
Induced Norm from L2 to L∞ in SISO Sampled-Data Systems

Jung Hoon Kim and Tomomichi Hagiwara

Abstract— This paper investigates the maximum amplitude
(i.e., the L∞ norm) of the output for the worst input with a
unit energy (i.e., a unit L2 norm) in single-input/single-output
(SISO) linear time-invariant (LTI) sampled-data systems, by
which we mean the generalized plant and the controller are
both LTI. It is known that the induced norm from L2 to L∞
coincides with the H2 norm in SISO LTI systems. To highlight
the arguments tailored to (SISO) sampled-data systems in
this paper, we first see how this induced norm reduces to
H2 norms in the continuous-time and discrete-time cases.
Through the lifting-based arguments, we next give a closed-form
representation of the induced norm from L2 to L∞ in SISO
LTI sampled-data systems. We further exploit the associated
arguments to compare this induced norm with two existing
definitions of the H2 norm for sampled-data systems, and
show that the induced norm coincides with neither of them
in SISO LTI sampled-data systems. We further develop a more
sophisticated closed-form representation for the induced norm
and give an approximate but asymptotically exact method for
its computation.

I. INTRODUCTION

The L2 norm can be used for evaluating the energy of
signals, and the L2-induced norm of a continuous-time LTI
system corresponds to the H∞ norm of the system. Hence,
the study associated with the treatment of the L2-induced
norm has been called the H∞ problem. Furthermore, there
have been a number of studies on the continuous-time or
discrete-time H∞ problem [1]–[7] since this system norm
has been used as a typical measure in the sensitivity reduction
problem and robust control problem.

The L∞ norm can be used for considering the maxi-
mum amplitude of signals, and the L∞-induced norm of a
continuous-time LTI system corresponds to the L1 norm of
the impulse response of the continuous-time system. Thus,
the study associated with the treatment of the L∞-induced
norm has been named the L1 problem. There have been
a number of studies on the L1 problem [8]–[14] because
evaluating the maximum amplitude of the output is very
important in practice and this problem is pertinent to bounded
persistent disturbances often encountered in control systems.

On the other hand, even when the performance analysis
for decaying disturbances such as those in L2 is considered,
evaluating the maximum amplitude of the output rather than
its L2 norm may equally play an important role. In other
words, computing the induced norm from L2 to L∞ could
play very important roles in control system analysis. This is
indeed true particularly because this induced norm admits an
alternative interpretation as the H2 norm in the single-input/
single-output (SISO) LTI case, both for continuous-time
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and discrete-time systems, [15]–[18], even though the H2

norm (of a multi-input/multi-output LTI system) is usually
defined in the frequency domain and related to the power
of the output for a white noise input. Another well-known
interpretation of the H2 norm is related to the L2 norm of
the output for impulse disturbances.

In view of such relevant studies, one could naturally raise a
question whether or not the induced norm from L2 to L∞ in
SISO sampled-data systems coincides with either of the two
(conceptually) different definitions for the H2 norm of LTI
sampled-data systems [19]–[22]. The induced norm from L2

to L∞ in sampled-data systems was analytically formulated
first in [23] by using the idea of the lifting technique [24]–
[26], but no explicit computation method for the induced
norm was provided in that study. This is partly because
the treatment of the induced norm in that study involves
an infinite summation, whose explicit computation was not
discussed. More importantly, the study is interested in the
synthesis of the optimal controller minimizing the induced
norm and thus it does not give an exact characterization for
analyzing the normAn explicit computation method for the
induced norm without the lifting arguments was developed
in [27]. However, its comparison with two definitions for the
H2 norm of sampled-data systems was not discussed there.
This paper employs the lifting arguments and deals with
the induced norm from L2 to L∞ in SISO LTI sampled-
data systems directly, in such a way that the comparison
of the induced norm with two existing definitions for the
H2 norm of sampled-data systems is easy. As it turns out,
the arguments in this paper give a negative answer to the
aforementioned question on their mutual relation and thus
could be interpreted as giving yet another definition of
the H2 norm of SISO LTI sampled-data systems. These
discrepancies of the present norm from the existing H2

norms can be regarded as stemming from another aspect of
the hybrid continuous-time/discrete-time nature of sampled-
data systems, even though such a nature has already been
studied intensively in [20]–[22] in the context of extending
the H2 problems to sampled-data systems.

In the following, we use the notations N and Rν to denote
the set of positive integers and the set of ν-dimensional real
vectors, respectively. We further use the notation N0 to imply
N∪ {0}. The notation ‖ · ‖∞ is used to mean either the L∞
norm of a function, i.e.,

‖f(·)‖∞ := ess sup
0≤t<∞

|f(t)| (1)

or the l∞ norm of a sequence, i.e.,

‖g(·)‖∞ := sup
k∈N0

|g(k)| (2)



or the ∞-norm of a finite-dimensional matrix (induced from
the vector ∞-norm), whose distinction will be clear from
the context. On the other hand, the notation ‖ · ‖2 is used to
mean either the L2 norm of a function, i.e.,

‖f(·)‖2 :=
(∫ ∞

0

f2(t)dt
)1/2

(3)

or the l2 norm of a sequence, i.e.,

‖g(·)‖2 :=

( ∞∑
k=0

g2(k)

)1/2

(4)

or the 2-norm of a finite-dimensional matrix (induced from
the vector Euclidean norm), whose distinction will be also
clear from the context. Let T be an operator from L2 to L∞
(or from l2 to l∞). Then, the notation ‖ · ‖∞/2 is used to
denote the induced norm from L2 to L∞ (or from l2 to l∞),
i.e.,

‖T‖∞/2 := sup
‖w‖2≤1

‖Tw‖∞ (5)

Furthermore, we call the induced norms from L2 to L∞ and
from l2 to l∞ the L∞/L2-induced norm and l∞/l2-induced
norm, respectively, for simplicity.

II. CONTINUOUS-TIME AND DISCRETE-TIME CASES

As mentioned in the preceding section, the L∞/L2-
induced norm of SISO continuous-time LTI systems and the
l∞/l2-induced norm of SISO discrete-time LTI systems have
been known to coincide with the continuous-time H2 norm
and the discrete-time H2 norm, respectively. However, this
fact has been stated only without proof in [8] and [28], while
[15]–[18] deal also with relevant topics and explicit proofs
are given only for such topics. Recovering the proof of the
above fact from the relevant proofs may not necessarily be
extremely hard but not straightforward, either, while giving
an explicit proof is expected to be helpful in highlighting the
arguments of the present paper tailored to (SISO) sampled-
data systems. Hence, this section is devoted to such an
explicit proof.

A. Continuous-Time Case

We first consider the continuous-time case. Let us consider
the stable continuous-time SISO FDLTI system

Gc :


dx

dt
= Acx+Bcw

z = Ccx
(6)

where x(t) ∈ Rn is the state, w(t) ∈ R is the input and
z(t) ∈ R is the output. Throughout the paper, we assume
that x(0) = 0. Then,

z(t) =
∫ t

0

Cc exp(Ac(t− τ))Bcw(τ)dτ

=: (Tcw)(t) (0 ≤ t <∞) (7)

Tc defined above for the system (6) is known to be an
operator from L2 to L∞. By noting that Tcw is a continuous

function and the system (6) is LTI, it is easy to see that the
L∞/L2-induced norm of the system (6) can be described by

‖Tc‖∞/2 := sup
‖w‖2≤1

‖Tcw‖∞

= sup
‖w‖2≤1

sup
t

|(Tcw)(t)| = sup
t

sup
‖w‖2≤1

|(Tcw)(t)|

= sup
t

sup
‖w‖2≤1

∣∣∣∣∫ t

0

Cc exp(Ac(t− τ))Bcw(τ)dτ
∣∣∣∣

= sup
t

sup
‖w‖2≤1

∣∣∣∣∫ t

0

Cc exp(Acθ)Bcw(t− θ)dθ
∣∣∣∣

=: sup
t

sup
‖u‖2≤1

∣∣∣∣∫ t

0

Cc exp(Acθ)Bcu(θ)dθ
∣∣∣∣

=: sup
t

sup
‖u‖2≤1

|(Fcu)(t)|∞ = lim
t→∞

sup
‖u‖2≤1

|(Fcu)(t)|

=: ‖Fc‖∞/2 (8)

Remark 1: Fc defined above is also regarded as an op-
erator from L2 to L∞. In the following, we compute the
L∞/L2-induced norm ‖Tc‖∞/2 by computing the L∞/L2-
induced norm ‖Fc‖∞/2 instead because of some simplicities
in the following arguments.

Here, we review the continuous-time Cauchy-Schwarz
inequality, with the functions f and g, given by(∫ t

0

f(θ)g(θ)dθ
)2

≤
∫ t

0

f2(θ)dθ ·
∫ t

0

g2(θ)dθ (9)

where the equality holds if and only if f = λg on [0, t] for
a constant λ. By this inequality, we have

‖Fc‖∞/2 = lim
t→∞

sup
‖u‖2≤1

∣∣∣∣∫ t

0

Cc exp(Acθ)Bcu(θ)dθ
∣∣∣∣

=
(∫ ∞

0

Cc exp(Acθ)BcB
T
c exp(ATc θ)C

T
c dθ

)1/2

(10)

because(∫ t

0

Cc exp(Acθ)Bcu(θ)dθ
)2

≤
∫ t

0

Cc exp(Acθ)BcB
T
c exp(ATc θ)C

T
c dθ ·

∫ t

0

u2(θ)dθ (11)

Thus, by the Plancherel theorem, we can see from (10) that
the L∞/L2-induced norm ‖Fc‖∞/2 coincides with the H2

norm associated with (the transfer function of) the SISO
continuous-time LTI system (6).

B. Discrete-Time Case
We next consider the discrete-time case. Let us consider

the stable discrete-time SISO FDLTI system

Gd :

{
x(k + 1) = Adx(k) +Bdw(k)
z(k) = Cdx(k) +Ddw(k)

(12)

where x(k) ∈ Rn is the state, w(k) ∈ R is the input and
z(k) ∈ R is the output. Assuming that x(0) = 0,

z(k) =
k−1∑
i=0

CdA
i
dBdw(k − 1 − i) +Ddw(k)

=: (Tdw)(k) (k ∈ N0) (13)



Td defined above is known to be an operator from l2 to
l∞. Similarly to the continuous-time case, the l∞/l2-induced
norm of the system (12) can be given by

‖Td‖∞/2 = sup
‖w‖2≤1

‖Tdw‖∞

= sup
‖w‖2≤1

sup
k

|(Tdw)(k)| = sup
k

sup
‖w‖2≤1

|(Tdw)(k)|

= sup
k

sup
‖w‖2≤1

∣∣∣∣∣
k−1∑
i=0

CdA
i
dBdw(k − 1 − i) +Ddw(k)

∣∣∣∣∣
=: sup

k
sup

‖u‖2≤1

∣∣∣∣∣
k∑
i=1

CdA
i−1
d Bdu(i) +Ddu(0)

∣∣∣∣∣
=: sup

k
sup

‖u‖2≤1

|(Fdu)(k)| = lim
k→∞

sup
‖u‖2≤1

|(Fdu)(k)|

=: ‖Fd‖∞/2 (14)

Remark 2: Similarly to the continuous-time case, we
compute the l∞/l2-induced norm ‖Td‖∞/2 by computing
the l∞/l2-induced norm ‖Fd‖∞/2 instead.

Now, the discrete-time Cauchy-Schwarz inequality, with
the sequences f(i) and g(i), states that(

k∑
i=0

f(i)g(i)

)2

≤
k∑
i=0

f2(i) ·
k∑
i=0

g2(i) (15)

where the equality holds if and only if f(i) = λg(i), i =
0, . . . , k for a constant λ. Hence, it readily follows that

‖Fd‖∞/2 = lim
k→∞

sup
‖u‖2≤1

∣∣∣∣∣
k∑
i=1

CdA
i−1
d Bdu(i) +Ddu(0)

∣∣∣∣∣
=

( ∞∑
i=0

CdA
i
dBdB

T
d (ATd )iCTd +DdD

T
d

)1/2

(16)

because(
k∑
i=1

CdA
i
dBdu(i) +Ddu(0)

)2

≤

(
k∑
i=1

CdA
i
dBdB

T
d (ATd )iCTd +DdD

T
d

)
·
k∑
i=0

u2(i) (17)

Thus, we can see from (16) that the l∞/l2-induced norm
‖Fd‖∞/2 coincides with the H2 norm associated with (the
transfer function of) the SISO discrete-time LTI system (12).

III. L∞/L2-INDUCED NORM OF SISO SAMPLED-DATA
SYSTEMS

In the preceding section, we gave an explicit proof of the
fact that the L∞/L2-induced norm ‖Fc‖∞/2 and the l∞/l2
induced norm ‖Fd‖∞/2 coincide with the continuous-time
and discrete-time H2 norms, respectively, where the main
idea was the application of the Cauchy-Schwarz inequalities.
Since these induced norms of SISO continuous-time and
discrete-time LTI systems coincides with the continuous-time
and discrete-time H2 norms, respectively, it is interesting to
ask whether the same is true for SISO LTI sampled-data

systems; more precisely, since there are two different defi-
nitions for the H2 norm of LTI sampled-data systems [19]–
[22], whether the L∞/L2-induced norm coincides with either
of the two definitions. In this regard, it is also of interest
to see whether or not the Cauchy-Schwarz inequalities can
be directly applied to the sampled-data case. This section is
devoted to such arguments and gives a negative answer to
the question on the relationship with the H2 norm.

A. L∞/L2-Induced Norm and Its Lifting-Based Treatment

Let us consider the stable sampled-data system ΣSD shown
in Fig. 1, where P denotes the continuous-time LTI general-
ized plant, while Ψ, H and S denote the discrete-time LTI
controller, the zero-order hold and the ideal sampler, respec-
tively, operating with sampling period h in a synchronous
fashion. Solid lines and dashed lines in Fig. 1 are used to
represent continuous-time signals and discrete-time signals,
respectively. Suppose that P and Ψ are described respectively
by

P :


dx

dt
= Ax+B1w +B2u

z = C1x+D12u

y = C2x

(18)

Ψ :

{
ψk+1 = AΨψk +BΨyk

uk = CΨψk +DΨyk
(19)

where x(t) ∈ Rn, w(t) ∈ R, u(t) ∈ Rnu , z(t) ∈ R, y(t) ∈
Rny , ψk ∈ RnΨ , yk = y(kh) and u(t) = uk (kh ≤ t < (k+
1)h). Note that we have assumed ‘D11 = 0’ and ‘D21 = 0’
in the description (18) of the continuous-time generalized
plant P . This is necessary (and sufficient by the stability
of ΣSD) for the L∞/L2-induced norm sup

‖w‖2≤1

‖z‖∞ of the

sampled-data system ΣSD to be bounded/well-defined.
Because the sampled-data system ΣSD is a hybrid

continuous-time/discrete-time system, this system viewed
in continuous-time is (periodically) time-varying. To deal
with ΣSD as a time-invariant system, we apply the lifting
technique [24]–[26]. That is, given f ∈ L∞ or f ∈ L2, its
lifting {fk}∞k=0 with f̂k ∈ L∞[0, h) or L2[0, h) (k ∈ N0)
(with sampling period h) is defined as follows [24]–[26]:

f̂k(θ) = f(kh+ θ) (0 ≤ θ < h) (20)

By applying lifting to w ∈ L2 and z ∈ L∞, the lifted
representation of the sampled-data system ΣSD is described
by {

ξk+1 = Aξk + Bŵk
ẑk = Cξk + Dŵk

(21)

with ξk := [xTk ψTk ]T (xk := x(kh)), the matrix

A =
[
Ad +B2dDΨC2d B2dCΨ

BψC2d AΨ

]
: Rn+nΨ → Rn+nΨ

(22)
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Fig. 1. Sampled-data system ΣSD.

and the operators

B = JB1 : L2[0, h) → Rn+nΨ (23)
C = M1CΣ : Rn+nΨ → L∞[0, h) (24)
D = D11 : L2[0, h) → L∞[0, h) (25)

where

Ad := exp(Ah), B2d :=
∫ h

0

exp(Aθ)B2dθ, C2d := C2

(26)

J :=
[
I
0

]
∈ R(n+nΨ)×n, CΣ :=

[
I 0

DΨC2d CΨ

]
(27)

B1w =
∫ h

0

exp(A(h− θ))B1w(θ)dθ (28)(
M1

[
x
u

])
(θ) = C0 exp(A2θ)

[
x
u

]
(29)

A2 :=
[
A B2

0 0

]
, C0 :=

[
C1 D12

]
(30)

(D11w)(θ) =
∫ θ

0

C1 exp(A(θ − τ))B1w(τ)dτ (31)

From the stability assumption of ΣSD, A is stable, i.e., has
all its eigenvalues in the open unit disc.

Once the discrete-time LTI representation (21) of the
sampled-data system ΣSD is obtained by applying lifting (for
simplicity, we say the sampled-data system ΣSD is LTI for
the existence of such a representation), one may consider
that its L∞/L2-induced norm could be easily computed
through some technique similar to that employed in the
computation of the l∞/l2-induced norm of discrete-time
systems. However, (21) is actually quite different from the
state equation (12) for discrete-time systems because B,
C and D are operators. Hence, the discrete-time Cauchy-
Schwarz inequality, which is the key technique in showing
the equivalence of the l∞/l2-induced norm and the H2 norm
in SISO discrete-time LTI systems, cannot be directly applied
to the lifted representation (21). Consequently, we need to
develop a method specific to (SISO) sampled-data systems.
The details of the numerical computation method will be
discussed in Section IV, and we restrict our attention in this
section to a possible relationship of the L∞/L2 induced
norm with the two existing definitions of the H2 norm
of sampled-data systems. More specifically, this subsection
is devoted to a preliminary consideration, which is then
exploited in the following subsection to study such a possible
relationship in more detail.

To give an alternative characterization of the L∞/L2-
induced norm of the SISO LTI sampled-data system ΣSD in
the lifting-based framework, we first note (21) and describe

the closed-loop relation between ŵk and ẑk (k = 0, · · · ,∞)
as follows:
ẑ0
ẑ1
ẑ2
ẑ3
...

 =


D 0 · · ·
CB D 0 · · ·
CAB CB D 0 · · ·
CA2B CAB CB D 0 · · ·

...
. . . . . . . . . . . . . . .




ŵ0

ŵ1

ŵ2

ŵ3

...

 (32)

Because the lifting is norm-preserving in both L∞ and L2,
the L∞/L2-induced norm of the sampled-data system ΣSD

coincides with the L∞/L2-induced norm of the above oper-
ator in the right hand side. Furthermore, since this operator
has a Toeplitz structure (and thus every row is an extension of
the previous row), it readily follows that the L∞/L2-induced
norm of ΣSD coincides with the L∞/L2-induced norm of its
“last” block row, i.e., (after reordering without affecting the
L∞/L2-induced norm)

F :=
[
D CB CAB CA2B · · ·

]
(33)

The L∞/L2-induced norm ‖F‖∞/2 is defined as

‖F‖∞/2 := sup
‖ bw‖2≤1

‖(Fŵ)(·)‖∞

= sup
‖ bw‖2≤1

sup
0≤θ<h

|(Fŵ)(θ)| = sup
0≤θ<h

sup
‖ bw‖2≤1

|(Fŵ)(θ)| (34)

where ŵ =: [ŵ0, ŵ1, · · · ]T . For a fixed θ ∈ [0, h), we have

(Fŵ)(θ) = (Dŵ0)(θ) + (CBŵ1)(θ) + (CABŵ2)(θ) + · · ·

=
∫ θ

0

Dθ(τ)ŵ0(τ)dτ +
∫ h

0

CθBh(τ)ŵ1(τ)dτ

+
∫ h

0

CθABh(τ)ŵ2(τ)dτ + · · · (35)

with the matrix functions

Bh(τ) = J exp(A(h− τ))B1 (36)
Dθ(τ) = C1 exp(A(θ − τ))B1 (37)

and the matrix Cθ = C0 exp(A2θ)CΣ. Applying the
continuous-time Cauchy-Schwarz inequality to (35) leads to

|(Fŵ)(θ)| ≤

(∫ θ

0

D2
θ(τ)dτ

)1/2

·

(∫ θ

0

ŵ2
0(τ)dτ

)1/2

+

(∫ h

0

(CθBh(τ))2dτ

)1/2

·

(∫ h

0

ŵ2
1(τ)dτ

)1/2

+ · · · (38)

Furthermore, by applying the discrete-time Cauchy-Schwarz
inequality to (38), it easily follows that

sup
‖ bw‖2≤1

|(Fŵ)(θ)|

≤
(∫ θ

0

D2
θ(τ)dτ +

∫ h

0

(CθBh(τ))2dτ +
∫ h

0

(CθABh(τ))2dτ

+
∫ h

0

(CθA2Bh(τ))2dτ + · · ·
)1/2

=: F (θ) (39)

Remark 3: The infinite series (39) is convergent by the
stability assumption of A.



In particular, if we construct ŵ as

ŵ0(τ) =

{
λDθ(τ) (0 ≤ τ < θ)
0 (θ ≤ τ < h)

(40)

ŵi(τ) = λCθAiBh(τ) (0 ≤ τ < h, i ∈ N) (41)

where λ := 1/F (θ), we then easily see that ‖ŵ‖2 = 1 and
the equalities hold both in (38) and (39). This immediately
implies that sup

‖ bw‖2≤1

|(Fŵ)(θ)| = F (θ). Thus, by (34), the

L∞/L2-induced norm ‖F‖∞/2 can be given by

‖F‖∞/2 = sup
0≤θ<h

F (θ) (42)

B. Relationship between the L∞/L2-Induced Norm and Ex-
isting Definitions of the H2 Norm of Sampled-Data Systems

Based on the alternative characterization (42) of the
L∞/L2-induced norm of SISO LTI sampled-data systems,
this subsection is devoted to discussing whether this induced
norm coincides with either of the two existing definitions
of the H2 norm of sampled-data systems. This is a natural
question because this induced norm does coincide with the
H2 norm for SISO continuous-time LTI systems (and the
l∞/l2-induced norm coincides with the H2 norm for SISO
discrete-time LTI systems). We begin by reviewing the two
definitions for the H2 norm of (SISO) LTI sampled-data
systems. The first definition [19] considers the L2 norm of
the regulated output z(t) for the impulse input w(t) = δ(t)
occurring at t = 0, an instant at which the sampler takes its
action. The second definition [20]–[22], on the other hand,
considers the root mean square of the L2 norms of different
responses of z(t) for the impulse inputs w(t) occurring at
any instants in [0, h). The precise definitions are as follows.

1) H2 norm definition through a single impulse in-
put [19]: When w(t) = δ(t), we can formally regard that
its lifted representation is given by{

ŵ0 = δ(θ)
ŵi = 0 (i ∈ N)

(43)

By evaluating the L2 norm of the corresponding output,
the H2 norm of the (SISO) LTI sampled-data system ΣSD,
denoted by ‖ΣSD‖[0]

H2
, is defined as

‖ΣSD‖[0]
H2

:=
∥∥∥[Dδ CBδ CABδ · · ·

]T∥∥∥
2

(44)

=

(∫ h

0

Dh(θ)2dθ +
∫ h

0

(CθBh(0))2dθ +
∫ h

0

(CθABh(0))2dθ

+
∫ h

0

(CθA2Bh(0))2dθ + · · ·

)1/2

(45)

where ‖ · ‖2 in (44) denotes the L2[0, h) norm of an
infinite-dimensional vector function on [0, h), i.e., ‖f‖2 :=
(
∫ h
0
fT (θ)f(θ)dθ)1/2. It is easy to see from (39) and (45)

that the variables of integration in (39) are different from
those in (45), and this is expected to lead to F (θ) different
from ‖ΣSD‖[0]

H2
, for all θ ∈ [0, h). This suggests that the

L∞/L2-induced norm ‖F‖∞/2 is intrinsically different from
the H2 norm ‖ΣSD‖[0]

H2
in [19].

2) H2 norm definition through averaging about impulse
inputs [20]–[22]: By considering the impulse inputs w(t) =
δτ (t) := δ(t−τ) for all τ ∈ [0, h), another H2 norm, denoted
by ‖ΣSD‖[0,h)

H2
, is defined as the root mean square of the L2

norms of z(t) for these impulse inputs as

‖ΣSD‖[0,h)
H2

:=

(
1
h

∫ h

0

‖[Dδτ CBδτ CABδτ · · · ]T ‖2
2dτ

)1/2

=
1√
h

(∫ h

0

∫ θ

0

(Dθ(τ))2dτdθ +
∫ h

0

∫ h

0

(CθBh(τ))2dτdθ

+
∫ h

0

∫ h

0

(CθABh(τ))2dτdθ + · · ·

)1/2

(46)

It is very interesting to see from (39) and (46) that

‖ΣSD‖[0,h)
H2

=

(
1
h

∫ h

0

F 2(θ)dθ

)1/2

(47)

while the L∞/L2-induced norm ‖F‖∞/2 is described by
sup

0≤θ<h
F (θ) as shown in (42). Hence,

‖ΣSD‖[0,h)
H2

≤ ‖F‖∞/2 (48)

follows immediately and it is suggested that L∞/L2-induced
norm ‖F‖∞/2 is intrinsically different also from the H2

norm ‖ΣSD‖[0,h)
H2

.
Summarizing the above arguments, we could conclude that

the L∞/L2-induced norm ‖F‖∞/2 of SISO LTI sampled-
data systems may not be characterized by either of the two
H2 norms of sampled-data systems given so far in [19]–[22].

Remark 4: When we consider SISO continuous-time LTI
systems as a special class of sampled-data systems, F (θ) in
(39) becomes a constant function on [0, h).

IV. COMPUTATION METHOD OF THE L∞/L2-INDUCED
NORM IN SISO LTI SAMPLED-DATA SYSTEMS

This section gives methods for computing F (θ) in (39)
and the L∞/L2-induced norm ‖F‖∞/2 = sup

0≤θ<h
F (θ). For

a fixed θ ∈ [0, h], we first consider the controllability
Grammian

Wθ :=
∫ θ

0

exp(A(θ − τ))B1B
T
1 exp(AT (θ − τ))dτ (49)

Then, it is easy to see that∫ θ

0

D2
θ(τ)dτ = C1WθC

T
1 (50)∫ h

0

(CθAiBh(τ))2dτ = CθAi

[
Wh 0
0 0

]
(AT )iCTθ (i ∈ N0)

(51)

Hence

F 2(θ) = C1WθC
T
1 + Cθ

( ∞∑
i=0

Ai

[
Wh 0
0 0

]
(AT )i

)
CTθ

(52)



and by solving the discrete-time Lyapunov equation

AXhAT −Xh +
[
Wh 0
0 0

]
= 0 (53)

we readily have

F 2(θ) = C1WθC
T
1 + CθXhC

T
θ (54)

Hence by (42), we immediately have the following result.
Theorem 1: The L∞/L2-induced norm ‖F‖∞/2 associ-

ated with the SISO LTI sampled-data system ΣSD is given
by

‖F‖∞/2 = sup
0≤θ<h

(
C1WθC

T
1 + CθXhC

T
θ

)1/2
(55)

Even though Theorem 1 gives an almost direct method
for the computation of the L∞/L2-induced norm ‖F‖∞/2 of
SISO sampled-data systems, taking the supremum over [0, h)
precisely is bothersome. Regarding this issue, the following
result for approximate computation follows readily.

Theorem 2: Let M ∈ N and h′ := h/M . Then,

max
θ∈{0,h′,··· ,(M−1)h′}

(C1WθC
T
1 + CθXhCθ)1/2 → ‖F‖∞/2

(56)

as M → ∞.

V. CONCLUSION

This paper tackled the problem of characterizing the
induced norm from L2 to L∞ in single-input/single-output
(SISO) LTI sampled-data systems. Behind the interest in
this problem lied the two facts that (i) this induced norm
coincides with the H2 norm when we confine ourselves
to SISO continuous-time LTI systems as a special class of
systems under consideration, while (ii) there exist two con-
ceptually different definitions for the H2 norm of sampled-
data systems [19]–[22]. We first gave a closed-form expres-
sion for the induced norm and argued that it coincides with
neither of the two existing definitions for the H2 norm. In
particular, we showed that it is at least as large as (a more
commonly used) one of the two definitions. We then gave
a more sophisticated closed-form expression, by which we
established an approximate but asymptotically exact method
for computing the induced norm. These results are believed
to shed a new light on the consequences of the hybrid and
periodically time-varying nature of sampled-data systems.
Finally, we would like to remark that the induced norm
studied in this paper can be regarded as a new definition
of the H2 norm of sampled-data systems, and the optimal
controller synthesis problem of minimizing the induced norm
may be an interesting future topic.
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