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Abstract—Deep learning models have demonstrated remark-
able results for various computer vision tasks, including the realm
of medical imaging. However, their application in the medical
domain is limited due to the requirement for large amounts of
training data, which can be both challenging and expensive to
obtain. To mitigate this, pre-trained models have been fine-tuned
on domain-specific data, but such an approach can suffer from
inductive biases. Furthermore, deep learning models struggle to
learn the relationship between spatially distant features and their
importance, as convolution operations treat all pixels equally.
Pioneering a novel solution to this challenge, we employ the Image
Foresting Transform to optimally segment images into superpix-
els. These superpixels are subsequently transformed into graph-
structured data, enabling the proficient extraction of features
and modeling of relationships using Graph Neural Networks
(GNNs). Our method harnesses an ensemble of three distinct
GNN architectures to boost its robustness. In our evaluations
targeting pneumonia classification, our methodology surpassed
prevailing Deep Neural Networks (DNNs) in performance, all
while drastically cutting down on the parameter count. This not
only trims down the expenses tied to data but also accelerates
training and minimizes bias. Consequently, our proposition offers
a sturdy, economically viable, and scalable strategy for medical
image classification, significantly diminishing dependency on
extensive training data sets. Our code is available at Github.

Index Terms—Graph Neural Networks, Medical imaging,
Computer vision, Classification

I. INTRODUCTION

Deep Neural Networks (DNNs) have been proven to be
effective for computer vision tasks and are increasingly being
utilized in medical imaging research. These models have
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evinced state-of-the-art performance in an array of tasks in-
cluding object detection, image classification [28], semantic
segmentation, and instance segmentation [29]. Acquiring la-
beled data in the medical domain can be an arduous and costly
undertaking, and data quality may vary considerably across
different sources. Consequently, an ideal model would require
less training data and fewer parameters, leading to greater
efficiency and reduced computational resources. Moreover,
such models would offer superior generalizability [35], a
crucial feature that is often limited in DNNs. While DNNs
can perform well on the data they were trained on, they may
struggle to generalize to new and unseen data, which highlights
a critical issue with the use of DNNs in the medical domain
[11] where labeled data of high quality can be scarce.

Notably, while DNNs employ convolutional kernels for
fixed local pixel grid connectivity and pooling for global fea-
ture extraction, they overlook the inherent topological structure
of medical images. This omission, crucial for optimal medical
image understanding and representation, has been highlighted
[42], [43].

Graph-based neural networks (GNNs) adeptly handle
variable-sized heterogeneous graph input [45], allowing for
adaptability across diverse data and tasks. These models
can discern intricate geometric interrelationships in image
datasets [44], enhancing predictive performance [10]. GNNs,
capable of analyzing complex interconnected phenomena, are
increasingly used in medical imaging [41]. Their application
in medical imaging, including classification [40] and segmen-
tation [39], has seen significant progress. GNNs have proven
effective in multi-modal data-based medical image analysis
[33], [36] and in human-object interaction detection using
deep neural network (DNN) features [34]. Motivated by these
advancements, we aim to explore the synergistic use of DNN979-8-3503-6021-9/23/$31.00 ©2023 IEEE
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features and GNNs in transducing medical images into graphs.
In this study, GNNs were applied to classify pneumonia

from medical images of the lungs and have demonstrated
effectiveness in this task. Our approach utilizes a method that
involves transforming X-ray images into graphs, taking into
account the topological connections between the various fea-
tures present. This graph structure not only enhances the global
level representation captured by DNNs, but also provides
a more comprehensive understanding of the image’s overall
structure. By leveraging this graph structure, our approach can
effectively capture both locally and globally relevant features,
resulting in improved performance in X-ray image analysis
tasks. Our study presents a compelling comparison between
the performance of GNNs and three prominent DNNs, which
serves to highlight the significant advantages of incorporating
GNNs alongside our method for graph creation. By showcas-
ing the improved performance achieved through the use of
GNNs, we provide strong evidence for the effectiveness of
our approach and its potential for application in the medical
imaging domain. We made efforts to enhance performance
by ensembling multiple GNN architectures trained on varying
graph sizes, reaching a sensitivity score as high as 99%, a
critical factor in the medical domain. By ensembling different
GNNs, we can leverage the strengths of each model while
mitigating their individual weaknesses, ultimately yielding a
more robust and accurate system.

II. METHODS

Our method is divided into two distinct stages.
The first stage, as illustrated in Figure 1, involves dividing

the input image into smaller, homogeneous regions called
superpixels by grouping adjacent pixels based on aggregating
criteria such as color, intensity, or texture similarity. We
then create a graph with these superpixels as nodes and
establish edges between nodes based on region adjacency and
homogeneity explained in section II-B. The features for each
superpixel are obtained using a DNN. The extracted features
from the superpixel segments of the image. including basic
features like edges, corners, and textures from the early stages
of the network. As the image gets passed through the deeper
layers of the network, it extracts more complex and abstract
features such as objects, scenes, and different parts of objects.
These features are then used as node features in the graph.

The second stage, as depicted in Figure 1, classifies the
entire graph for pneumonia. Utilizing a GNN for graph
classification generates distinct embeddings for pneumonia
and non-pneumonia graphs, which incorporate the features
extracted using a DNN as node features. The aggregation of
neighbouring node features contributes to better embedding,
enhancing graph-level classification performance.

A. Superpixel Segmentation

We have used superpixel segmentation to divide an image
into smaller regions, that are more homogeneous in terms
of colour, texture, and other features. Superpixel segmen-
tation overcomes the limitations of primitive segmentation

methods, which tend to produce irregular and fragmented
regions. Using superpixel segmentation, we effectively isolate
regions of interest and obtain a more detailed understanding
of the underlying image structure. To generate superpixels,
we have implemented two algorithms: Simple Linear Iterative
Clustering (SLIC) [5] and Dynamic and Iterative Spanning
Forest (DISF) [6].

1) SLIC: The SLIC algorithm begins with dividing the
image into a grid of small, rectangular cells of size S×S where
S =

√
N
k where N is the number of pixels and k is the desired

number of superpixels. The input to the SLIC algorithm is the
number k. Each pixel is then assigned to one of the initial
clusters which are sampled on a regular grid spaced S pixels
apart. In the case of images in the CIELAB colour space,
each pixel is allocated to a cluster based on its distance to the
cluster centre, represented by the tuple Ci = [li, ai, bi, xi, yi],
where li is the lightness, ai is the colour axis ranging from
green to red, bi is the colour axis ranging from blue to yellow,
and xi, yi are the cluster centre coordinates. Each pixel is
associated with its nearest cluster. Once all pixels have been
assigned a cluster, the cluster centre is adjusted to the mean of
the [l, a, b, x, y]T vector applied to all pixels belonging to the
cluster. One notable advantage of SLIC over other clustering
methods is that it only considers pixels in a small, local region
(of size 2S × 2S) when forming clusters, which makes the
algorithm faster to run.

2) DISF: The DISF algorithm takes two inputs: initial seed
value s and the number of superpixels k. An image (I) is
defined as a set of pixels DI , and a function I(p) that assigns
local attributes to each pixel p in DI . Seeds are placed at equal
distances in a grid format, with distance d =

√
N
k , where N

is a set of the neighbourhood nodes of pixel pi. N ⊆ DI and
k is the desired number of superpixels. Thus one can define
an image as a graph G as (N,A, I) where A is the adjacency
relation A ⊂ N ×N .

DISF leverages the Image Foresting Transform (IFT) [46]
to achieve better superpixel segmentation.

At the core of the DISF algorithm, the IFT method involves
the iterative construction of minimum spanning trees using
the image as a graph with seeds as nodes. In each iteration,
the superpixel assignments are refined by adjusting the pixel
similarity measures. This is accomplished by minimizing the
cost map across all paths in the tree. The iterations con-
tinue, progressively enhancing superpixel assignments until
convergence is reached or a predefined maximum number of
iterations is completed.

One of the most salient benefits of the DISF algorithm lies
in its ability to surmount the limitations of conventional super-
pixel methods, particularly in terms of initial seed availability.
By employing an oversampling strategy, DISF increases the
initial seed count, improving the likelihood of including all
relevant seeds and resulting in more representative superpixels.
This, in turn, enhances the overall segmentation quality [7].
Additionally, DISF removes seeds that produce the smallest
trees in homogeneous regions of the image, based on vectors



Fig. 1. Image to graph pipeline stage 1 and stage 2

representing each superpixel’s properties and its neighboring
superpixels. This ensures that the ultimate superpixels are
more homogeneous and accurately represent the image’s struc-
ture, culminating in superior segmentation outcomes.

B. Graph Creation

After segmenting an image into superpixels, we proceed to
construct a Region Adjacency Graph (RAG). In this graph,
each superpixel is represented as a node, and the nodes are
connected to their neighboring nodes based on their spatial
proximity within the image. These connections between the
nodes are called edges.

To assign weights to these edges, we calculate the mean
colour value of the pixels within each superpixel and then
determine the differences in these mean values between adja-
cent superpixels. In order to augment the graph with additional
information, we can incorporate features extracted from a
DNN as node attributes II-C. These features can help to
improve the graph’s utility in subsequent image classification
tasks.

Once the RAG has been generated and enhanced with the
DNN extracted features, it is then saved as a pickle file, for
easy retrieval and use in future classification tasks.

In the next sub-section, we will delve into the methods used
for feature extraction.

C. Superpixel Feature Extraction

Once we have generated the superpixels of an image,
we use pre-trained DNNs for feature extraction. We have
chosen ResNet18, DenseNet121, and EfficientNetB0 to extract
features from the superpixel segments. To achieve this, we
first generate a new image by merging the segmented mask
region with a bounding rectangle, which is constructed using
the minimum and maximum pixel coordinates of the respective
segment. We then resize the derived image to a standardized
dimension, ensuring compatibility with the input requirements
of the DNNs during the feature extraction phase.

We provide a detailed description of the employed DNNs
for feature extraction below:

1) ResNet18: ResNet [17] Deep Convolutional Neural Net-
works make use of stacked layers (depth) to capture low to
high-level features. The depth of the network is important

because it produces good results, but also introduces several
challenges. One main problem that arises from stacking multi-
ple layers is that of vanishing/exploding gradients [20], which
is partially solved by normalized initialization. However, as the
network gets deeper, the accuracy starts to decline and training
loss starts to increase. These problems arise primarily because,
of the identity mapping of the features being propagated
from one layer to another. It becomes difficult to optimize
performance as the model becomes deeper. ResNet adds a
skip connection that uses an identity function to bypass the
non-linear activation. The advantage of this architecture is the
flow of gradient through the identity function from the later
layer to earlier layers, but the summation operation between
the identity function and output from a layer impedes the
information flow in the network. ResNet mitigates this issue
by using residue blocks in DNNs, which do not add additional
parameters to the model but achieve better accuracy. ResNets
have been successfully applied in the medical imaging do-
main and have produced state-of-the-art results. For example,
ResNet has been applied for medical image retrieval [22] and
to breast cancer classification from histopathological images
[21].

2) DenseNet121: DenseNet, is a DNN architecture charac-
terized by its unique connectivity pattern, which establishes
connections between each layer and all other layers in a
feed-forward manner. This dense connectivity ensures that the
feature map of every preceding layer serves as input for the
current layer, while its own feature map contributes as input
to all subsequent layers. The distinctive structure of DenseNet
enables each layer to receive direct inputs from all preceding
layers. These inputs undergo concatenation, followed by a
series of three consecutive operations. The process begins with
batch normalization (BN), which is designed to improve the
stability and convergence of the network. Next, the rectified
linear unit (ReLU) is applied as an activation function to
introduce non-linearity and enhance the model’s capacity to
learn complex patterns. Finally, a 3 × 3 convolution (Conv)
operation is performed to extract features from the input data,
as described in the DenseNet literature [18]. This combination
of operations within DenseNet allows for efficient feature
extraction and contributes to the overall effectiveness of our
proposed framework.



3) EfficientNetB0: EfficientNet [19] is an innovative ap-
proach to scaling deep neural network architectures, tailored
to specific use cases depending on data or resource constraints.
The key advantage of EfficientNet lies in its ability to enhance
model performance without increasing the number of floating-
point operations per second (FLOPS), making it a more
efficient choice compared to other DNNs.

The primary concept behind EfficientNet is the introduction
of a method to uniformly scale all dimensions of a neural
network, including depth, width, and resolution, by employing
efficient compound coefficients. By scaling a model’s compu-
tational resources by a factor of 2N , EfficientNet adjusts the
depth of the network by αN , the width of the network by βN ,
and the image size by γN . These coefficients, α, β, and γ,
are determined through a grid search performed on the base
model.

The compound scaling method employed by EfficientNet
facilitates a well-balanced trade-off between the accuracy and
efficiency of the networks, enabling users to optimize their
models based on available resources. This ingenious approach
is tailored such that the network architecture is adapted effec-
tively to meet the specific needs of various use cases while
maintaining computational efficiency.

D. Graph Neural Networks

For this study, we examined various types of spectral and
spatial GNNs, including Graph Convolutional Neural Net-
works (GCNN), Graph Attention Networks, and Graph Iso-
morphism Networks. To address the limitations of individual
models, we also tested combining all of these GNNs through
ensemble methods. We provide a brief overview of each GNN
in this section.

1) Graph Convolutional Neural Networks (GCNN): GC-
NNs are a class of deep-learning models specifically designed
for graph-structured data. They extend the concept of convo-
lutional operations from the realm of grid-like data, such as
images, to irregular domains represented by graphs. GCNNs
can be broadly categorized into two approaches: spectral and
spatial.

The spectral approach leverages the principles of graph
signal processing and transforms the graph to the spectral
domain by utilizing eigenvectors of the graph’s Laplacian
matrix. To simplfy filters, a learned a learnable diagonal
matrix, gw is used, and various designs for the filter gw have
been proposed. GCNNs employ techniques to avoid computing
Laplacian eigenvectors for efficiency [2].

In contrast, the spatial approach directly defines convolution
on the graph based on its topology, using feature aggregation
through message passing. The convolution is defined according
to the number of hops allowed between a node and its
neighbours [27], aiming to maintain local invariance similar
to traditional CNNs, despite varying neighbour sizes.

2) Graph Attention Networks (GAT): The issue of over-
smoothing has long plagued traditional GCNNs as the addition
of multiple layers leads to simple graph embeddings for

different class graphs. GAT addresses this problem by utilizing
an attention mechanism to minimize over-smoothing.

GAT [13] makes use of attention-based convolution opera-
tion, which assigns different weights for neighbours to make
the learning process more robust and stable, thus alleviating
the noise effects. The attention-based mechanism allows for
dealing with variable-sized input and making use of the most
relevant part of the input to make inferences. GAT makes use
of a self-attention layer and multi-head attention mechanisms
[12].

The input to the attention layer is h ={
h⃗1, h⃗2, . . . , h⃗N

}
, h⃗i ∈ RF , where N is the number

of nodes, and F is the number of features in each node which
produces the output h′ =

{
h⃗′
1, h⃗

′
2, . . . , h⃗

′
N

}
, h⃗′

i ∈ RF ′
. The

self-attention mechanism is applied to every node, where the
attention coefficient is computed as

eij = a
(
Wh⃗i,Wh⃗j

)
which absorbs the importance of node j ’s features to node

i, this operation is executed across all nodes, it results in the
loss of the inherent graph structure. This issue is overcome
by performing masked attention over nodes, eij for nodes j ∈
Ni, where Ni is some neighbourhood of node i in the graph.
For reason that first-order nodes N(v) = {u ∈ V | (u, v) ∈
E} of a node can be of different sizes, and the coefficient is
normalized across all choices of j using the softmax function

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

.

The normalized attention coefficients are used to compute
the linear combination of features of all nodes. The aggregated
features from each head are concatenated or averaged to obtain
h⃗′
1, and finally a non-linear activation is applied:

h⃗′
i = σ

∑
j∈Ni

αijWh⃗j

 .

3) GRAPH ISOMORPHISM NETWORK (GIN): GIN [14]
was developed to test the power of GNNs, in comparison
to the Weisfeiler-Lehman (WL) test of graph isomorphism
[15] which is an algorithm used to determine if two graphs
are isomorphic, meaning they have the same structure and
patterns, but with different labels. The WL algorithm uses a
recursive procedure to generate hashes which are used to find
the structural similarity between two graphs. GIN makes use of
the WL algorithm in continuous feature space. GIN aggregates
node features using a Learnable Neighborhood Aggregation
operator, which is an epsilon-multilayer perceptron (E-MLP)
function. E-MLP is a unique variation of the traditional multi-
layer perceptron (MLP) that incorporates a learnable epsilon
(ϵ) parameter. This function accepts the node features and the
features of its neighbouring nodes as input and adjusts the
aggregation of these features using the learnable ϵ parameter
in the MLP process. The E-MLP enables the model to learn



the optimal balance between a node’s own features and the
features of its neighbours for improved graph representation
learning. This parameter controls the level of expressiveness
of the MLP, allowing GIN to learn more complex features.
The E-MLP adjusts the contribution of each feature based
on the learned ϵ value. This enables the model to adaptively
decide the importance of a node’s own features relative to its
neighbours’ features, leading to better embeddings for graph
classification.

h(k)
v = MLP(k)

(
1 + ϵ(k)

)
· h(k−1)

v +
∑

u∈N (v)

h(k−1)
u

 .

The output of MLP can be further used for various tasks
like node classification, link prediction, or graph-level classi-
fication.

E. Ensemble Graph Neural Networks

Various trade-offs exist between network architecture and
model performance in graph-based methods. For instance,
GCNN performance may decline with added layers due to
the over-smoothing of node representations, causing indistin-
guishable inter-class nodes. To address this issue, the jumping
knowledge network is a proposed solution that selects features
from more representative nodes.

GATs apply attention to all nodes, primarily focusing on
immediate neighbours rather than the entire graph structure,
which can result in suboptimal performance for tasks needing
comprehensive graph understanding.

GINs have aggregation power equivalent to the Weisfeiler-
Lehman test for distinguishing graphs. However, GIN embed-
dings may vary in quality for non-isomorphic graphs with
similar structures and limited features.

Ensemble methods offer a solution to the individual lim-
itations of various GNNs by utilizing a group of GNNs.
Each GNN in the ensemble focuses on capturing distinct
aspects of the graph’s structure and information. By combining
the outputs of these GNNs, a more comprehensive feature
representation of the graph can be generated, which captures
a wider range of information.

Ensemble methods can be a useful technique for combining
the predictions of multiple GNNs to improve classification
performance [16]. One common way to ensemble GNNs for
classification is to concatenate the output of each GNN and
use the concatenated output as the input to a final classifier.
We have ensembled GCNN, GAT and GIN to get new graph
embedding for classification.

We aim to leverage the flexibility of GNNs, which can be
trained on graph data with varying numbers of nodes, allowing
them to make accurate predictions on graphs with different
node counts. This adaptability is particularly advantageous
when dealing with graphs of arbitrary sizes generated through
diverse methods, catering to a wide range of use cases.

In the following section, we will provide a detailed ex-
planation of the experiments and results obtained from our

analysis of the pneumonia image dataset. In addition, we will
also conduct an ablation study to examine the performance of
the different models used in this research.

III. EXPERIMENTS

In this section, we introduce the dataset that was used for
training the models. We then describe the various experiments
that were conducted for training different GNNs. Hyperpa-
rameter tuning was conducted using Optuna, resulting in a
learning rate of 0.001, weight decay of 0.001, and a dropout
rate of 0.5%

A. Datasets

The dataset used in our study [3] is organized into three
distinct subsets: training, testing, and validation, each contain-
ing subfolders for the two image categories: Pneumonia and
Normal. The dataset comprises a total of 5,856 X-Ray images
in JPEG format, with 1,583 images in the Normal category
and 4,273 images in the Pneumonia category. Out of the 5,856
images, 1,341 Normal images and 3,875 Pneumonia images
are used for training and 234 Normal and 390 Pneumonia im-
ages were used for testing. Images were converted into graph
representations, maintaining the original folder structure, and
saved in pickle format for GNN training. Each experiment
generated a different graph dataset.

B. Models

• GCN: a GCN architecture with 4 graph convolution layers
was trained to utilize graph representationsII-B generated
from images as input. Node feature extraction was per-
formed using ResNet18, DenseNet121, and EfficientNet-
B0 models.

• GAT: we trained a GAT model with a multi-headed
attention mechanism. The architecture consisted of two
layers of GAT convolution, with a dropout rate of 0.3%
applied after each convolutional layer. The learning rate
was set to 0.001. 8 attention heads were utilized in each
layer, allowing the model to focus on different aspects of
the input graph.

• GIN: we trained a GIN model with 3 GIN convolution
layers to generate graph embeddings. The GIN convolu-
tion layers were designed to capture the underlying struc-
ture and relationships of the graph. Additionally, a global
add pooling operation was used to aggregate neighbor-
hood features and extract higher-level representations.
The learning rate was set to 0.001, and a dropout rate of
0.5% was applied as a regularization technique to prevent
overfitting. The resulting embeddings were concatenated
and used for performing graph-level predictions.

• Ensemble Model: we combined the best performing pre-
trained GNNs from the above 3 models and ensemble
their results to make the classification. The learning rate
was set to 0.001 with a dropout rate of 0.5%.

The models were trained using graph datasets generated with
superpixel values of 5, 10, 50, 100, 150, and 300. The features
were obtained by utilizing Resnet18, EfficientNet-B0, and



DenseNet121, which generated features with sizes of 512,
1280, and 1024, respectively. As a result, we have established
18 benchmark datasets for model training and classification.

C. Classification

Our primary goal was to accurately predict labels. To
evaluate the performance of various models, we utilized the
accuracy metric. The performance of various models on dif-
ferent graph datasets can be seen in Table I, where we present
the accuracies for each conducted experiment. Table II shows
the performance of Ensemble models. We also analyzed the
model sensitivity performance across the datasets, which were
generated using varying numbers of superpixels and feature
extraction methods.

We achieved an optimal performance of 93.108% in classi-
fying pneumonia, and using DNNs, we achieved an accuracy
of 92.81% IV . Our model parameters are 100 times fewer than
state-of-the-art dense neural network models as shown in Table
V, and training and inference are also faster in comparison.
The 3 DNNs had an average train time of 155.702 seconds,
while the 3 GNNs had an average train time of 42.759. Our
results show that the model performance reached saturation
after 20 epochs, and we recorded a higher sensitivity score
with our pipeline compared to DNN models.

IV. ANALYSIS

In this section, we evaluate our graph dataset preparation
method by examining alternative design options. We present
the outcomes of alterations in different stages of the experi-
ments, such as adding layers to GNN models, evaluating the
quality and time consumption of two superpixel generation
techniques, and comparing the feature extraction quality across
three DNNs.

A. Effects of superpixel segment number on Model Perfor-
mance

Our findings indicate that smaller image segments (a higher
number of them) limit relational features, mainly due to the
diffuse nature of pneumonia features in the dataset. As a
result, DNNsII-C may miss out on fully capturing the image’s
context, adversely affecting classification accuracy, as reflected
in Table I. Conversely, when segments are larger but fewer,
their interconnectedness is better captured. This enables the
CNN to capture the full context and relationships between
the objects in the image, thereby enhancing classification
performance.

B. Effects of Superpixel methods on Model Performance

The impact of selecting a method for superpixel creation on
the performance of a GNN model is significant. All reported
performance is based on the DISF method. Another significant
contrast observed between the two methods was that SLIC had
a shorter image segmentation time compared to DISF. This
observation can be explained by the fact that DISF demands
a higher initial seed value to construct superpixels. The time

taken for segmentation is a crucial factor as it is one of the
bottlenecks in the process of converting an image to a graph.
Table III contains a comparison of the time taken by each
algorithm.

C. Effects of Feature extraction methods on Model Perfor-
mance

DNN models like ResNet18, EfficientNet-b0, and DenseNet
extract features of sizes 512, 1280, and 1024 respectively.
Larger feature sizes increase sensitivity but demand more
computation. While performance often correlates with feature
size, this isn’t consistent with graphs having edge weights.
This suggests analyzing images as graphs can help models
learn interconnected feature relationships.

Fine-tuning DNNs (ResNet18, Densenet121, EfficientNet-
B0) for X-ray images improves GNN model performance.
Table IV shows the DNN model’s performance. Using the
top model from training as a feature extractor has resulted
in an average improvement of 2-3% for all GNN models
compared to using an untrained pre-trained DNN model on
the pneumonia dataset.

D. Effects of model complexity on Model Performance

For GCNN, performance plateaus after 4 convolutional lay-
ers, and adding more causes instability due to over-smoothing,
resulting in poor graph embeddings.

For GAT, while performance doesn’t notably improve be-
yond 8 attention heads, it does increase model complexity,
leading to longer training and inference times.

For GIN, performance doesn’t notably improve beyond
4 convolutional layers. The choice of graph-level pooling
significantly influences performance, with global add pooling
outperforming mean, minimum, and maximum aggregation
methods.

V. CONCLUSION

In this study, we explored various techniques for converting
medical images into graphs for classification purposes. We
evaluated several GNNs and compared their performance with
DNNs. The following steps outline our process:

1) Evaluating SLIC and DISF methodologies for image
segmentation.

2) Constructing a graph from the image, with each super-
pixel segment representing a graph node.

3) Employing various DNNs to extract features and assign
them as node attributes.

4) Training and testing three distinct GNN architectures.
5) Combining the top-performing GNNs from different

architectures through ensembling.
Our results showed that GNNs performed well with 100 times
fewer parameters than DNNs (refer to Table V and Table IV
for comparison).

GNN models’ independence from graph size enabled us
to ensemble various models trained on different graph sizes,
thereby improving sensitivity scores, a vital aspect in the
medical field. The novelty of our work lies in the use of IFT



TABLE I
ACCURACIES OF GRAPH NEURAL NETWORK MODELS FOR EACH EXPERIMENT

Superpixels GCNN GAT GIN

ResNet EfficientNet DenseNet ResNet EfficientNet DenseNet ResNet EfficientNet DenseNet

5 0.911 0.883 0.900 0.892 0.892 0.897 0.910 0.900 0.895

10 0.927 0.900 0.900 0.900 0.907 0.916 0.931 0.921 0.905

50 0.924 0.908 0.892 0.929 0.897 0.875 0.900 0.911 0.905

100 0.899 0.886 0.883 0.833 0.860 0.841 0.892 0.889 0.891

150 0.878 0.878 0.870 0.830 0.842 0.833 0.895 0.897 0.908

300 0.863 0.865 0.818 0.834 0.854 0.746 0.887 0.891 0.878

TABLE II
ENSEMBLE RESULT OBTAINED FROM THE GRAPH DATASET CREATED WITH 10 SUPERPIXELS

Feature Extraction method Accuracy AUC Sensitivity

DenseNet121 0.899 0.872 0.979

EffiecientNet-b0 0.852 0.810 0.992

ResNet18 0.895 0.865 0.987

TABLE III
TIME TAKEN (IN SECONDS) BY SLIC AND DISF FOR SEGMENTATION

Superpixels SLIC DISF

5 0.0214 0.1043

10 0.0226 0.1007

50 0.0298 0.2280

100 0.0320 0.1975

150 0.0353 0.3717

300 0.0360 0.4833

TABLE IV
DNN PERFORMANCE ON PNEUMONIA DATASET

DNN Accuracy Parameters

densenet121 0.9281 7,978,856

effiecientnet-b0 0.8187 5,288,548

renset18 0.9125 11,689,512

TABLE V
TRAINABLE PARAMETERS IN GNNS FOR LARGEST FEATURE SIZE 1280

GNN Parameters

GCNN 699426

GAT 67938

GIN 99266

to group like pixels together, creating nodes in a graph format.
This method effectively spots spread-out irregularities, such as
pneumonia, in the chest X-ray images.

In our upcoming work, we aim to test our process on a wide
range of medical datasets. Given that our method achieved a
99.13% accuracy on the MNIST dataset, we believe it has the
potential for success on other datasets as well.
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