
ar
X

iv
:2

31
1.

02
92

4v
1 

 [
cs

.H
C

] 
 6

 N
ov

 2
02

3

AttentioNet: Monitoring Student Attention Type in

Learning with EEG-Based Measurement System

Dhruv Verma*†

University of Toronto

Toronto, Canada

dhruvverma@cs.toronto.edu

Sejal Bhalla*†

University of Toronto

Toronto, Canada

sejal@cs.toronto.edu

S. V. Sai Santosh*†

NVIDIA Corporation

Austin, USA

vsiripurapu@nvidia.com

Saumya Yadav

Human-Machine Interaction Lab

IIIT-Delhi

Delhi, India

saumya@iiitd.ac.in

Aman Parnami

WEAVE Lab

IIIT-Delhi

Delhi, India

aman@iiitd.ac.in

Jainendra Shukla

Human-Machine Interaction Lab

IIIT-Delhi

Delhi, India

jainendra@iiitd.ac.in

Abstract—Student attention is an indispensable input for
uncovering their goals, intentions, and interests, which prove
to be invaluable for a multitude of research areas, ranging
from psychology to interactive systems. However, most existing
methods to classify attention fail to model its complex nature. To
bridge this gap, we propose AttentioNet, a novel Convolutional
Neural Network-based approach that utilizes Electroencephalog-
raphy (EEG) data to classify attention into five states: Selective,
Sustained, Divided, Alternating, and relaxed state. We collected a
dataset of 20 subjects through standard neuropsychological tasks
to elicit different attentional states. The average across-student
accuracy of our proposed model at this configuration is 92.3%
(SD=3.04), which is well-suited for end-user applications. Our
transfer learning-based approach for personalizing the model to
individual subjects effectively addresses the issue of individual
variability in EEG signals, resulting in improved performance
and adaptability of the model for real-world applications. This
represents a significant advancement in the field of EEG-based
classification. Experimental results demonstrate that AttentioNet
outperforms a popular EEGnet baseline (p-value < 0.05) in both
subject-independent and subject-dependent settings, confirming
the effectiveness of our proposed approach despite the limitations
of our dataset. These results highlight the promising potential of
AttentioNet for attention classification using EEG data.

Index Terms—EEG, Attention, Affective Computing, Cognitive
Engagement Assessment

I. INTRODUCTION

Education plays a crucial role in the development of indi-

viduals and societies, and effective learning is essential for

academic success. The field of education is constantly evolv-

ing, and with the advent of advanced technologies, there is a

growing interest in exploring innovative methods to enhance

educational practices and improve learning outcomes. Student

engagement is a crucial factor that influences the quality of

learning experiences and outcomes. Engaged students are more

likely to be actively involved in their learning, motivated to

learn, and able to retain and apply knowledge effectively.

* These authors contributed equally.
† This work was conducted during their affiliation with IIIT-Delhi, India.

Hence, furnishing teachers with feedback on student engage-

ment holds the utmost significance in the realm of education.

Engagement is a multifaceted construct that encompasses

three essential components: behavioral engagement, cognitive

engagement, and emotional engagement [1]–[3]. Emotional

engagement pertains to the affective reactions exhibited by

students, such as expressions of happiness or sadness, while

behavioral engagement encompasses outward actions, such

as asking questions and showing interest during class, as

noted in previous research [4]. On the other hand, cognitive

engagement involves internal neuropsychological processes,

including attention and investment in learning [5]. The current

study investigates the cognitive engagement of students, which

refers to the extent of mental investment in learning, including

traits such as reflection, persistence, and experiencing a state

of flow. Some indications imply that there may be a positive

association between cognitive engagement and academic per-

formance in students [6], [7].

Attention is a crucial component of cognitive engagement

in students, playing a fundamental role in their ability to

focus, process information, and actively participate in learn-

ing activities. In this study, attention is considered a latent

variable of engagement, and its types are determined us-

ing neuroanatomic theories, factor analysis of psychometric

tests, cognitive processing, and clinical-based models [8].

The clinical-based model encompasses five distinct types of

attention, each with its unique characteristics and relevance to

the cognitive processes of students. It emphasizes the multi-

dimensional nature of attention, making it highly relevant and

appropriate for fine-grained attention modeling. Understanding

these different types of attention can be beneficial in shedding

light on how students engage and interact with their learning

environment:

• Alternating attention: It reflects mental flexibility in

shifting the focus of attention. It allows students to shift

their focus between different tasks or stimuli, helping

them to manage multiple information sources and switch

http://arxiv.org/abs/2311.02924v1


between different cognitive demands effectively. This can

be particularly helpful in complex learning situations that

require shifting between different activities or subjects.

• Divided attention: It represents the ability to respond

to multiple tasks simultaneously. It enables students to

allocate their cognitive resources to multiple tasks simul-

taneously. This can be beneficial in situations where stu-

dents need to multitask or manage multiple information

streams, such as when studying with digital resources or

taking notes during a lecture.

• Focused attention: It describes attention to specific

tactile, auditory, or visual stimuli. It allows students to

concentrate their mental resources on a specific task

or stimulus. This type of attention is crucial for deep

learning and critical thinking, as it enables students to

thoroughly process information, analyze it, and engage

in higher-order cognitive processes.

• Selective attention: It depicts the ability to maintain cog-

nitive focus amidst distracting or competing stimuli. This

type of attention enables students to filter out irrelevant

distractions and focus on relevant information selectively.

This can help students to prioritize important information,

ignore distractions, and maintain focus on the task at

hand, leading to more efficient and effective learning.

• Sustained attention: It represents consistent attention

during repetitive activities. It allows students to maintain

focus and concentration over an extended period of time.

This is essential for tasks that require prolonged mental

effort, such as reading, problem-solving, or studying.

Sustained attention helps students to stay engaged and

attentive throughout the learning process, leading to better

comprehension and retention of information.

Overt measures of attention in the classroom, such as tracking

device usage or gaze patterns, may only capture external

stimuli that grab attention, such as a ringing smartphone.

However, these techniques do not consider the attentional

state influenced by internal stimuli, such as thoughts. In

contrast, physiological signals such as Electroencephalography

(EEG), functional Near Infrared Spectroscopy (fNIRS), and

Electrodermal Activity (EDA) take into account the unfiltered,

involuntary changes in the nervous system, thus accounting for

the covert state of mind as well [12]. Among these methods,

EEG-based approaches have been extensively studied for

detecting dynamic mental states due to their high temporal

resolution, lack of clinical risk, affordability, and portability.

To address the challenges, we propose a novel technique

leveraging multi-channel dynamics and temporal dependencies

of EEG data from neuropsychological tests to comprehensively

model student attention. We demonstrate its efficacy in dis-

tinguishing between different types of attention based on the

Clinical Model.We conducted a user study (N=20) to evaluate

the performance of our approach in detecting the nature of

student engagement in accordance with the clinical model.

Our study focused on a specific context and population, and

we acknowledge that the findings may not be generalizable

to all situations. Since EEG data features long-range temporal

dependencies, we designed a Convolutional Neural Network

(CNN) with self-attention modules, termed as AttentioNet, to

classify the different types of attention. CNN was selected for

its capability to learn hierarchical representations from com-

plex EEG data, capture spatial patterns, and efficiently learn

from limited datasets. To summarize, the key contributions of

this paper are as follows:

• Collection of EEG data from 20 subjects and 5 classes

through standard neuropsychological tasks to elicit dif-

ferent attentional states.

• We introduce AttentioNet, a novel CNN based approach

for classifying various attention types using EEG data.

Inclusion of multi-channel information in the EEG data,

capturing temporal and spatial dependencies for more

accurate attention classification.

• Personalization of the model to individual subjects using

a transfer learning-based approach, effectively addressing

the issue of individual variability in EEG signals.

II. RELATED WORK

Previous research has predominantly centered on the detec-

tion of engagement using EEG [9]–[11]. While recent works

have applied various algorithms on EEG data to achieve an

accuracy of 89.4% in binary classification between attentive

and non-attentive/relaxation states [12] and a maximum of

80.84% in 3-class classification [13]. Engagement, which

is a multifaceted concept, plays a crucial role in learning

and academic achievement. It’s essential to recognize that

engagement and attention are distinct cognitive processes,

although they are often mistakenly considered the same. In

the study [10], [14], [15], attention and engagement are used

interchangeably as indicators of engagement. Also, in the past,

there have been efforts to identify any single attention type

in application-specific scenarios [16]–[18]. However, to our

knowledge, just one other work [19] has attempted to classify

attention according to the clinical model. It uses thermal

imaging and remote eye tracking to infer attentional states but

suffers from a lack of reliability since both modalities give

overt measures of attention.

The conventional approach to detecting attention using EEG

often involves relying on self-report or external annotator as

the ground truth, where participants or external annotators

are asked to report their own level of attention subjectively.

However, these method has several drawbacks. Firstly, self-

report can be influenced by various factors, such as social

desirability bias or subjective interpretations, which may result

in inaccurate or biased measurements of attention. Secondly,

self-report can be influenced by subjective biases and may

not always accurately reflect the true attentional state of the

individual. Similarly, external annotators may introduce errors

or biases in their assessments, leading to less reliable results.

These limitations highlight the need for alternative methods

that can provide more objective and reliable measures of

attention using EEG. To overcome this in the proposed work,

standardized neuropsychological assessments are employed to



assess attention, as they comprehensively measure various

aspects of attention. These assessments are typically admin-

istered by trained psychologists or clinical psychologists and

involve task-based evaluations designed to measure attentional

processes.

III. STUDY DESIGN

Training data was collected with ethics approval from

the Institutional Review Board of Indraprastha Institute of

Information Technology, Delhi, India (IIITD/IRB/9/10/2019-

1). Participants underwent an experiment, as outlined in Fig. 1

of the paper. Volunteers did not receive any compensation

for participating, and all of them provided informed consent

before proceeding with the experiment.

A. Participants

A total of 20 healthy participants (10 females, 10 males)

within the age range of 18-21 years (mean = 19.58, SD =

0.86) took part in the experiment. Every participant in the

study was an undergraduate student. They all self-reported not

having color blindness, a history of neurological disease, or

hearing disorder, and they had normal or corrected-to-normal

vision.

B. Data collection

In this research study, each participant completed a com-

puterized experiment that involved following specific instruc-

tions. It took approximately 14 minutes for each partici-

pant to complete the test. The experiment comprised four

established neuropsychological tasks that stimulate distinct

types of attention, including Selective, Divided, Sustained, and

Alternating attention. We omitted focused attention from the

study as our primary interest lies in examining attentional

patterns over extended periods [19]. EEG data and facial

video recordings of the participants were recorded during the

experiment. Additionally, self-reported measures of distraction

(applicable to divided attention tasks only) were collected

using a Likert Scale. To minimize any potential disruptions to

the experimental flow, these ratings were obtained at the end of

the experiment by simultaneously presenting facial and screen

recordings of the trial to trigger recall. A total of 20 videos

were collected, which were used to construct the AttentioNet

dataset.

Fig. 1 summarizes the AttentioNet experiment. The Atten-

tioNet experiment began with a 1-minute baseline recording

with closed eyes, followed by a 1-minute baseline with open

eyes for relaxation. The 30-second resting periods and 1-

minute intervals for eye-closed and eye-opened states were

chosen to ensure reliable data collection and consistent results.

Subsequently, the subject performed the neuropsychological

tasks, each separated by a 30-second resting period.

• Stroop Test: The Stroop test is a well-established tool

for evaluating selective attention [20]. It gauges the time

taken by individuals to verbally identify the font color

of a word that presents an incongruent color. In our

study, we utilized a computerized version of the test

where participants reported the font color using arrow

keys. In the experiment, a slide deck containing the words

’red’, ’green’, ’blue’, and ’yellow’ in random order was

presented to the subjects. The participants were then

instructed to enter the font color of the word displayed

using the corresponding keys ’r’, ’g’, ’b’, or ’y’.

• Reading Test: The experiment was a recreation of the

study conducted by in [16] to assess the state of divided

attention. Divided attention was induced by creating

an environment where readers could be distracted by

external stimuli, in this case, distracting sounds. A total

of five reading sessions, each lasting approximately 30

seconds, were conducted. Afterward, participants were

asked to rate their level of distraction during each session

using a Likert scale ranging from 1-9, with 9 indicating

the highest level of distraction. It should be noted that

the purpose of these self-reported ratings is to assess the

participants’ perception of their own distraction levels,

rather than serving as the primary measure of attention

in the overall study.

• Continous Performance Test(CPT): The current study

utilized the Conners’ CPT II test [21], which is a task that

involves a ”No-Go” CPT paradigm. It is a cognitive task

that measures sustained attention and divided attention.

In this task, participants are presented with a series of

stimuli (letters) on a computer screen and are instructed to

respond. In the experiment, participants were instructed to

press the space bar whenever they see any letter other than

”X”, indicating a ”No-Go” response for ”X”. The test is

typically administered for a duration of approximately 3

minutes.

• Trail Making Test-B(TMT-B): TMT, a widely used

neuropsychological assessment tool, evaluates cognitive

performance and measures various types of attention [22].

TMT comprises two types: TMT-A, involving number

sequencing from 1 to 15, and TMT-B, which requires

set-shifting, where subjects alternate between numerical

and alphabetic sequences (1-A-2-B-3...) [23]. For our

study, we exclusively employed the TMT-B task to ana-

lyze participants’ alternating attention. Participants were

instructed to select a sequence of alphanumeric bubbles

that turned green upon selection. In this assessment, par-

ticipants are tasked with connecting 40 circled numbers

and letters (20 of each) that are randomly distributed, fol-

lowing alternating numerical and alphabetical sequences,

akin to 1-A-2-B-3-C... and so on, providing a challenging

task for cognitive evaluation.

IV. METHODOLOGY FOR ATTENTIONET

A. EEG Data Acquisition and Preprocessing

For our EEG recording, we utilized the Emotiv EPOC+1

in combination with Emotiv PRO software. The EPOC+

system enabled us to acquire the raw EEG signals wire-

less via Bluetooth at a high sampling rate of 128

1http://www.emotiv.com/epoc
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Fig. 1. Experiment timeline for AttentioNet data collection.

Hz from 14 electrodes strategically positioned on the

scalp, including AF3, F7, F3, FC5, T7, P7, O1,

O2, P8, T8, FC6, F4, F8, and AF4. To ensure data

quality, the collected raw EEG data were bandpass filtered

within the frequency range of 0.2 Hz to 45 Hz. Subsequently,

the filtered data was segmented and labeled according to the

different attention tasks performed by the subjects. To facilitate

further analysis, we epoched the segmented data into frames

of 1 second, with an overlap of 750 milliseconds, to capture

potential transient changes in the EEG signals during the tasks.

This meticulous approach to data pre-processing allows for a

more accurate and reliable analysis of the EEG data in our

study.

B. AttentioNet Architecture

In this section, we describe the architecture of our proposed

model, termed as AttentioNet (see Fig. 2). Given a multi-

channel frame of raw EEG signals (time steps, channels)

which is called an epoch, the goal is to recognize the atten-

tion type (from relaxed, selective, sustained, alternating, and

divided attention states) represented by this epoch. Recently,

[24] demonstrated the use of self-attention in robust subject-

independent EEG analysis. Motivated by the same, we design

our network to encode the temporal and multi-channel dynam-

ics in EEG using an attention mechanism. Our approach draws

inspiration from [25], which proposes to use this technique

for efficient affect recognition using EDA. The architecture

consists of 4 blocks which are described as follows:

1) Low-level Feature Extraction: In our methodology, we

begin with a low-level feature extraction (LFE) module, which

plays a crucial role in capturing the fundamental charac-

teristics of the acquired EEG data. We extract low-level

feature maps XLFE from the multi-channel input X using

a 1-D convolutional layer followed by batch normalization.

The 1-D convolutional layer operates on the multi-channel

input X , which represents a multi-dimensional array with

multiple channels. The convolutional layer applies filters to

each channel independently, extracting features from each

channel separately. This allows the model to capture unique

patterns and interactions specific to each channel, while also

considering the collective information across channels. Fol-

lowing the convolutional layer, batch normalization is applied

to normalize the output. Batch normalization is a technique

that helps stabilize and accelerate the training process of deep

neural networks. It normalizes the output across channels,

ensuring that features extracted from different channels are

on similar scales. The combination of the 1-D convolutional

layer and batch normalization allows the proposed network to

account for multi-channel dynamics and capture multivariate

interactions.

Next, we incorporate a signal attention mechanism on the

XLFE to extract temporal and channel-wise features. This

attention mechanism enables the model to focus on relevant

regions of the EEG signals, capturing important patterns and

variations that may be indicative of different cognitive states

or tasks. By adaptively attending to different parts of the EEG

data, the model can effectively highlight informative features

for further analysis.

In the next section, we detail the architecture, including

the LFE module and the signal attention mechanism, and

how they collaborate to extract meaningful features from the

EEG data. This comprehensive approach leverages both low-

level and high-level information, resulting in a more robust

and discriminative representation for subsequent analysis and

interpretation.

2) Attention Module: After extracting low-level features,

the feature map is processed using a series of sub-modules,

including a channel attention module (CA) and a non-local

temporal attention module (NTA).

Channel Attention Module It is widely acknowledged that

distinct cognitive and affective states elicit specific responses

in different regions of the brain, as evidenced by the EEG

electrode activity within those regions. Therefore, investigating

the inter-channel (region) relationships and identifying the

channels that play a pivotal role in discriminating attention

types are critical considerations.

The EEG data collected during the experiments comprises

14 channels, each of which may contribute differently to

the final prediction. The channel-wise attention mechanism,

proven to be portable for various tasks while maintaining

excellent performance and robustness to noisy inputs, is uti-

lized to extract the inter-channel relationships. We implement

a modified version of the channel attention module inspired
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Fig. 2. Overview of the AttentioNet Architecture: A Visual Representation of the Attention-based Neural Network Model

by the Squeeze-and-Excitation Block, as proposed in reference

[26], to suit the unique characteristics of EEG signals. This

adaptation includes customizing 1D convolutions designed ex-

plicitly for EEG data in order to achieve our desired outcome.

We start by performing average temporal pooling on the

low-level feature map XLFE to extract channel-wise statis-

tics. These statistics are then passed through a multi-layer

perceptron (MLP) with 64 hidden units for further processing.

ReLU activation is employed to introduce non-linearity, and

Sigmoid activation is applied at the end to generate normalized

channel weights ranging from 0 to 1. Finally, the original

low-level feature map XLFE is re-weighted by element-wise

multiplication with the channel attention weights, resulting in

the channel attention-enhanced feature map denoted as XCA.

Finally, the output of the XCA module can be shown as

follows:

XCA = Sigmoid(MLP (AvgPool(XLFE))) ·XLFE (1)

Non-local Temporal Attention Module (NTA) The ac-

quired EEG data in our experiments is sequential, which

implies that long-range samples may impact the final outcome

differently at different positions. Therefore, it is crucial to

investigate these long-range dependencies in the signal to gain

a comprehensive understanding of the data.

In this context, non-local operations have been proven

effective in various applications such as video classification,

object detection, instance segmentation, and keypoint detection

[27]. The generalizability and success of non-local operations

in these domains have inspired us to apply them to leverage

the long-range relationships in neuropsychological signals for

attention-type recognition.

A generic non-local operation in a deep neural network, as

shown in [27], [28]. The equation defining x̂i is as follows:

x̂i =
1

c(x)

∑

∀j

f(xi, xj)g(xj), (2)

In this equation, x represents the input feature map, denoted

as XCA in our case. The index i represents the target position

in time for the output, while the index j refers to the set of

all possible positions that contribute to the response xi. The

function f(·) extracts the relationship between index i and all

possible positions j, while g(·) re-weights the input features.

The function c(·) represents a normalization function applied

before obtaining the final output.

In this work, we use the convolution operation coupled with

a max-pooling operation for the linear operation g(·) as:

g(xj) = MaxPool(Wgxj), (3)

where Wg represents the convolution kernel. For the pair-

wise operation f(·), we apply the commonly used Embedded

Gaussian formulation [29] (a widely used measure for com-

puting similarity in an embedding space) to define f(·) as:

f(xi, xj) = eθx
T
i φxj (4)

where θ(·) and φ(·) represent convolution operations. For

the normalization operator c(·), we adopt the adaptation from

reference [27], where it is set as
∑

∀j
f(xi, xj), and the final

pairwise operation is performed using the softmax operation
1

c(x)f(xi, xj). The overall operation of the NTA block can be

expressed as:

XNL = Softmax(XT
CAW

T
θ MaxPool(WφXCA))

MaxPool(WgXCA) (5)

where Wθ and Wφ are convolution kernels and finally, the

output of the NTA module can be shown as:

XNTA = WwFNL + FCA (6)

Where Ww denotes the 1D convolution operation followed

by batch normalization. The output XNTA refers to the re-

weighted result obtained from the Attention Module.

3) High-level Feature Extraction: We employ DenseNet-

121 [30] as the backbone for extracting high-level feature

maps, as it offers improved gradient flow and tractable op-

timization. It is worth noting that other state-of-the-art feature

extraction backbones such as VGG, ResNet, or GoogLeNet

exist, but a comparative analysis of these networks is not

the primary focus of this work. To make DenseNet-1212

2A detailed diagram for the modified DenseNet-121 is skipped due to space
constraints.



compatible with the input signal features, we modify its

original architecture by replacing the 2D convolutions with

1D convolutions. The backbone takes the input XNTA and

produces a feature vector denoted as XHFE .

4) Classifier: Finally, the feature vector XHFE is fed into

a Fully Connected Layer with Softmax activation, consisting

of 5 units, for the purpose of classifying attention into their

respective types.

C. Model Training

After pre-processing the data (as described in Section 4.A),

we obtained a total of 62, 530 windows, each with a length of

128 samples, across 20 subjects and five classes (as detailed in

Section 4.B). To train our neural network, a leave-one-subject-

out scheme was adopted, where the data of one subject was

reserved for validation while the remaining subjects’ data was

utilized for training. The Adam optimizer [31] was employed,

with a learning rate of 0.001, and was decayed by a factor

of 10 if the validation loss plateaued after an epoch. The

Categorical Cross-entropy function served as the loss function.

Mini-batches of size 32 were used for training, with model

checkpoints saved at the epoch with the highest validation

accuracy.

V. EXPERIMENT RESULTS

To assess the performance of our approach in detecting stu-

dent attention type, we conducted experiments in two different

settings: subject-independent and subject-dependent (adaptive)

evaluations. Additionally, since this is the first attempt to

categorize attention using EEG data, we compare our model’s

performance to EEGNet [32].

EEGNet is a architecture specifically designed for analyzing

EEG data. It addresses the unique challenges posed by EEG

signals, such as non-stationarity and temporal dependencies,

by incorporating depthwise and separable convolutions. These

convolutions efficiently capture spatial and temporal patterns

in the EEG data. Moreover, EEGNet employs a parallel filter-

bank structure to process different frequency bands separately,

enabling the model to extract multi-scale information present

in EEG signals effectively.

Due to its effectiveness in handling EEG data, EEGNet is

widely used in EEG-based classification tasks, including motor

imagery classification [33], emotion recognition [34], and

various cognitive tasks [32]. Researchers often use EEGNet as

a benchmark model to evaluate and compare the performance

of their proposed approaches in EEG data analysis.

A. Subject Independent Evaluation

To evaluate the model’s performance without subject-

specific data, we employed a leave-one-subject-out (LOSO)

cross-validation approach. The dataset was split based on

individual subjects, where data from 19 participants were used

for training, and the data of one participant was held out for

validation. This process was repeated for each subject, ensur-

ing a comprehensive assessment of the model’s performance

across different subjects.

Fig. 3. Performance of AttentioNet and EEGNet tuned with different amounts
of data from the test subject. Error bar indicates the standard error.

The average LOSO accuracy for AttentioNet in the 5-

class attention classification task was 53.75% (SD=4.58,

chance=20%), while for EEGNet, it was 43.8% (SD=6.20).

Our approach significantly outperformed EEGNet, and we

confirmed this with a Students’ T-test (p : 1.5× 10−6).

However, we recognized that considering the inherent vari-

ability of EEG signals across participants could lead to further

improvements in performance. As a result, we decided to

adopt a subject-dependent (adaptive) approach, enabling us to

personalize the model for each individual. This adaptability

takes into account the unique characteristics of each subject’s

EEG data, which has been demonstrated to lead to significant

enhancements in the model’s performance [35].

B. Subject Dependent Evaluation

To account for individual variability, we employed a trans-

fer learning-based approach using the LOSO cross-validation

method. For each left-out test subject, we fine-tuned a base

model pre-trained on the data from the remaining subjects.

This fine-tuning process involved using a subset of the left-

out subject’s data. To determine the optimal size of this subset,

indicating the number of samples needed for effective person-

alization, we incrementally added 10 seconds of the subject’s

data per class. After each step, we fine-tuned the model and

evaluated the performance of AttentioNet in comparison to

EEGNet.

As depicted in Fig. 3, the transfer learning approach led

to a significant improvement in performance for both net-

works, with AttentioNet exhibiting a notably higher increase.

Notably, using 30 seconds of data per class was found to

be sufficient to personalize the model for any given subject.

At this configuration, the average across-subject accuracy of

AttentioNet was 92.3% (SD=3.04), making it well-suited for

end-user applications. Any further increase in the tuning data

beyond this point resulted in an insignificant gain in accuracy,

suggesting that additional data can be traded off to minimize

the data required for fine-tuning the base model.

Fig. 4 summarizes the performance of our approach and

EEGNet, each tuned according to the aforementioned optimal

configuration, in a 5-class classification task for each subject.

This analysis highlights the effectiveness of our subject-



dependent adaptive approach in achieving highly accurate

attention classification results across various individuals.
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Fig. 4. Comparison of EEGNet and AttentioNet, tuned with 30 seconds of
subject data per class, for each subject.

VI. CONCLUSION

In this work, we demonstrate the effectiveness of a novel

attention classification mechanism that utilizes deep neural

networks to analyze EEG data and differentiate between

different attention states, as specified by the clinical model

of attention. Unlike previous research that treated attention

as a unidimensional variable, our approach acknowledges the

multidimensional nature of human attention. To evaluate the

performance of our approach, we collected data from 20 stu-

dents who performed a range of controlled neuropsychological

tasks, specifically designed to elicit distinct attention states.

For classifying attention types, we introduced AttentioNet,

a CNN-based architecture that incorporates non-local tempo-

ral and channel-wise attention mechanisms. This integration

enables robust classification of attention types using EEG

data. Comparing our model’s performance to EEGNet, a

well-established EEG baseline, we observed that AttentioNet

outperformed EEGNet with average accuracies of 53.75% and

92.3% in subject-independent and subject-dependent settings,

respectively (the latter achieved through personalization with

30 seconds of EEG data). Furthermore, our subject-dependent

analysis highlighted the importance of personalization in EEG-

based attention monitoring, underscoring its potential for en-

hancing performance in real-world attention-based applica-

tions.

VII. LIMITATIONS AND FUTURE WORK

As with any study, our research also comes with certain

limitations that warrant discussion and consideration.

Firstly, our dataset comprises a relatively small number

of subjects, primarily consisting of students. To develop a

more widely applicable and generalizable system, future work

should focus on expanding the dataset to include a more

diverse range of subjects.

Secondly, the controlled settings used to evoke attentional

states may not fully replicate the complexities of real-world

situations. Addressing this limitation involves conducting ex-

periments in more naturalistic settings to capture user re-

sponses in authentic, everyday scenarios.

Thirdly, our data collection was confined to a single session.

To achieve a more comprehensive evaluation of personalized

algorithms, future research should incorporate data from mul-

tiple sessions to assess performance more holistically.

Despite these limitations, our findings illustrate the promis-

ing potential of EEG-based systems for attention monitoring

and classification. Looking ahead, we envision integrating our

approach with portable EEG devices like AttentivU glasses

[11], facilitating real-time attention measurement. Addition-

ally, by incorporating advanced sensing technologies, our work

has the potential to provide enhanced insights into teaching,

thereby improving learning outcomes in educational settings.
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IX. ETHICAL IMPACT STATEMENT

Our research delves into the use of deep neural networks to

analyze human cognitive states, particularly attention, with a

focus on young populations like students. Consequently, our

work extends beyond technological advancements and raises

various ethical implications that demand careful consideration.

Firstly, the collection of EEG data from human subjects

for research purposes necessitates strict adherence to ethical

guidelines. This includes obtaining informed consent from

participants, safeguarding their confidentiality, and ensuring

minimal discomfort or harm during data acquisition. To ensure

ethical compliance, our study was approved by the IRB at our

institution.

Secondly, we recognize the potential impact on privacy

and data security. EEG data is sensitive and can reveal

personal information about an individual’s cognitive processes

and attentional states. To safeguard privacy, measures were

implemented, such as data anonymization, secure storage, and

restricted access to the data.

Thirdly, the limitations of the dataset used for training and

evaluation must be acknowledged, as it may not fully represent

the diversity of the general population in terms of age, gender,

ethnicity, and other demographic factors. Efforts were made to

carefully interpret the findings and avoid overgeneralization.

Moreover, the potential for bias in the proposed model

has been carefully evaluated. Convolutional Neural Networks

(CNNs) are known to learn patterns from data, and if the

training data is biased, it can lead to biased predictions.

Thus, the model’s performance across different demographic

groups was thoroughly assessed and ensured that it does

not perpetuate existing biases or discriminate against specific

populations.



Furthermore, the intended use and application of Atten-

tioNet have been considered. If AttentioNet is used in real-

world settings for monitoring and classifying attention states,

it may raise concerns about surveillance, autonomy, and fair-

ness. Ethical considerations will be taken into account when

deploying AttentioNet in practical applications.

In conclusion, while AttentioNet represents a significant

advancement in EEG-based attention classification, it is im-

perative to adhere to ethical principles throughout the re-

search process. Transparent reporting of limitations, potential

biases, and ethical considerations is crucial to ensuring the

responsible and ethical use of this technology. By upholding

ethical standards, we strive to maximize the positive impact

of our research while minimizing potential risks or unintended

consequences.
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