties are encoded inside the 
refusal sets of the behavior states, instead of modeled by the 
transition function. 

In Fig. 2 the behavior state representation of the process 
defined by Fig. l(c) is given. For compactness reasons, only 
the maximal refusals, i.e., the refusals not strictly contained in 
another refusal, are shown. As refusal sets are closed under 
the operation of taking subsets, the whole refusal set can 
be derived from the maximal refusals. Also, the refusal sets 
of behavior states A/ s with ref (A/ s) = 2r(L(A),s) are not 
shown. These refusals can be derived from the outgoing edges 
of the state. 

The refusal set of behavior state A/ s is 

ref (A.Jc-)= 2r(L(A),e) 

= {0, { choc }, {cookie}, { choc, cookie}}. 

The refusal set of behavior state A/ s is the set of all subsets of 
{coin, cookie} and {coin, choc}. It is shown after Example 1. 

Converting a nondeterministic finite-state machine to a be­
havior state representation is basically the same as converting 
a nondeterministic state machine to a deterministic version. 
This conversion has a known complexity that is worst case 
exponential in the size of the state space of the original state 
machine. But in practice, systems have sufficient structure such 
that this conversion may not be a problem. 
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Fig. 3. Internal events and divergence. 

IIL PROJECTION 
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Very often events occur that are not visible from the outside 
of a system. Inside the system an error can happen, the 
effect of which can only be detected later. Also, low-level 
implementation events usually do not show up on a higher 
level. In order to be able to investigate the external or higher 
level description of a system, we need a method to project 
these internal events out of a description. 

Definition 5: Let E, <;;; E denote the set of external events 
and E; == E - El' the set of internal events. The projection of 
a trace onto event set Ee is the trace from which all events 
not in E,. are removed [ 1]. The projection of a language 
is the set of all its projected traces. In the sequel a small 
"p" will denote projections of traces, languages, and refusal 
sets. A large "P" will denote projections of processes (see 
Definition 7). A subscript indicates the event set on which 
the projection is done. Consider a vending machine as shown 
in Fig. 3(a). After inserting a coin, a chocolate bar can be 
obtained, provided the machine does not execute internal event 
i, after which only a cookie can be obtained. The question is 
what the projected system can refuse after a coin is inserted. 
Suppose a customer insists on having a cookie. He refuses to 
accept a chocolate bar. The machine must now execute the 
internal event because that is the only possible event that is 
not blocked. The system ends up in a state in which it must 
hand out a cookie. So, it is clear that the machine cannot 
refuse to engage in a cookie-event. The machine can refuse to 
hand out a chocolate bar because the customer cannot prevent 
the internal event from occurring. After the internal event the 
vending machine cannot engage in the choc-event. 

If a system refuses external event set H" <;;; 2;,,, but it can 
still execute an internal event, then it may end up in a state in 
which it does not refuse this external event set. On the other 
hand, if the system does not refuse R,., but it can still execute 
an internal event, then it may end up in a state in which it 
can refuse H, .. It turns out that the refusals of the projected 
system are defined by those states in which the machine cannot 
execute internal events. These states correspond with refusals 
that contain the set of internal events. The projection of the 
refusal set rnf (A, s) on events set 2-:,. is defined by 

p"(ref(A,s)) == {H ~ 2;,.:RUE; E ref(A,s)}. 

Divergence 

But there is another problem. It may happen that a machine 
can execute internal events forever. See for example Fig. 3(b). 
After a coin is inserted, the machine can always choose to 
execute an internal event because it cannot be blocked from the 
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outside. To the customer it appears as if the machine refuses 
all external events. This phenomenon is called divergence [3]. 

A trace s is called divergent with respect to a system and 
an external event set if the system can execute an unbounded 

number of internal events after s. We cannot write "an infinite 
number of events," because only finite traces are considered. 

Definition 6: The set of divergent traces with respect to a 
language K <;;; I:* and external event set Ee is denoted by 
div (K, Ee) and defined by 

div (K, I:e) = {s EK: Vn EN, 3si E Ei s.t. ls.;I > n and 

SS;, EK}. 

Let A E II(E) be a process. For notational convenience we 

will use div (A, I:e) to denote div (L(A), be)· 
As div (A, Ee) is a set of traces, i.e., a language, the 

projection Pe ( div (A, E,,,)) is well defined. 
Definition 7: The projection of process A E II(I:) on 

alphabet I:e is the process Pe(A) E II(Ee), where 

E(Pe(A)) =Ee 

L(Pe(A)) = Pe(L(A)) 

{ 2~e, ifse EPe(div(A,Ee)) 

ref(Pe(A),se)= LJ Pe(ref(A,s)) 
sEp~- l (s,) 

otherwise. 

In the definition above it is assumed that if a system can 
diverge, then it has the ability to refuse all external events. 
In some situations this is a rather pessimistic assumption. 
Sometimes a more optimistic approach is justified. Consider, 
for instance, a network in which a lost message automatically 
causes the retransmission of the message. The internal events 
"message-lost" and "retransmit" together form a loop of in­
ternal events. After retransmission the retransmitted message 
may also get Jost, which causes the next retransmission. With 
a pessimistic point of view one can argue that the system can 
execute internal events indefinitely and can therefore refuse 
all external events. But usually it is assumed that eventually, 
after sufficient retransmissions, the network will be able to 
deliver the message. This can be interpreted as if the system 
cannot refuse the external "message-received" event. It would 
go beyond the scope of this paper to further investigate 
the consequences of this more optimistic interpretation of 
divergence [ 11 ]. In the sequel the pessimistic approach toward 
divergence will be used. 

IV. SPECIFICATION, IMPLEMENTATION, AND CONTROL 

In general, a design problem can be defined as: given a spec­
ification, find an implementation that satisfies the specification. 
A design problem can be considered a supervisory control 
problem if the implementation consists of an already existing 
uncontrolled process G and a still-to-be-designed supervisor 
process S. In this paper, the control problem of finding a 
supervisor S such that GI IS can replace a given specifica­
tion process E is analyzed. The use of failure semantics 
for this control problem is described and motivated in this 
section. The following example will illustrate in what sense 
an implementation must be able to replace a specification. 

Example 2: A system usually does not work on its own. 
It is embedded in a larger system. For instance, a hard-
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disk unit is used inside a computer system. The computer 

is usually designed at a different location than the hard­

disk unit. During the design phase a standard is negotiated 

between the computer manufacturer and the disk manufacturer. 

This standard is the specification of the hard-disk. After 

this standard is established, the computer designer models a 

computer system in which it expects a hard-disk unit that 

behaves according to this specification. It is the hard-disk 

developer's task to build a hard-disk unit that satisfies this 

specification. Without him knowing how the computer system 

will look, he has to design a unit that works together with this 

system. He has to build an implementation of the hard disk 

that can replace the specification used for the design of the 

computer system. 
Consider the following implementation relation (12], [3]. 

Definition 8: Let A, B E Il(I:). A reduces B, denoted by 

A [:;:; B, if 

1) L(A) ~ L(B); 
2) Vs E L(A),ref(A,s) ~ ref(B,s). 

Here, point I) states that system A may only do what system 

B allows, and point 2) states that A. may only refuse what 

B can also refuse. We will say that process G 11 S implements 

specification E if GIJS i;;:; E. 
The next two results are well known in computer science 

(13]. The first one states that two processes are considered 

equal if they both implement each other. The second one 

states that the reduction relation forms a congruence with the 
synchronous composition. 

Proposition 1: Let A, B E H(I:). Then A = B 9 A i;;:; 
B /\ B i;;:; A. 

Proposition 2: Let A. 1 , A.2, B1, B2 E H(2=) such that A. 1 i;;:; 

A" and B1 [:;:; B2. Then A1llB1 i;;:; A.2llB2. 
In Example 2 the implementation of the hard-disk has to 

such that it can replace its specification in any computer 

:em. This is guaranteed by the reduction relation. Let G 11 S 

1d for the implementation of the hard-disk, E for the 

-cification, and C for the rest of the computer system. Then 

.11e following implication, which is a direct consequence of 

Proposition 2, states that GI IS can replace E in any computer 
system: 

GJJS i;;:; E =? VC, (GJJS)llC i;;:; EllC. (I) 

The basic supervisory control problem is to find a supervisor 
S such that GllS i;;:; E. 

Implication 1 shows that the reduction relation is strong 

enough to be used as an implementation relation. The follow­

ing result shows that it also forms a necessary condition to 

guarantee deadlock-free behavior. This result forms the main 

motivation for the use of failure semantics and the reduction 
relation. 

Theorem 1: Let A, E E 11(1:) 

Ai;;;;E 

{::} 

VC L(AllC) ',:;; L(EJIC), and 

El IC deadlock-free =?Al IC deadlock-free. 
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Proof: The =?-part follows from Proposition 2. For the 

proof of the <=-part assume that A does not reduce E. Then 

either L(A) ~ L(E) or there exists an s E L(A) such that 

ref (A, s) Sf: ref ( E, s). Assume there exists an s E L( A) such 

that s ~ L(E). Let C be a process such that s E L(C). Then 

s E L(AllC) buts~ L(EllC), so L(AllC) Sf: L(EllC). For 
the other alternative let s E L(A) such that there exists an 

RE ref(A,s) and R ~ ref(E,s). Let C be a process such 

thatref(C,s) = 2E-R. ThenE = RU("i>R) E ref(AllC,s), 

but E ~ ref(EllC,s). So EllC is deadlock-free, but AllC is 

~ . 
A Comparison of Frameworks 

In the rest of this section we will compare the approach 

based on failure semantics and the reduction relation with other 

approaches. The comparison is not intended to be complete. 

It just illustrates some differences between the approaches. 

The original framework introduced by Ramadge and Won­

ham [ l] was intended to handle only deterministic systems. 

The framework presented in this thesis is also capable of 

handling nondeterministic systems. But even if we restrict our 

attention to deterministic systems, there are some important 
differences. 

It can be shown in the framework presented by Ramadge 

and Wonham that the corresponding implication of (I) is 

not satisfied. In that framework a discrete-event system A is 

modeled by the triple (:B(A), L(A), Lm(A)), where L(A) i;: 

E(A)* is the prefix-closed language that A can generate and 

Lm(A) ~ L(A) is the language that A accepts or marks. 

Definition 9: Let A and B be discrete-event systems. A ~m 
B if 

I) L(A) ~ L(B); 
2) Lm(A) ~ Lm(B); 
3) L(A) = Lm(A). 

A system is called M-nonblocking if it satisfies point 3). 

System GI IS is considered an implementation of E in the 

Ramadge-Wonham framework if GJIS i;;:;m E. Note that if 

L(E) = Lm(E), then points 2) and 3) together imply point 

I). Usually the specification is not given as a process but 

as a language K ~ Lm ( G). In this case the specification 

process E can be defined by L(E) = K and Lm(E) = 
K. Sometimes a nonmarking supervisor is required, that is 

Lm(S) = L(S). In this case it is usually assumed that 

L,,, ( E) = L( E) n Lrn ( G). These differences are not important 

for the following discussion which mainly concerns point 3). 

We wish that an implementation could replace the specifi­

cation in any environment. This is, however, not guaranteed 

by the i;;:;m relation. The next example illustrates that in 

general it cannot be guaranteed that the implementation is 

M-nonblocking in any environment, i.e., 

GIJS i;;:;m E /\ EllC is M-nonblocking 

'::fo 
(GllS)llC is M-nonblocking. 

Example 3: Let Ebe the specification with Lm (E) = a(b+ 
c) and L(E) = a(b + c); let A= GllS be the implementation 

with Lm(A) = ab and L(A) = ab; and let C represent the rest 
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of the computer system with Lm ( 0) = ac and L( C) = ac. 
Observe that A l;m E, but L(AllC) =a and Lm(AllO) = e, 
thus L(AllO) I- Lm(AllC). Thus, AllG ~m EllC. 

It can be derived from results obtained by Wonham and 
Ramadge [14] on modular control that (GllS)llO is only M­
nonblocking if Lm(GllS) and Lm(C) are noncon.flicting. That 
is, processes A and B are nonconflicting if common prefixes 
in both processes can be extended to a common marked trace 

L.,,(A) n Lm(B) = Lm(A) n Lm(B). 

This constraint also limits the use of modular control in 
the Ramadge-Wonham framework. If a specification E can 
be decomposed as E1!IE2 = E, then it has computational 
advantages to first synthesize both 81 and 8 2 such that 
G!IS1 implements E1 and G!IS2 implements E2. In the 
framework based on failure semantics it can be deduced from 
Proposition 2 and the fact that G i; GllG, that 

G!IS1 I; E1 /\ Gl!S2 I; E2 
::} 

GllS1llB2 I; E1llE2. 

In the Ramadge-Wonham framework, however, it is necessary 
that Lm( GllS1) and Lm( GI IS2) are nonconflicting in order to 
guarantee that G!IS1 l!S2 is M-nonblocking. This constraint is 
often difficult to satisfy. 

The discussion above considers how well the M­
nonblocking property and the deadlock freeness property 
behave within their own framework. It does not compare 
the properties directly with each other. The M-nonblocking 
property states that a process is always able to complete a task, 
whereas the deadlock freeness property states that a process 
is always able to continue. Note that it cannot be specified 
by a marked language that the implementation should be 
deadlock-free. Even if there are transitions leading out of each 
marked state in the specification, then still an implementation 
which deadlocks in a marked state satisfies the specification 
according to Qefinition 9. Therefore, marking cannot be 
used to guarantee deadlock-free behavior. It depends on the 
particular application which approach is more suited. An 
open question is whether the marking condition on st~tes 

can be replaced by an event that indicates the completion 
of a task. With this approach a process can be considered 
nonblocking if it cannot refuse such a task completion event. 
The nonblocking property can then be adequately handled 
within the framework based on failure semantics. 

Within the computer science area synthesis is investigated 
based on infinite trace theory [I 5J-[ I 7]. Also within the control 
theory area, this approach has been followed [I 8]. Infinite trace 
automata have an acceptance condition which is similar to the 
marking condition for finite trace automata. Because of t~is 
acceptance condition, the corresponding implication .of (I) Will 
not be satisfied within this framework. Also, there Will be extra 
constraints necessary for modular control synthesis. 

It is logical, if one considers that the implication. sho~ld 
be able to replace the specification and that the specification 
is given as a process. It can be shown that with a p.rocess a 
more accurate specification of all legal implementations can 
be given than with a formulation that uses legal languages. 
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A specification process can be seen as the nondeterministic 
choice between all legal implementations. 

V. CONTROLLER SYNTHESIS 

In Section VI the supervisory control problem with partial 
specification will be discussed. In this section it will be shown 
how the basic control problem with full specification can be 
solved. 

The basic supervisory control problem is formulated as 
follows. Given an uncontrolled system G and a specification 
E, find a supervisor S such that GllS !;;;; E. 

In some applications the supervisor does not have the ability 
to block all events. For instance, if an alarm event is executed 
when some water level exceeds a threshold, then this event can 
be observed by the supervisor but it cannot be blocked. Usually 
the presence of uncontrollable events is modeled by splitting 
up the event set into two subsets Ee and Eu, where Ee ~ E 
represents the controllable events and Eu = E - Ee the 
uncontrollable events. The basic supervisory control problem 
is extended with the requirement that the supervisor has to be 
complete, i.e., it does not block any uncontrollable events. 

Definition JO: Let G E II(E) be an uncontrolled system. 
Supervisor S E II(E) is complete if 

VsEL(SllG), VR8 Eref(S,s), RsnEu~P(L(G),s). 

Definition 11: Let the uncontrolled system G E II(E) and 
a specification E E II(E) be given. The basic supervisory 
control problem is to find a complete supervisor S E II(E' 
such that GllS i; E. 

Ramadge and Wonham showed that for the existence of 
complete supervisor in a deterministic setting, the existence o 
a controllable language is a necessary and sufficient conditio 
[ 1 ]. In [2] it is shown that for nondeterministic systems, th 
language also has to satisfy another condition which is called 
reducibility. This reducibility condition guarantees that the 
supervisor only blocks events where this is allowed according 
to the refusal sets of the specification. 

Definition 12: Let G, E E IT(E). Let K be a language 
contained in L(G) and L(E). K is reducible (w.r.t. G, E) if 

'Vs EK, 'VR9 E ref (G, s), p(K, s) U R9 E ref (E, s). 

K is controllable (w.r.t. G) if 

KE,, n L(G) = K. 

An interpretation of the reducibility condition follows from the 
definition of reduction and synchronous composition. Observe 
that 

ref(G\\S,s) ~ ref(E,s) 
{:} 

'V R9 E ref ( G, s), 'V R. E ref ( S, s), R9 U Rs E ref ( E, s). 

If S is deterministic, then R. E ref (S, s) if and only if 
R. ~ p( L( S), s). As ref ( E, s) is subset closed, it follows 
that 

VR9 E ref (G, s), 'VR, ~ p(L(S), s), R9 U Rs E ref (E, s) 
{:} 

VR9 E ref(G,s), p(L(S),s)UR9 E ref(E,s). 
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So, if S is deterministic then ref ( G 11 S, s) <;;; ref ( E, s) for all 
s E L(G[[S) ~ L(E), if and only if L(S) is reducible. 

Theorem 2 [2, Th. 13 ]: Let G, E E IT ( L:). There exists a 
complete supervisor S E IT(I:) such that G[ [S ~ E if and only 
if there exists a nonempty, prefix-closed language K which is 
controllable w.r.t. L(G), reducible w.r.t. L(G) and L(E), and 
contained in L(G) and L(E). 

If K is a language satisfying the conditions in Theorem 13, 
then the process Det (K) is a complete supervisor, such that 
G[ [Det (K) ~ E. If S is a complete supervisor satisfying 
G[[S ~ E, then L(G[[S) satisfies the conditions in the 
theorem. This also implies that Det ( L( G[ [ S)) can be used 
as a supervisor. So if there exists a possibly nondeterministic 
supervisor S, then there also exists a deterministic super­
visor Sdet = Det (L(G[[S)), such that G[[Sdet ~ E and 
L(G[[Sdet) = L(G[[S). 

It is not difficult to prove that the set of reducible languages 
contained in L( G) n L( E) is closed under arbitrary unions, 
so a unique supremal element exists and is contained in 
the set. This supremal can be efficiently computed in the 
case of finite-state systems [l], [2]. In [19] an algorithm is 
presented to compute the supremal controllable language that 
has linear complexity if the languages are prefix closed. This 
algorithm can be adapted to compute the supremal controllable 
and reducible sublanguage of a given language. It removes 
states from the process G[ [E that violate the controllability or 
reducibility condition. Let [G[, [E[ denote the size ofbehavior 
state spaces of G and E, respectively. If G and E are 
given by behavior state representations, then the algorithm 
has complexity [G[ x [E[. 

VI. CONTROL OF PARTIALLY SPECIFIED SYSTEMS 

One aspect of a specification is that it should be 
implementation-independent. That is, a specification should 
describe what a system should do, not how it should be done. 
This has the advantage that two systems with a completely 
different implementation, but with the same specification, are 
interchangeable. Consider, for instance, a car. All cars have 
a similar specification. They have a gas-pedal on the right, a 
brake in the middle, and optionally a clutch on the left. It is 
not necessary to know the implementation-dependent aspects 
of the car, such as the number of pistons, or the way the fuel 
is injected. Just a specification given in events relevant for 
the user is sufficient to drive any car, from a family sedan to 
a high-powered sportscar. 

We will divide the event set into two subsets I:e and I:i. The 
external events (I:e) are those events that are relevant for the 
users of the system. The specification should be stated in terms 
of these events. The internal or implementation events (I:;) are 
not provided to the environment. They do not appear in the 
specification. They are, however, observable by the supervisor 
because the supervisor is part of the implementation. The 
supervisory control problem with partial specification can be 
defined as follows. 

Definition 13: Let E E II(I:e) be the specification process, 
and let G E IT(I:) be the uncontrolled system. Let L:e <;:; I:. 
The supervisory control problem with partial specification is to 
find a complete supervisor S E IT(I:) such that P.( G[ [S) ~ E. 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997 

Bounded Recurrence 

In a language semantics setting, the control problem with 
partial specification can be easily rewritten into a control 
problem with full specification because the following relation 
holds: 

Pe(L(G[[S)) ~ L(E) ~ L(G[[S) ~ supp; 1 (L(E)) 
<;:; 

where supc denotes the supremal with respect to language 
inclusion and p;; 1(L(E)) is defined as 

p;1(L(E)) = {K ~ L:*:pe(K) = L(E)}. 

Note that 

supp; 1(L(E)) = {s E L:*:pe(s) E L(E)} 
<;:; 

=sup {K ~ L:*:pe(K) ~ L(E)} 
<;:; 

= LJ{K <;:;I:*: Pe(K) <;:; L(E)}. 

Thus, supc p;; 1 (L(E)) is equal to the union of all legal 
implementations, i.e., the union of all languages that are 
allowed as language of the controlled system. 

Let us also try to apply this idea to nondeterministic systems. 
Define pe-1(E) as the set of all systems that project onto E 

P; 1(E) ={A E IT(I:): Pe(A) = E}. 

Let supi::: denote the supremal with respect to the reduction 
relation.In [13, Th. l] it is proven that the set of processes 
IT(I:), with the reduction relation as partial ordering, forms a 
complete upper semilattice.1 This implies that any subset of 
processes has a least upper bound, i.e., a supremal. It does not 
imply that this supremal is an element of the subset. It only 
implies that this supremal exists, i.e., that it is a process. The 
following example shows that in general: 

G[[S ~ supPe- 1 (E) =fo Pe(G[[S) ~E. 
r; 

So, in general, it is not guaranteed that supi::: pe- 1 (E) is an 
element of pe- 1 ( E). -

Example 4: Let E E IT(I:e) be a process such that the 
refusal set after Pe ( s) does not contain the complete external 
event set I:e. If we compute the inverse projection of E, then 
this will include systems that can execute sI:f, with n some 
constant. Systems that allow sL:T can diverge after s. When 
projected, they can refuse the whole external events set. This is 
not allowed by E. Therefore, systems that allow s I:i are not an 
element of pe- 1(E). The supremal element of {.sL:?:n EN} 
is .sI:T. So, the supremal element of pe- 1 (E) will allow s~i­
We have that the supremal element of pe- 1 ( E) does not project 
onto E. Therefore, G[[S ~ supi::: pe-1 (E) does not imply 
Pe(G[[S) ~ E. -

In the example above we saw that if the number of loops 
of internal events is bounded by a constant n, then the system 
cannot diverge. The idea is now to limit the possible solutions 

1 Note that the ordering used in [13] and [3] is the same as the ordering 
induced by the reduction relation, except that the processes are ordered in the 
opposite direction. 
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by fixing a priori a constant n and allowing only solutions that 
make at most n internal loops if the specification cannot refuse 
the whole external event set. We will prove that if n ;:::: 2, then 

the external behavior of the final solution is not restricted by 
this. 

First, it will be shown how the control problem with partial 
specification can be reduced to the basic control problem. After 
that, an example will be given to illustrate the approach. It 
will also be shown in this example why at least two internal 
loops are needed to guarantee that the external language is not 
restricted by the followed approach. 

Because the external behavior is relevant to the user of the 

system, we want to make it as least restrictive as possible. The 
internal behavior is invisible to the user. It is only relevant 
to the implementation. There is no reason why this behavior 
should be least restrictive. In fact, it is even desirable to make 

the internal behavior as small as possible in order to keep 
the implementation costs as small as possible [ 4]. In this 
paper only solutions will be considered that make at most 
two loops of internal events when the specification cannot 
refuse the whole external event set. This idea is formalized by 
introducing the notion of bounded recurrence. 

Definition 14: It will be said that the traces' E I;* is in the 
last internal part of trace s E I;* if s' E s and Pe ( s') = Pe ( s). 
Thus, ifs' is in the last internal part of s, then there exists an 

Si E :Bi such that s' si = s. So s' and s are equal up to some 
in.ternal events at the end of trace s. 

Let the recurrence index of trace s E L( G) indicate how 
often the behavior state G / s is visited by the last internal part 

of trace s 

ri(.g) = J{s' E s:p,(s) = p,,(s') /\ G/s = G/s'}I. 

Consider the behavior state representation of system G given 
in Fig. 4(a). The recurrence indexes of the traces a, aij, and 

aiji.f are I, 2, and 3, respectively. 
Definition I 5: Trace s E L( G) is called bounded recurrent 

(w.r.t. G, E, and L:;e) if 

I;,,~ rd (E,p,,(8)) :::::> r;(s) s; 2. 

All traces s E 2=* that are not an element of L( G) are 

defined to be bounded recurrent also. A language K ~ :B* 
is called bounded recurrent if all traces s E K are bounded 
recurrent. Process A E II(:B) is called bounded recurrent if 

L( A) is bounded recurrent. 
Note that if .s tf. div (G, E,,), then for alls; E :B.i such that 

ssi E L(G) we have that G/s =f. G/.ss;. Note also that if 

Ee E ref(E,p,,(s)), then sis bounded recurrent. 

Reduction of the Control Problem 

In this section it will be shown that if we restrict the 
set of solutions to bounded recurrent processes, then the 
control problem with partial specification can be reduced to 

the basic supervisory control problem. It will also be shown 
that this restriction does not limit the external language of the 

controlled system. 
Definition 16: ET = supi;;; pe- 1 (E) = supi;;; {A E II(:B): 

P(A) i;;;; E}. 

Proposition 3: The process ET satisfies 

:B(ET) =:B 

L(ET) = supP;1(L(E)) 
<;; 

={s E :B*:pe(s) E L(E)} 
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ref (ET, s) = {R ~ :B: I;i i;;;; R :::::>Ee n RE ref (E,p.(.s))}. 

This characterization can be used to construct ET. 
Proof' Let Econ be the process defined by the expres­

sions in the proposition. We have to prove that ET = Econ· 
For all n E N let An be the process defined by 

:B(An) = E 

L(An) = {s E :B*:s E :Bi'a1Ei'a2 "'iTmE;', 

iT1iT2 .. ·crm E L(E)} 

ref (An, s) =ref (Econ, s ). 

First, it will be proven that for all n E N, Pe(Ari) I; E. 
The language part of the reduction relation follows from 

L(Pe(An)) = Pe(L(An)) = L(E). Note that after any trace in 
L(An) only a bounded number of internal events are possible, 
so div (An, :Be)= 0. The refusal part of P.(An) follows from 

ref (Pe(An), Se) 

= LJ Pe(ref (An, s)) 
sEp;;- 1 (s,) 

= LJ {Ri;;;;:Be:RU:B;.Eref(Ari 1 s)} 

sEp;;- 1 (s,) 

= LJ {Ri;;;;:B.:(RuE;)nEeEref(E,pe(s))} 

sEp;;- 1 (s,) 

= ref (E, se)· 

Hence, for all n E N, P.(A,.) I; E and as ET is the supremal 
of {A E II(:B):P.(A) I; E}, it follows that An I; ET. 

Second, it will be proven that L(Econ) = L(ET). As all 
processes that reduce E have no trace not contained in L(E), 
it follows that L(ET) i;;;; L(Econ)· As UnEN Ei = :BJ and 
for all n E NL(An) i;;;; L(ET), it follows that L(Econ) 
U,.EN L(An) i;;;; L(ET). Hence L(Econ) = L(ET). 

Next it will be proven that for all s E L(Econ) = 
L(ET),ref(Econ,s) ~ ref(ET,s). For alls E L(ET) there 

exists an n EN such that s E An· As ref(An,s) = 
ref(Econ,s) and An I; ET, it follows that ref(Ecou,s) <:;;; 

ref(ET,s). 
Finally, it will be proven that ref(ET,s) i;;;; ref(Econ,s). 

Suppose the inclusion does not hold. Then there must exist a 

process B and a refusal RE ref (B, s) such that Pe(B) I; E 
and R ~ ref ( Ecoiu s). That is, Ei i;;;; R and R n Ee 'it 
ref (E,pe(s)). But then it follows from the definition of 
projection that Pe (B) ~ E, which contradicts our assumption. 

Hence ref(ET,s) i;;;; ref(Econ,s). 
We have proven that L(Econ) = L(ET) and for all s E 

L(ET),ref(Econ,s) = ref(ET,s), SO Econ =ET. • 
Definition 17: E~r = supi;;; {A E. II(E): Pe(A) !;; E, ~ 

is bounded recurrent}. By analogy with [3 ], the process Ebr 

can be seen as the nondeterministic choice between all legal 

bounded recurrent implementations. 
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Proposition 4: Process E~r satisfies 

E(E~r) =I: 

L(E~r) ={s E I:*:pe(s) E L(E) and s 

is bounded recurrent} 

ref(E~r,s) ={R<;; I::I:; <;::; RUp(L(E~r),s) 
:::} I:e n RE ref (E,pe(s))}. 

This characterization can be used to construct E~r· 
Proof Let Econ be the process defined by the expres­

sions in the proposition. We have to prove that E~r = Econ· 
First it will be proven that Pe(Econ) t;;;; E. The language 
part follows from L(Pe(Econ)) = Pe(L(Ecan)) = L(E). 
For the refusal part note that Ee tf. ref (E, se) implies 
Se t/. Pe(div (Econ 1 I:e)). So, if Se E Pe(div (Econ, I:e)), 
then ref (Pe(Econ), Se) = 2~• = ref (E, Se)· If Se t/. 
Pe(div (Econ, I:e)) then, by the same line of reasoning as 
in the proof of Proposition 3, it follows that 

ref (Pe(Econ), Se) 

LJ Pe(ref(Econ,s)) 
sEp;- 1 (s,) 

LJ {R<;::;I:e:RUE;Eref(Econ,s)} 
sEp;- 1 (s,) 

LJ {R <;::; I:e: (RU I:;) n Ee E ref (E,pe(s))} 

sEp;- 1 (s,) 

=ref (E, se)· 

So, P,.(Kon) t;;;; E. The term p(L(E~r),s) is needed in 
the construction of ref ( Econ, s) to guarantee that Econ is 
a process. The formal proof that it is a process is left to 
the reader. As Econ is a bounded recurrent process and 
Pe(Econ) t;;;; E, it follows that Econ t;;;; E~r· 

It remains to prove that E~r t;;;; Econ· Suppose the relation 
does not hold. Then there must exist a process A such that 
Fe (A) t;;;; E, A is bounded recurrent, but A does not reduce 
Econ. As Pe ( L( A)) <;::; L( E) and A is bounded recurrent, it 
follows that Vs E L(A),pe(s) E L(E) and s is bounded 
recurrent. Therefore, L(A) <;::; L(Econl· As A !l Econ there 
must exist an s E L( A) and a R E ref (A, s) such that 
Rt/. ref(Kon.s), i.e., I:i <;::;Rand Rn Ee t/. ref(E,pe(s)). 
But then Pe(A) !l E, which contradicts our assumptions. 
~re~=E=. a 

Theorem 3: Let G, S E II(E), E E II(Ee), and E~r be 
constructed as above 

GllS t;;;; E~r 
{:} 

Pe(GllS) t;;;; E and Sis bounded recurrent. 

Proof (GI IS t;;;; E~r :::} S is Bounded Recurrent): As E~r 
is bounded recurrent and L(GllS) <;::; L(EL), it follows that 
GllS is bounded recurrent. Lets E L(S) n L(C) = L(GllS), 
then s is bounded recurrent. If s E L( S) - L( G), then s is 
bounded recurrent by definition. Hence S is bounded recurrent. 

(GllS t;;;; E~r::::} Pe(GllS) [;;; E): The language part 
of the reduction relation follows from L( Pe ( GI IS)) = 
Pe(L(GllS)) i:;;; Pe(L(E~r)) = L(E). For the refusal 
part note that div ( GI IS, Ee) <;::; div ( E~r' Ee) because 
L(GllS) C L(E~r). Let se E Pe(L(GllS)). If 
Se E Pe(div(GllS,I:e)), then Se E Pe(div(E~r,Ee)), 
so 

ref(Pe(GllS),se) =2E• 

=ref (Pe(E~r), Se) 

=ref (E, se)· 

If Set/. Pe(div(GllS,I:e)), then 

ref(Pe(GllS),se) = LJ Pe(ref(GllS,s)) 
sEp;;- 1 (s,) 

C LJ Pe(ref(E~r 1 s)) 
sEp;- 1 (s,) 

= ref ( E, s e) . 

The last step follows from the same line of reasoning as is 
used in the proofs of Propositions 3 and 4. The language part 
and the refusal part together prove that Pe(GllS) t;;;; E. 

(Pe(GllS) [;;; E and S is bounded recurrent :::} GllS G 
E~r.) If S is bounded recurrent then so is G 11 S because 
L( GI IS) <;::; L(S). As E~r is the supremal element of the set 
{A E II(I:): Pe(A) [;;; E, A is bounded recurrent, it must hold 

that GllS [;;; E~r· • 
The following two results are proven in the Appendix. 

Theorem 4 states that the control problem with partial speci­
fication can be converted to a basic control problem with full 
specification as defined and solved in Section V. 

Theorem 4: Let G E II(E) and E E II(I:e)· There exists 
a complete supervisor S E II(E), such that P,,(GllS) [;;; E 
if and only if there exists a complete supervisor Sbr E II(I:) 
such that GllBbr !;;; E~r· 

A condition for the existence of a complete supervisor Sbr 
that solves GllBbr t;;;; E~r is given in Theorem 12. Corollary I 
states that the external language of the implementation is not 
restricted by the use of bounded recurrent supervisors. 

Corollary 1: Let S E II( I:) be a complete supervisor such 
that Pe(GllS) i;;; E. Then there exists a complete and bounded 
recurrent supervisor Sbr E II(I:) such that Pe(GllSbr) [;;; E 
and L(Pe(GllS)) = L(Pe(GllSbr)). 

The next example will illustrate the followed approach. 
Example 5: Let G and E be defined by the behavior state 

representations given in Fig. 4(a) and 4(b), respectively. Let 
I: = {a,b,c,i,j},I:e = {a,b,c},E,; = {i,j},I:c = E, 
and I:u = 0. As E can refuse the whole external event 
set after the empty trace and after traces that end with a b­
event or c-event, it is not necessary to bound the number of 
internal recurrences after these traces. After traces that end on 
an a-event the process E cannot refuse I:e, so the number 
of internal recurrences needs to be bounded. In Fig. 4(c) 
the behavior state representation of E~r is given. After the 
traces a, ai, aij, and aiji, the event set {b, i,j} cannot be 
refused. Suppose this event set had been included in the 
refusal set of Et. Then { b} would have been in the refusal 
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G 
(a) 
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a 

--<=> {{a,b,c}} b {{a,c}} 
,c 

E 

(b) 

a 

{ a,c,i,j},{ a,b,c,i},{ a,b,c,j}} 

{ {a,c,i,j},{ a,b,c,i},{ a,b,cj}} 

j 

{ { a,c,iJ},{a,b,c,i},{ a,b,cj}} 

(c) (d) 

i,j 
rw~ .. 

a 

/' i {{a,c,i,j},{a,b,c,i},{a,b,cj}} {{a,b,c,i,j}~~ '-c- ~ J 

be 
' {{a,c,i,j},{a,b,cj}} 

i 

E~r(l) GllS~r(1) 
(e) (f) 

Fig. 4. Supervisor synthesis for the control problem with partial specification. 

set ref (Pe(E~r), a) and process Pe(E~r) would not have 

reduced E. 
If event set {a, b, c, ·i} had been an element of the re­

fusal set ref (EL., aij'i), then by condition v of Definition 1 

also {a,b,c,i,j} = {a,b,c,'i} U p(L(E~r),aiji) would have 

been an element of ref (E1;r, a·ifi). But then Pe(E~r) could 

have refused {a, b, c} which is not allowed by E. See also 

Proposition 4. 

Event j in the states reached after traces a and aij, and 

event i in the states reached after traces ai and aiji, make 

self loops-because the traces aj*, aii*, aijj*, and aijii* are 

not contained in L( G) and are therefore, by Definition 15, 

bounded recurrent. Trace aijij is not an element of L(E~r) 
because ri(aiji.i) = 3. 

The synthesis procedure results in the least restrictive deter­

ministic supervisor st,1. In Fig. 4( d) only those traces of S let 
are shown that are an element of L( G). Observe that event i is 

disabled after trace aij. The reason for this can be explained 

as follows. Event set {b} is an element of ref(G,aiji) and 

therefore, by Definition 4, also of ref ( GI IS, aiji) for all 

S E Il(:E). As EL does not allow any internal events to be 

executed after aifi, it follows that {b,·i,j} E ref(GllS,aifi) 

for all S such that L(GllS) ~ L(E~r). However, this refusal 

is not allowed by E~r· Therefore, event ·i needs to be disabled 

after trace aij. 
Note that trace ac is an element of L(Pc(GllSL)). 

In Fig. 4(e) the system EL,(l) is given, which contains only 

traces that make at most one loop of internal events in G. 

In Fig. 4(f) the least restrictive solution corresponding to the 

specification E 1;r(l) is given. Note that in this case ac rf. 

L(Pe(GllS~r(l)). So one loop is not sufficient to guarantee 

that all external behavior is obtainable. 

Complexity 

If E and G are given by behavior state representations, 

then computing E~r requires that each behavior state of E is 

replaced by either a behavior state with 2=; self-loops if I:c E 

ref ( E, s), or by a tree of behavior states, where on each path 

from root to leaf each behavior state of G occurs at most two 

times. The computation requires administration of the set of 
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states that are visited once and the set of states that are visited 

twice. In the worst case, all possible combinations of states 

can occur. This will result in complexity that is exponential 

in the size of the behavior state space of G and linear in the 

size of the behavior state space of E. Combining this with the 

supervisor synthesis algorithm from Section V will result in an 

algorithm which is exponential in IGI and linear in IEI. When 

unwinding a loop of internal events in G, the algorithm has 

to administrate only those states that are reachable by internal 

events. So the algorithm will be exponential in the sizes of the 

sets of states reachable by internal events. In most practical 

systems these sets will be much smaller than the whole state 

space. Therefore, it is expected that the algorithm will behave 
better on practical systems than can be expected from the worst 

case analysis. Further research is needed to test the complexity 

of the algorithm in real life situations. 

VII. CONCLUDING REMARKS 

This paper extends the results of [2] as part of our inves­

tigation to set up a supervisory theory for nondeterministic 
systems. 

The control problem that is discussed in this paper is to 

find a supervisor such that the controlled system can replace 

the specification. In particular, it is required that the controlled 

system cannot deadlock in situations in which the specification 
cannot deadlock either. It is shown that the reduction relation 

provides a necessary and sufficient condition to satisfy this 
requirement. This result indicates that a framework based on 

failures semantics is the most suitable for the given control 
problem. 

It is imaginable that for some control problems a stronger 

relation between implementation and specification is required. 
For these control problems a stronger semantics, such as 

bisimulation semantics [20], will be necessary. 
Unlike methods based on languages, failure semantics has 

the ability to deal with phenomena, such as divergence, that 

occur when processes are partially observed. Correct handling 
of divergence requires that solutions are restricted to bounded 

recurrent supervisors. Note that the restriction to bounded 

recurrent processes is not due to the use of failure semantics, 

but due to the nondeterministic properties of projected systems. 

APPENDIX 

PROOF OF THEOREM 4 AND COROLLARY l 

According to Theorem 3, a supervisor Sb,. solves the control 

problem GJ IS ~ E~r if and only if Sbr is bounded recurrent 

and Pe(GllSbr) ~ E. So, in order to prove Theorem 4 it is 
necessary and sufficient to show that there exists a solution 

to the control problem with partial specification if and only if 

there exists a bounded recurrent solution. The if-part is trivial 

because a bounded recurrent solution is a solution by itself. For 

the only-if part it will be shown that if there exists a solution 

then the language of the controlled system, denoted K, satisfies 

a number of conditions. From this language another language, 

denoted Kb,., will be constructed that is bounded recurrent. It 

will be shown that Kbr defines a bounded recurrent supervisor 
that solves the control problem. The core of the proof is formed 
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by showing that K br satisfies all the necessary conditions. 

First, it will be defined how the bounded recurrent language 

Kbr can be constructed from a given language K. 
Definition 18: Let K E L:* be a language, let G E II(L;) 

and E E Il(L:e) be processes. The 6.; function gives all 

behavior states of process G that can be reached by internal 

events after trace s. All extensions have to be an element of 

the language K 

6.;(K,s) = {Ci/ssi E Il(L:):::lsi E z::t s.t. ssi EK}. 

The function Q2"d gives all states of process G that have been 

visited at least twice by the last internal part of trace s 

Q 2nd(s) ={A E Il(L:): :ls', s" Es, s' f. s" s.t. 

Pe(s") = Pe(s') = Pe(s) /\A= G/s' 

= G/ s"}. 

The language K br can be constructed inductively. Informally 

Kbr behaves after one internal loop as K does in the last 

loop of internal events. Let E E Kbr· Let 8br E Kbr· Then 

Sbra E Kbr if 

:lsEKs.tsaEK, G/sbr=G/s, Pe(Bbr)=pe(s), and 

L:e 'f. ref (E,pe(Sbr)) =:;. t.i(K, s) n Q 2u<l(sbr) = 0. 

The condition t.i ( K, s) n Q 2nd ( .Sbr) = 0 ensures that if 

Kbr contains only internal continuations after Sbr that are 

also internal continuations after .s in K, then no state that 

has been visited twice by sbr will be visited again by these 

continuations. So no state will be visited more than two times 

by any internal part of any trace in K br. Hence K br will be 
bounded recurrent. 

The following lemma states that if K satisfies certain 

conditions, then Kbr satisfies the same conditions and is 
bounded recurrent. 

Lemma 1: Let K ~ L:* be a language which satisfies: 

1) K is not empty; 
2) K is prefix closed; 
3) K ~ L(G); 
4) Pe(K) ~ L(E); 
5) K is controllable; 
6) K is reducible w.r.t. ET; 

7) 8 E div(K,L:e) =} l:e E ref(E,pe(s)). 

Then the language Kb,., constructed as in Definition 18, sat-

isfies the conditions 1 )-7) and also the following conditions: 

8) K br is bounded recurrent; 

9) Pe(K) = Pe(Kbr)· 

The proof, which is given below, uses the following three 

lemmas. The first lemma redefines the controllability condition 
in failure semantics terminology 

Lemma 2: Let K be a prefix-closed language contained in 
L( G). Then K is controllable if and only if 

Vs EK, p(K, s) n L:" ~ p(L(G), s). 
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Proof 

KL,u n L(G) ~ K 
( s E K /\ a E Eu /\ sa E L( G)) ::::} sa E K 
-i(s EK/\ a E L,u /\ sa E L(G)) V sa EK 
-is E K V -ia E Eu V -.sa E L( G) V S<7 E K 
-is E KV -.a E Eu V -.sa 'f. KV sa tf. L(G) 
( s E K /\ a E Eu /\ sa t/:. K) ::::} SO" 'f. L( G) 
Vs EK, p(K, s) n I:u ~ p(L(G), s). 

• 
The following lemma states that K br does not block more 

events after trace Sbr than K blocks after a corresponding 
trace s. 

Lemma 3: Assume language K s:;; I:* satisfies conditions 

1)-7) of Lemma 1, and K br is constructed according to 

Definition 18. Let Sbr E K br. There exists an s E K such that 

G/ s = G/sbriPe(s) = Pe(sbr), and p(Kbr, Sbr) s:;; p(K, s). 
Proof Let Bbr E Kbr· If Sbr = €, then let s = e. It 

follows that s E K,G/sbr = G/e = G/s, and Pe(Sbr) = 
Pe(c) = Pe(s). As Q2nd(sbr) = i/J, it follows that sa E K 
implies that Sbra E Kbr· So >..(K,s) ~ .A(KbriBbr) and 
p(Kbri Sbr) s:;; p(K, s) 

If Bbr is not the empty trace, then Sbr can be written as Vbra, 
with Vbr E Kbr and a E E. According to the definition of 

K br, and because sbr E K br, there must exist an v E K such 

that va EK, G/v = G/vbr, and Pe(v) = Pe(Vbr)· Then also 

G/ Bbr = G/vbrO" = G/va and Pe(Sbr) = Pe(va) = Pe(Vbra). 
Hence for all Sbr E K br there exists an s E K such that 

G/s = G/sbr and Pe(s) = Pe(sbr)· 
If L,e E ref (E,pe(Sbr)) or ,6.i(K, s) n Q2nd(sbr) = i/J, then 

SIJ' E K implies Sbra E Kbr· So .A(K, s) s:;; .A(K bri Sbr) and 

hence p(KbriSbr) s:;; p(K,s). 
We will prove by contradiction that there always exists an 

s E K such that G/s = G/sbriPe(s) = Pe(Sbr) and either 
Ee E ref (E,pe(sbr)) or ,6.i(K, s) n Q2nd(sbr) = i/J. 

Assume (a) L:e !/:. ref (E,pe(Sbr)) and (b) for all s E K 
such that G/s = G/sbr and Pe(s) = Pe(Sbr); it holds that 

6..i (K, s) n Q2nd ( Sbr) #- i/J. Let Vbr be such that Vbrai = Sbr· 

Nate that a; E E; because from Q2nd ( Sbr) #- i/J it follows 

that the last internal part of sbr is not empty. From the 

definition of K br it follows that there exists a v E K such that 

vai E K, G /v = G /vbr, Pe( v) = Pe( Vbr ), and ,6.;(K, v) n 
Q 2 nd(vbr) = i/J. Let s = va,;. Then G/s = G/vai = 
G/vbrCJ'i = G/sbr and Pe(s) = Pe(vai) = Pe(vbrai) = 
Pehn), so by assumption (b) ,6.i(K, s) n Q2nd(sbr) =f i/J. As 

6..i(K,s) s:;; ,6.,;(K,v) and Q2nd(sbr) s:;; Q2nd(Vbr)U{G/sbr}, 

it follows that t,.i (K, s) n Q 2nd( Sbr) = { G I Sbr }. Next it will 

be shown that s E div (K, L:e) 

6..;(K, s) n Q2nd(sbr) = { G/sbr} ::::} 

G/sbrE,6.i(K,s) ::::} 
3si E L:t s.t. ssi EK and G/ssi = G/sbr ::::} 

(By assumption (b)) 

t,.i(K, SSi) n Q2nd(Sbr) =f i/J ::::} 

(Note: ,6.i(K, ssi) s:;; ,6.,;(K, s)) 

G/sbr E ,6.i(K, ss;) 
:ls~ E L:T s.t. ss;s'; E K and G / ss;s'; = G / Sbr 
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It follows that an unbounded number of internal events can be 

executed. So s E div ( K, L:e), which, by point 7) of Lemma 1, 

contradicts assumption (a) that Ee !/:. ref (E,pe(sbr)). 

Hence there always exists an s E K such that either 

L:e E ref (E,pe(sbr)) or ,6.i(K, s) n Q2nd(sbr) = 0. So 

.A(K,s) s:;; .A(KbriBbr) and p(Kbr,Sbr) s:;; p(K,s). • 
Lemma 4: Let language K s:;; I:* satisfy conditions 1)-7) of 

Lemma 1, and let K br be constructed according to Definition 

18. Then Pe(K) ~ Pe(Kbr)· 
Proof We will prove by induction on the length of the 

traces that for all s E K there exists an Sbr E K br such 

that Pe(s) = Pe(Sbr),G/s = G/sbri and Q2nd(sbr) = 0. 
The initial step is trivial because e E K, c E K bri and 
Q2nd(e) = 0. 

For the inductive step assume s E K and Sbr E K br 

such that Pe(s) = Pe(Sbr),G/s = G/sbr, and Q2n<l(Sbr) = 
0. Let sa E K. We have to prove that there exists a 

Vbr E 2~br such that Pe(sCJ') = Pe(Vbr),G/sa = G/vbri 
and Q n ( Vbr) = i/J. As Q2nd ( Sbr) = 0, it follows that 

t,.i(K, s) n Q2nd(Sbr) = 0, so scr EK implies Sbra E Kbr· 
From the definition of Q2nd it follows that Q2nd(sb er) C 

2 d r -
Q n (sbr) U {G/sbra} = {G/sbrcr}. So Q2nd(sbra) contains 

at most one element. If Q2nd(sbrcr) = 0, then Vbr = Sbra 
satisfies the necessary conditions for the inductive step because 

Pe(Vbr) = Pe(Sbrcr) = Pe(sa), G/vbr = G/sbra = G/scr, and 
Q2nd(Vbr) = Q2nd(sbra) = 0. 

If Q2nd ( Sbra) = { G / Sbra}, then the behavior state G / BbrO 
has been visited at least twice by the last internal part oJ 

Bbra. Hence G / Sbra has been visited at least once by the 

last internal part of Sbr· So, there exists a Vbr E Sbr (note: 

Sbri not BbrCJ'), such that G/vbr = G/sbra = G/sa and 

Pe ( Vbr = Pe ( Sbra) = Pe ( sa ). As Vbr is a prefix of s1,,, and 
Q2nd(sbr) = 0, it has to hold that Q2nd(v) s:;; Q2nd(sbr) = 0. 
Hence Vbr satisfies the necessary conditions for the inductive 

step. 
We have proven that for all s E K there exists a trace 

in Sbr E K br such that Pe ( s) = Pe ( Sbr)' G Is = G I Sbr' 
and Q 211d(Sbr) = 0. The first equality implies that Pe(K) ~ 

Pe(Kbr)· • 
Proof (Lemma 1 ): 

1 ), 2): These points follow directly from the definition of 

Kbr· 
3 ): We will prove this point by induction. The initial 

step is satisfied because e E L( G). For the inductive 

step let Sbr E Kbr n L( G). If Sbra E Kbri then 
there exists an s E K such that scr E K and 

G/s = G/sbr· Assa EK s:;; L(G) it follows that 
G / Sbra = G / sa is well defined, so Sbra E L( G). 

4 ): From Lemma 3 it follows that for all Sbr E K br 

there exists an s E K such that Pe ( Sbr) = Pe ( s). So 

Pe(Kbr) s:;; Pe(K) s:;; L(E). 
5): Let sbr E Kbr· By Lemma 3 there exists ans E K 

such that G / Sbr = G / s and p(Kbri Sbr) s:;; p(K, s ). 
So p(Kbn Sbr)nI:u ~ p(K, s)nI:u ~ p(L(G), s) = 

6): 
p(L( G), Sbr ). 
Let Sbr E Kbr· By Lemma 3 there exists an 

s E K such that G I Sbr = G Is' Pe ( Sbr) = 
p,(s) and p(KbriSbr) s:;; p(K,s). As Pe(sbr) = 
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Pe(s), it follows that E/pe(Sbr) = E/Pe(s), so 
ref(Ei,sbr) = ref(Ei,s). Let R9 E ref(G,sbr)· 
It follows from G / Sbr = G / s that ref ( G, Sbr) = 
ref(G,s), so R9 E ref (G,s). By reducibility 
of K,p(K,s) U R9 E ref(ET,s). So, because 
refusal sets are closed under the operation of taking 
subsets and p(Kbr,Sbr) i;; p(K,s), it follows that 
p(Kbri Sbr) U R9 E ref (Ei, s) = ref (ET, Sbr)· 

7): This follows directly from the fact that Kbr is 
bounded recurrent. 

8): Suppose Kbr is not bounded recurrent. Then there 
exists an Sbr E Kbr such that :Ee r/. ref (E,pe(s) 
and r i ( Bbr) ~ 3. It follows that Bbr can be written as 
VbrO"i, where Vbr E Kbr and O'i E :E;. The behavior 
state G / Bbr is visited at least three times by the last 
internal part of Sbr. One visit is by the trace Sbr 
itself, so that the state G / Sbr is visited at least twice 
by the last internal part of trace Vbr. That is 

l{s' E Vbr:G/s' = G/sbr 1 Pe(s') =pe(Vbr)}I 

= r;(Sbr) - 1 

~ 2. 

It follows that G / Sbr E Q20d ( Vbr). According 
to Lemma 3 there exists a v E K such that 
G/v = G/vbr and Pe(v) = Pe(Vbr)· If VO'; E 
K then G/vO"i E .6.;(K, v). So in addition, 
G/sbr = G/vbrO"i = G/vui E tii(K,v). Hence 
for all v E K such that VO'i E K, we have that 
G/sbr E .6.i(K,v) n Q20d(vbr) -:/:- 0. So we have 
to conclude that Sbr r/. K bri which contradicts our 
assumptions. 

9): The inclusion Pe(Kbr) i;; Pe(K) follows from 
Lemma 3. The inclusion Pe(K) i;; Pe(Kbr) follows 
from Lemma 4. • 

Proof (Theorem 4 and Corollary I): 
(Only-If Part): First we will show that L(GllS) satisfies 

properties I)-7) of Lemma 1. Properties 1 )-5) are easy to 
see. It follows from Definition 16 that GllS ~ Ei, so 
L(GllS) is reducible w.r.t. ET [point 6)]. For point 7) 
let s E div (GllS, s). Then :Ee E ref (Pe(GllS),Pe(s)) i;; 
ref (E, Pe(s) ). 

As L(GllS) satisfies points 1)-7), there must exist a lan­
guage Kbr that satisfies points 1)-9). Let Sbr = Det (Kbr). 
Then it follows from point 6) that GllSbr ~ ET. Combining 
this with point 8) implies that GllSbr ~ E~r· Corollary I now 
follows from point 9). 

(If-Part): This follows directly from Theorem 3. 

REFERENCES 

[1] P. J. G. Ramadge and W. M. Wonham, "The control of discrete event 
systems," Proc. IEEE, vol. 77, pp. 81-98, 1989. 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997 

[2] A. Overkamp, "Supervisory control for nondetenninistic systems," in 
[21], pp. 59-65. 

[3] C. A. R. Hoare, Communicating Sequential Processes. Englewood 
Cliffs, NJ: Prentice-Hall, 1985. 

[4] A. Overkamp, "Control ofnondetenninistic discrete event systems using 
failure semantics," in Proc. 3rd European Contr. Conj., Rome, Italy, 
1995, pp. 2778-2783. 

[5] A. Tanenbaum, Computer Networks, 2nd ed. Englewood Cliffs, NJ: 
Prentice-Hall, 1988. 

[6] M. A. Shayman and R. Kumar, "Supervisory control of nondeterministic 
systems with driven events via prioritized synchronization and trajectory 
models," SIAM J. Contr. Optimiz., vol. 33, no. 2, pp. 469-497, 1995. 

[7] M. D. DiBenedetto, A. Saldanha, and A. Sangiovanni-Vincentelli, 
"Model matching for finite state machines," in Proc. 33th Conf. Decision 
Contr., Orlando, FI.., 1994, pp. 3117-3124. 

[8] K. Inan, "Nondetenninistic supervision under partial observation," in 
[21], pp. 39-48. 

[9] M. Heymann, "Concurrency and discrete event control," IEEE Contr. 
Syst. Mag., vol. 10, no. 4, pp. 103-112, 1990. 

[10] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, 
Languages, and Computation. New York: Addison-Wesley, 1979. 

[11] E. Haghverdi and K. Inan, "Verification by consecutive projections," in 
FORTE '92, Proc. IFIP, Perros-Guirec, M. Diaz, and R. Groz, Eds., pp. 
465-478. 

[12] R. De Nicola and M. Hennessy, "Testing equivalences for processes," 
Theoretical Computer Sci., vol. 34, pp. 83-133, 1984. 

[13] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, "A theory of 
communicating sequential processes," J. ACM, vol. 31, no. 3, pp. 
560-599, 1984. 

[14] W. M. Wonharn and P. J. Rarnadge, "Modular supervisory control of 
discrete-event systems," Math. Contr., Signals Syst., vol. 1, no. 1, pp. 
13-30, 1988. 

[15] E. A. Emerson and E. M. Clarke, "Using branching time temporal logic 
to synthesize synchronization skeletons," Sci. Computer Programming, 
vol. 2, pp. 241-266, 1982. 

[16] Z. Manna and P. Wolper, "Synthesis of communicating processes from 
temporal logic specifications," ACM Trans. Programming Languages 
Syst., vol. 6, no. 1, pp. 68-93, 1984. 

[17] A. Pnueli and R. Rosner, "On the synthesis of a reactive module," in 
Proc. 16th ACM Symp. Principles Programming Languages, 1989, pp. 
179-190. 

[18] J. G. Thistle, "Control of infinite behavior of discrete-event systems," 
Ph.D. dissertation, Univ. Toronto, 1991; also available as Systems 
Control Group Rep. 9012. 

[19] R. Kumar, V. Garg, and S. I. Marcus, "On controllability and normality 
of discrete event dynamical systems," Syst. Contr. Lett., vol. 17, no. 3, 
pp. 157-168, 1991. 

[20] R. Milner, A Calculus of Communicating Systems. New York: 
Springer, 1980. 

[21] G. Cohen and J.-P. Quadrat, Eds., Proc. ! Ith lnt. Conf. Analysis 
Optimization Syst., Discrete Event Syst., Sophia-Antipolis, 1994, Lecture 
Notes in Control and Information Sciences 199. New York: Springer, 
1994. 

Ard Overkamp was at CWI, Amsterdam, The 
Netherlands as a Ph.D. Student from 1992-1996. 
During this period he worked on supervisory control 
theory motivated by design problems for layered 
network architectures. He is now working for a 
consultancy company. 


