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Time-optimal bang-bang driven rest-to-rest motion through an angular

switching point

David Ceulemans1,4, Nick Van Oosterwyck1,4, Jasper De Viaene2,5, Jan Steckel3,4 and Stijn Derammelaere1,4

Abstract— For economic reasons, machine builders are increas-
ingly challenged to make single-axis driven machines perform
rest-to-rest movements as fast as possible over time. In terms
of control, a time-optimal motion is performed by injecting a
bang-bang torque profile, characterized by a discrete switching
point. However, the state-of-the-art to obtain the ideal application-
dependent switching point is often computationally demanding
and lacks robustness, hampering smooth system implementation.
Moreover, machine builders invariably design their machines us-
ing CAD software, which automatically provides good knowledge
about, e.g., the machine’s load torque profile. Therefore, in this
work, based on Newton’s work-energy principle, a framework for
variable inertia systems is derived and used as a starting point
to estimate the optimal bang-bang switching point efficiently,
employing CAD extracted data. In addition, a self-learning control
structure is proposed to correct for the initial switching point so
that the application continues to move time-optimally, regardless
of system influences such as temperature variation. A case study is
used to validate the proposed methodology and associated control
structure through simulation.

I. INTRODUCTION

Numerous industrial applications are characterised by a

repetitive motion consisting of a single degree of freedom (1-

DOF) forward and backward rotation, e.g. pick-and-place units,

weaving machines, etc. Typically, these motion applications

only constrain a fixed start θstart and end angle θend, and

demand that the application stand still at either angle. This

is often referred to as point-to-point or rest-to-rest (RtR)

movements in the literature. The limited number of trajectory

constraints implies that machine builders have the freedom to

shape the intermediate motion profile as desired. This enables

the possibility to assign preferable properties to the eventual

motion profile, such as minimal required energy to move along

the trajectory [1], a limited maximal motor torque [2], or a

minimal motion time [3]. The latter is the focus of this work.

1David Ceulemans, Nick Van Oosterwyck and Stijn Derammelaere
are with the Departement of Electromechanics, CoSysLab, University
of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium (email:
david.ceulemans@uantwerp.be; nick.vanoosterwyck@uantwerp.be;
stijn.derammelaere@uantwerp.be)

2Jasper De Viaene is with the Department of Electrical Energy, Metals,
Mechanical Constructions and Systems, University of Ghent campus Kortrijk,
Belgium (email: jasper.deviaene@ugent.be)

3Jan Steckel is with the Department of Electronics, CoSysLab, Univer-
sity of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium (email:
jan.steckel@uantwerp.be)

4David Ceulemans, Nick Van Oosterwyck, Stijn Derammelaere and Jan
Steckel are with AnSyMo/CoSys, Flanders Make, the strategic research centre
for the manufacturing industry

5Jasper De Viaene is with EEDT-MP, Flanders Make, the strategic research
centre for the manufacturing industry

A minimum motion time for industrial mechanisms has

been the subject of research for many years. In order to

move a rotary machine from a start θstart to an end angle

θend as fast as possible (ASAP), it is intuitive to first apply

maximum acceleration with maximum torque Tmax until a

certain switch point tSwP , followed by maximum deceleration

until the end angle θend is reached. In the literature, there

is a consensus that mathematically, for scalar linear systems

in the continuous-time domain to evolve ASAP, the optimal

system’s input torque T (t) should be as large as possible and

is described as being of the form bang-bang (see Fig. 2) [4]–

[6]. The exact timing of the switching point tSwP between

maximal positive and maximal negative motor torque Tmax is

a complex matter, especially analytically [7]. Therefore, all re-

cent literature determines the optimal switching point tSwP ;Opt

numerically based on dynamic equations, e.g., forward and

backward integration [8], [9], which can be computationally

challenging. Especially since, depending on the application,

inertia J , load torque Tl, damping b, stiffness k, and friction bl
can change as a function of the motor’s rotor angle θ. Already

in [5], the idea of a phase-plane was introduced to determine

the optimal switching point tSwP ;Opt between the two motion

primitives. A mathematical characterization is given in [6] for

a minimum-time rest-to-rest motion of a generic non-flexible

linear scalar system (being bang-bang), taking into account

system constraints. [7] characterized the optimal bang-bang

control approach for a damped flexible system (minimum

one flexible mode) and concluded that to achieve a time-

optimal motion without residual vibrations, multiple bang-

bang switches are required. Subject to the damping ratio, for

a single flexible mode system, the location of the additional

switches varies between near the middle or at the end of the

trajectory. Moreover, the number of switches can vary. The

switching pattern of undamped systems is also found to have

periodic properties [4], which contributes to a computationally

simplified online implementation. Model predictive control

approaches were proposed in [10], [11], which have the main

advantage of reacting adaptively to setpoint changes during

a movement. Nevertheless, they require in-situ tuning before

commissioning.

In theory, as far as implementation is concerned, a pure

torque controller should suffice. However, since all previous

methods are affected by model uncertainties such as motor

cogging, an additional active controller is often required to

eliminate a final residual error θerror. Practical implementation

of an optimal bang-bang profile can be divided into two

implementation strategies: a cascade control with time-optimal



commands in the feedforward or a pure torque control followed

by a pure cascade control over time [1], [4]. Still, the reviewed

methods to obtain time-optimal control remain computationally

demanding regardless of their need for mechanisms to correct

model uncertainties. As an alternative, [12] proposed to com-

bine a model-independent iterative learning control approach

with a bi-section algorithm to determine an in-situ time-

optimal movement. However, despite easy implementation, the

convergence towards the optimum should be slower than with

model-based methods.

This work tries to overcome the aforementioned hurdles by

combining a good computationally friendly first initial guess of

the optimal bang-bang timing with a self-learning correction

mechanism. Machine builders often design their applications

using, e.g., CAD software, which automatically provides basic

information about the application such as the load torque

Tl(θ) or the machine inertia J(θ) [1]. In this work, a proper

initial timing of the bang-bang switching point is no longer

determined in the time tSwP , but in the angular domain θSwP ,

based solely on the CAD load torque Tl(θ) and Newton’s

energy theorem for a single rigid body. Moreover, the idea

is embraced that self-learning online correction mechanisms

remain necessary for a time-optimal movement. Therefore,

a simple self-learning algorithm based on the residual error

θerror is proposed to correct model uncertainties and unmod-

eled effects.

The remainder of this work is structured as follows. In

section II-A, an equilibrium equation is derived for variable in-

ertia single-mass systems starting from Newton’s work-energy

principle. Based on this equilibrium, a formula is derived in

section II-B that allows the calculation of the optimal switching

point θSwP ;Opt. In chapter III, a control structure is proposed

based on the introduced switching point θSwP . Finally, chapter

IV validates the proposed concept in simulation using an

application represented by a two-mass model.

II. THEORETICAL DERIVATION OF THE OPTIMAL

REST-TO-REST SWITCHING POINT θSwP

A. Derivation of the work-energy principle for a single-mass

variable inertia rigid body

Consider a single-mass rigid body, as shown in Fig. 1, which

inertia J(θ) varies as a function of its rotation angle θ(t).
The behaviour of this type of system is representative of many

industrial applications. The rotation is initiated by a resultant

net torque T (t), which is the vectorial sum of both the driving

torque Tmotor(t) and the load torque Tl(t). In addition, the

body may be subject to friction Tb(t). For the time being,

the latter will be neglected, assuming that the torque loss due

to friction is insignificant compared to the total motor torque

Tmotor(t) >> Tb(t) [13].

Starting from the Euler-Lagrange equation, a formulation

can be derived describing the relation between the resulting

net torque T (t) and the body’s angular position θ(t), speed

ω(t) and acceleration α(t) [14]:

Fig. 1. General representation of system consisting of a single-mass rigid
body, subject to rotation θ(t) caused by the resultant torque T (t).

T (t) = J(θ(t)) · α(t) +
1

2

d
(

J
(

θ(t)
)

)

d
(

θ(t)
) · ω2(t). (1)

Next, Newton’s work-energy theorem is considered. The

theorem states that a change in the rigid body’s kinetic energy

is equal to the work done by external forces acting on that

body [15], [16]. Given the mechanism described by equation

(1), in what follows, the relationship is derived between the

work performed by an external torque T (t) acting on a rigid

body system and the change in kinetic body’s energy. The total

work done by external forces from time t1 to t2, acting on a

1-DOF rotating rigid body, can be calculated following:

W =

∫ t2

t1

(

T⃗ (t) · ω⃗(t)

)

dt. (2)

Since the torque T⃗ (t) and the rotation vector ω⃗(t) are in

line, the vectorial character is omitted in the sequel. On the

one hand, equation (2) can be rewritten as:

W =

∫ t2

t1

(

T (t) · ω(t)

)

dt =

∫

P

(

T
(

θ(t)
)

)

d
(

θ(t)
)

, (3)

given that P is the path from θ(t1) to θ(t2). Since the scalar

product of torque T and rotational speed ω should be evaluated

along a position trajectory, the integral is considered as a line

integral. On the other hand, by substituting equation (1) into

equation (2), equation (2) can be rewritten as:

W =

∫ t2

t1

(

(

J(θ) · α(t) +
1

2

d
(

J
(

θ(t)
)

)

d
(

θ(t)
) · ω2(t)

)

· ω(t)

)

dt.

(4)

By further elaborating equation (4) (see appendix I), one

can prove that the work done by the considered single-mass

system can be calculated following

W =
J
(

θ(t2)
)

· ω(t2)

2
−

J
(

θ(t1)
)

· ω(t1)

2
. (5)

And finally, by equating both expanded formulations (3) and

(5), one obtains:
∫

P

(

T
(

θ(t)
)

)

d
(

θ(t)
)

=
J
(

θ(t2)
)

· ω(t2)

2
−
J
(

θ(t1)
)

· ω(t1)

2
.

(6)

Equation (6) describes the relationship between the work ex-

erted on the system by an external torque T (θ) and the kinetic

energy of the single-mass system. Starting from equation (6),

a formula to analytically calculate the optimal switching point

θSwP ;Opt is elaborated in section II-B.



B. Derivation of the optimal switching point for a bang-bang

driven rest-to-rest motion profile

This work aims to make a system perform a time-optimal

RtR movement as quickly as possible from a start angle θstart
to an end angle θend. To achieve this, as shown in Fig. 2,

the literature previously showed that the torque profile’s shape

should be of the form bang-bang with one discrete switch

between maximal positive and negative injected motor torque

Tmax. In what follows, the optimal point to switch in the

angular domain θSwP ;Opt is analytically determined. Non-

optimal switching leads, as shown in Fig. 2, to an undesired

application standstill at an angle either smaller or larger than

the desired end angle θ∗end.

To determine the optimal switching point θSwP ;Opt analyti-

cally, equation (6) is used as a starting point, which is the work-

energy relation for single rigid body systems with position-

dependent inertia. Moreover, given the desire to move from a

rest to a rest position, the start and end angle speed ω(t) at

time t1 and t2 are equal to zero. Therefore, the integral of the

net external torque T (θ) acting on our system along the path

θ1 to θ2 equals 0:

∫

P

(

T
(

θ(t)
)

)

d
(

θ(t)
)

= 0. (7)

Equation (7) is further elaborated in the appendix (II) so

that finally, for a bang-bang torque driven rest-to-rest motion

profile, the optimal switching point angle θSwP ;Opt can be

calculated following

θSwP ;Opt =
Tmax · (θstart + θend) +

∫ θend

θstart

(

Tl(θ)
)

d(θ)

2 · Tmax

,

(8)

with Tmax the maximal motor torque and Tl(θ) the load torque

of the considered mechanism. Note that the optimal switching

point θSwP ;Opt is inertia J independent, even in the case where

inertia J varies as a function of rotor angle/position θ.

III. IMPLEMENTATION OF AN ANGULAR SWITCHING POINT

θSwP DETERMINED BANG-BANG DRIVEN REST-TO-REST

MOTION

A. Angular switching point controller for an idealized single-

mass rigid body

An appropriate control structure is required to achieve a

time-optimal motion using an angular switching point θSwP .

For an idealized single-mass model, in this work, the control

structure shown in Fig. 3 is proposed, consisting of a pure

torque controller responsible for the injection of the bang-bang

torque profile followed by a classical cascade control [17] to

maintain the end angle θend. First, the torque controller desires

a maximum positive torque Tmax value from the starting angle

θstart of the trajectory until the switching point θSwP . After

this point, maximum negative torque is desired until the end

position θend, or to the point where the speed ω changes

sign θsng(ω) ̸=cte . In an ideal scenario, assuming an optimal

switch point θSwP ;Opt, both these points θend and θsng(ω) ̸=cte

should be equal to the desired end angle θ∗end. Hence, when

the end angle θend is reached, the motor’s rotor speed ω should

equal zero. The cascade controller serves purely to maintain

the desired end angle θ∗end.







Fig. 2. Illustration of the position trajectory for an optimal switching point
value θSwP ;Opt (blue), a too large switching point value θSwP (orange) and
a too small switching point value θSwP (yellow).

Fig. 3. Proposed control structure for a time-optimal rest-to-rest movement,
consisting of a bang-bang torque controller and classic cascade controller.







Fig. 4. Illustration of the switch between torque and cascade controller.
The residual error that remains after the torque controller is eliminated by the
cascade controller.

B. Non-idealized angular switching point controller

Section (III-A) assumes an idealised load consisting of a

single rigid mass. Friction is neglected, and perfect knowledge

of the application’s load torque profile is required. Besides

that, the motor torque Tmotor is assumed to be constant



throughout the entire motor’s operation range. The torque

Tmotor is presumed to change in value in infinitesimal time.

And finally, the switching point θSwP calculation does not

consider the time delays caused by, e.g., the processing of

measured rotor angle θ in the motor controller. In reality, each

of the aforementioned points should be taken into account to

move in time optimally. For example, no matter how small,

friction impacts the location of the optimal switching point

θSwP ;Opt. Nevertheless, the effect of friction is challenging

to model, especially its temperature dependency. Therefore,

friction is challenging to include in the determination of the

optimal switching point θSwP ;Opt. Given the foregoing, the

exact analytical determination of the optimal switching point

θSwP ;Opt seems almost impossible, or would increases the

analytical complexity drastically, hampering a computational-

friendly implementation

Consequently, in practice, implementation purely based on

a torque controller and a model determined switching point

θSwP /tSwP will always cause an error θerror that requires

compensation through, e.g., a cascade controller. However, the

proposed switching point θSwP equation (8) can serve as a

good approximate estimate of the true optimal switching point

θSwP ;Opt. Fig. 4 illustrates the positioning correction of the

cascade control following the bang-bang torque control motion

θend;bang−bang for a situation where the desired end angle θ∗end
is not reached. In the proposed control structure shown in Fig.

3, switching between torque and cascade controller is based on

one of the following triggers: exceeding the position setpoint

θ∗end or a change in the speed sign sgn(ω). In Fig. 4 the speed

ω changes sign (the speed becomes negative), whereupon the

cascade controller is activated.

Fig. 5. Proposed control structure for a time-optimal rest-to-rest movement
assuming an incompletely modelled two-mass system. Residual errors are
compensated by iteratively updating the switching point θSwP .

C. Non-idealized self-learning switching point controller

Section III-B eliminates incomplete model residual error

θerror through a cascade controller. However, due to the

repetitive nature of a rest-to-rest application, the calculated

switching point θSwP will cause the same error between the

desired end value θ∗end and the actual bang-bang end position

θend;bang−bang with each repetitive movement. Consequently,

the same error θerror must be compensated for every motion

cycle, which leads to a permanent semi-time-optimal move-

ment. In order to thoroughly compensate for this error θerror, a

straightforward self-learning mechanism is added to the earlier

proposed control structure in Fig. 3. The idea behind the

new self-learning control structure, presented in Fig. 5, is to

adjust the switching point value θSwP after each iteration i by

monitoring the machine’s behaviour and thus minimizing the

residual error θerror shown in Fig. 4. In the end, the reduced

error θerror is a direct consequence of the improved timing of

the bang-bang torque controller, which automatically results

in an optimal motion time. The new switching point value for

the next motion cycle θSwP ;i+1 is proposed to be calculated

after each movement i using the current switching point value

θSwP ;i, the residual error θerror = θ∗end−θend;bang−bang;i and

a gain factor G following

θSwP ;i+1 = θSwP ;i + (θ∗end − θend;bang−bang;i) ·G. (9)

IV. VALIDATION OF THE PROPOSED CONTROL STRUCTURE

Validation of the proposed methodology is performed by

employing a case study. Both the ideal switching point bang-

bang controller and the self-learning switching point control

structure are validated in simulation using the presented case.

A. Mechanism under test

As a case, a mechanism represented by the two-mass spring-

damper model shown in Fig. 6 is considered. The load with

varying inertia Jl(θl) is driven via a rotor with inertia Jr.

Both masses are linked via a coupling with spring constant k
and damping factor b, both determined following the principle

described in [18]. The machine properties, shown in Fig. 7,

were extracted from CAD according to the procedure described

in [1]. Finally, the friction coefficients of the motor br and load

bl are estimated. The machine properties of the non-position-

dependent variables are summarised in table I. However, to

validate the idealized switching point θSwP ;Opt controller in

the first place, the two-mass model is simplified to the single-

mass model illustrated in Fig. 1. Friction is ignored, and

the coupling between both masses is considered rigid so that

θ = θr = θl.
To validate the proposed control structures outlined in sec-

tion III, the considered application is subjected to an ASAP

motion with θstart = 0 rad and θend = 2.967 rad (170°). Based

on the load torque profile shown in Fig. 7, an initial switch-

ing point value θSwP of 1,4836 rad was found employing

equation (8). The control parameters of the cascade control

(Kp;position = 801/s,Kp;speed = 36Nms/rad, Ti;speed =
1, 2ms) were set according to the methodology described in



[17]. The gain factor G from equation (9) was arbitrarily set

at 0, 5.

TABLE I

MACHINE PROPERTIES OF THE CASE STUDY APPLICATION.

Motor Coupling Load

Tmax

[Nm]

Jr

[kg mˆ2]

br

[Nms/rad]

k

[Nm/rad]

b

[Nms/rad]

bl

[Nms/rad]

150 0, 0032 0, 2 4221 0, 396 0, 1

Fig. 6. The considered machine’s conceptual representation consisting of a
two-mass spring-damper model.

Fig. 7. CAD-extracted mechanical properties of considered machine: load

torque Tl, inertia Jl and inertia variation
d(Jl)
d(θl)

as a function of the application

angle θl.

B. Validation of the switching point controller for idealized

situations

To validate the optimal switching point θSwP ;Opt calculated

following equation (8) and the accompanying controller from

section (III-A), a simulation is performed in Matlab/Simulink

using the single-mass model from IV-A. The simulation result,

shown in blue in Fig. 2, proves that the optimal switching point

θSwP ;Opt results in a perfect rest-to-rest movement.

C. Validation of the self-learning switching point controller for

non-idealized situations

To validate the self-learning control structure from III-C,

both the controller and the two-mass system introduced in

section IV-A were modeled. Since the model contains friction

br, bl and damping b, a residual error θerror is expected. Fig.

8 visualizes the fifth iteration of the injected motor torque

Tmotor with the corresponding speed ω and position θ of both

the motor rotor (in blue) and the application (in orange) over

time. As shown in the position detail, the rotor position θr
slightly fails to reach the requested end angle θ∗end, whereupon

the cascade control eliminates the remaining error θerror.

Furthermore, the velocity clearly shows that, due to the model’s

flexible mode in combination with the absence of additional

vibration eliminating bang-bang switches, the application is

subject to residual vibrations when approaching the desired end

angle θ∗end. The magnitude and importance of these residual

vibrations are, of course, application-dependent. If necessary,

assuming a known motion profile, stiffness and damping of the

system, a magnitude estimate of the residual vibrations can be

made using the system’s transfer function [19].

Moreover, Fig. 9 demonstrates the impact of the self-learning

switching point θSwP ;i as a function of the number of iterations

i (motion cycles). Due to the friction present, the machine

decelerates faster than would be the case without friction.

Therefore, as intuitively expected, the switching point (angle)

θSwP should evolve to a larger value (further in time) as

initially calculated. Simulation results confirm that the eventual

in-situ optimal angle to switch θSwP ;Opt between acceleration

and deceleration converges to a value larger than the initially

calculated switching point θSwP , as shown in Fig. 9. To

quantitatively evaluate the effect of the improved switching

point θSwP ;i, the settling time tset of both the motor position

θr and the application θl are considered. A margin of error of

0, 02° was assumed. For the given machine, the simulation

results show that, after eight iterations (i = 8), the motor

reaches its desired end angle θ∗end within 27ms given an error

band of ±0, 01°. The application itself takes a little longer to

damp out and, for the same tolerance limits, reaches its desired

end angle θ∗end after 33ms. So, in this case, the flexible mode

amounts to a time delay of roughly 20%.















Fig. 8. The 5th iteration of the torque profile (top) with resulting position
(bottom) and speed (middle) of both the motor and the application.


°

° 






Fig. 9. The bang-bang switching point θSwP ;i as a function of the number
of iterations i performed (top). Settling time tset of both the motor and
application as a function of the updated switching point θSwP ;i (bottom).



V. CONCLUSION

This work investigated the computationally efficient shaping

of a bang-bang torque profile, characterized by a discrete

switching point θSwP , to achieve a rotational application to

perform a time-optimal rest-to-rest motion. First, an equi-

librium equation was derived for a single-mass rigid-body

mechanism subject to variable inertia J(θ) using the work-

energy principle. Based on this equilibrium, a single equation

was obtained to determine the optimal switching point θSwP

in the angular domain. The optimum appears to depend only

on the motor torque Tmotor and load torque Tl(θ) along the

trajectory and is, therefore, inertia J(θ) independent. Simula-

tion results confirm that the single-mass switching point θSwP

equation results in perfect rest-to-rest motion when friction and

other secondary effects are neglected. Next, a corresponding

control structure was proposed consisting of a pure torque

controller followed by a cascade control. A simple self-learning

mechanism was added to structurally correct residual errors

caused by, e.g. model inaccuracies. For each new motion cycle

i + 1, this mechanism updates the switching point θSwP ;i+1

employing the observed machine behavior of the previous cycle

i. To demonstrate the effectiveness of the proposed control

structure, it was implemented in simulation and subjected

to a two-mass spring-damper system with friction. Results

show that the initially obtained switching point θSwP ;i=1

can be used as an efficient starting point to determine the

actual in-situ optimal switching point θSwP ;Opt. Finally, the

self-learning control structure succeeds in finding the in-situ

optimal switching point θSwP ;Opt, thus minimizing the motion

time.
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APPENDIX I

An equilibrium equation is derived for a single-mass system

with variable inertia starting from the work-energy principle.

Given the considered system, the work done can be described

following:

∫ t2

t1

(

T (t) · ω(t)

)

dt

=

∫ t2

t1

(

(

J(θ) · α(t) +
1

2

d
(

J
(

θ(t)
)

)

d
(

θ(t)
) · ω2(t)

)

· ω(t)

)

dt

=

∫ t2

t1

(

J(θ) · α(t) · ω(t)

)

dt+

∫ t2

t1

(

1

2

d
(

J
(

θ(t)
)

)

d
(

θ(t)
) · ω3(t)

)

dt.

(I.1)

Furthermore, we know that

α(t) · ω(t) = ω(t) ·
dω(t)

dt
=

1

2
·
(

ω(t) ·
dω(t)

dt
+ ω(t) ·

dω(t)

dt

)

=
1

2
·
d(ω(t) · ω(t))

dt
=

1

2
·
d(ω2(t))

dt
.

(I.2)

And we also know that

1

2

d
(

J
(

θ(t)
)

)

d
(

θ(t)
) · ω2(t) =

1

2

d
(

J
(
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d
(

θ(t)
) ·

d
(

θ(t)
)

dt
· ω(t)

=
1

2

d
(

J
(

θ(t)
)

)

dt
· ω(t).

(I.3)

Hence it follows from the substitution of (I.2) and (I.3) in

(4) that

∫ t2

t1

(

J
(

θ(t)
)

· α(t) · ω(t)

)

dt+

∫ t2

t1

(

1

2

d
(

J
(

θ(t)
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)

dt
· ω3(t)
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dt

=
1

2
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1
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(
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1
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ω2(t)
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d
(

J
(

θ(t)
)

)

.

(I.4)

given that between time t1 and t2 the speed evolves along

the ω(t1) to ω(t2) trajectory and the inertia along the J(t1)



to J(t2) trajectory. By applying partial integration, the right

term of (I.4) can be rewritten as

1

2

∫ J(θ(t2))

J(θ(t1))

(

ω2(t)
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d
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J
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(I.5)

So that eventually, by combining (I.4) and (I.5), the total

work W is equal to

W =
1

2
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(I.6)

APPENDIX II

Derivation of the optimal switching point formula starting

from the equilibrium equation (7).

0 =

∫
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(
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)

)

d
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(II.1)

θSwP ;Opt =
Tmax · (θstart + θend) +

∫ θend
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Tl(θ)
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d(θ)

2 · Tmax
(II.2)


