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Abstract—In the scenario-based evaluation of machine learning
models, a key problem is how to construct test datasets that
represent various scenarios. The methodology proposed in this
paper is to construct a benchmark and attach metadata to
each test case. Then a test system can be constructed with test
morphisms that filter the test cases based on metadata to form
a dataset.

The paper demonstrates this methodology with large language
models for code generation. A benchmark called ScenEval is
constructed from problems in textbooks, an online tutorial
website and Stack Overflow. Filtering by scenario is demonstrated
and the test sets are used to evaluate ChatGPT for Java code
generation.

Our experiments found that the performance of ChatGPT
decreases with the complexity of the coding task. It is weakest for
advanced topics like multi-threading, data structure algorithms
and recursive methods. The Java code generated by ChatGPT
tends to be much shorter than reference solution in terms of
number of lines, while it is more likely to be more complex in both
cyclomatic and cognitive complexity metrics, if the generated
code is correct. However, the generated code is more likely to be
less complex than the reference solution if the code is incorrect.

Index Terms—Machine learning; Large language models;
ChatGPT; Code Generation; Benchmark; Performance evalua-
tion; Scenario-based testing.

I. INTRODUCTION

Scenario-based testing has long been proven to be an
efficient and effective testing method for traditional software
and widely applied in practice. For machine learning (ML)
applications, standards for developing safety critical systems,
like ISO26262 [3] for road vehicles, requires the method of
scenario-based testing to be applied systematically to thor-
oughly cover hazardous scenarios. Consequently, recent years
have seen a rapid growth in research on scenario-based testing
of autonomous vehicles [1], [2].

It is highly desirable, however, that scenario-based testing
can be applied not only to conventional software and safety
critical applications, but also to sophisticated ML models such
as large language models (LLMs)[4]. A key problem is how to
construct datasets that represent various scenarios efficiently
and effectively. This paper addresses this problem in the
context of testing and the evaluation of an LLM’s capability
for code generation.

This paper is organised as follows. Section II reviews
existing work on the testing and evaluation of code generation,
including benchmarks and the performance metrics. Section III
explains how benchmark ScenEval was constructed and anal-
yses its main characteristics. Section IV presents the datamor-

phic test system for scenario-based testing with ScenEval and
its implementation using the tool Morphy. Section V reports a
case study with the testing and evaluation of ChatGPT. Section
VI concludes the paper with a discussion of future work.

II. RELATED WORK

A. Scenario-Based Testing and Evaluation of ML

A scenario is an operational situation in a given use case
of a system. For traditional software, a scenario is typically
represented as a linear sequence of interactions between the
user and the system. The identification and specification of
scenarios is an integral part of use case driven software
engineering [5]. Test data can then be derived from the se-
quence of human-computer interactions through instantiation.
In contrast, for ML applications, it is often a category of
input queries given to the ML model that represents the
same operation situation. Therefore, traditional scenario-based
testing techniques cannot be applied straightforwardly.

In order to address this problem, Zhu et al. [6] proposed
a process model for identifying scenarios in the operation of
ML applications, and defined a set of test adequacy criteria to
cover combinations of scenarios. In [4], Zhu et al. advanced an
automated technique for generating test data. It employs data
augmentation operators known as datamorphisms to transform
test data of a seed scenario to a mutant scenario.

This technique was then applied to deep neural networks
(DNN) for computer vision, specifically the perception system
of an autonomous racing car. By evaluating the system on
various scenarios, the worst performing scenarios were iden-
tified and the DNN re-trained with additional data for those
scenarios and its performance improved.

While these experiments demonstrated the effectiveness
and efficiency of the approach, its applicability requires the
existence of data for seed scenarios and datamorphisms to
transform them to mutant scenarios. In the case of autonomous
vehicles, these are difficult to obtain. Much research efforts
have been spent on simulation of different traffic and road
conditions [1], [2]. However, as far as we know, there is little
work on constructing suitable benchmarks for scenario-based
testing in other ML application domains.

B. Benchmarks for Code Generation

This paper concerns benchmarks for the evaluation of ML
models as code generation tools. Each element of the dataset
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contains a natural language input that specifies the program-
ming task. The ML model is expected to generate a piece of
program code that meets the specification.

We have identified 11 different such benchmarks in the
literature. They differ from each other in the way that the
data are procured, the contents contained in each element, the
type of code to be generated and the target language. Their
key features are summarised in Table I.

The benchmarks differ in the contents of each element of
the dataset. Natural language descriptions are always present,
usually given as docstrings. In addition, function signatures
and unit test cases may be provided, both of which are used for
test automation to check the correctness of generated solutions.
In some cases, there may also be reference solutions. Table
I also gives the contents provided by each benchmark; the
column #Tests gives the average number of test cases per task
if any are provided. In some cases, programming tasks in the
dataset are classified into subsets of different difficulty levels.
The column Difficulty levels shows the number of difficulty
levels that the test cases were classified into.

C. Evaluation of Code Generation Capability

In general, the evaluation of a ML model involves activities
at two levels: the individual test case level, where the ML
model’s output on each test case is evaluated, and the bench-
mark dataset level, where the overall performance is calculated
from the assessments of the individual test cases.

There are two different approaches for evaluating the quality
of code. The first approach is to measure its syntactic closeness
to a reference solution, which can be done with the BLEU
metric. However, Kulal et al. [22] found that BLEU fails
to reflect functional correctness and Hendrycks et al. [13]
showed that it is even inversely correlated with it. In 2020,
Ren et al. [23] introduced, as an alternative to BLEU, the
measure CodeBLEU, which compares abstract syntax trees
and data flow graphs instead of program text. Lai et al. used
a much-relaxed form of similarity metric called surface-form
constraints, which identifies keywords and the presence or
absence of certain APIs [12].

The second approach, proposed by Kulal et al., is to measure
functional correctness instead and regard generated code as
correct if it passes all test cases; Hendrycks et al. [13] , in
contrast, measured the percentage of test cases passed.

Kulal et al. measured the overall performance with the
percentage of coding tasks for which the LLM produces at
least one correct solution when asked to produce 100 solutions.
This is later generalised to k > 0 solutions for each task and
the definition of the pass@k metric, which is the probability
of generating at least one solution in k successfully. Chen et al.
[14] found that the pass@k metrics produce a high variance,
however, so they counted the number c of successful solutions
in k and used c and k to make an unbiased estimation of the
pass@k metric. That has been used by most of the benchmarks
reported above.

Miah and Zhu [20], in contrast, considered the use of a
LLM model to be an interactive process in which the user

makes a number of attempts by entering and revising the input
to the LLM until a successful solution is generated, or gives
up after a maximal number k of allowed attempts. This is
notably different from k different solutions of one attempt.
They proposed a new metric #attemptk, which is the average
number of attempts over the benchmark.

Table II provides detailed information regarding the bench-
marks used in the evaluation, the metrics used and the main
results.

The only quality attribute considered above is correctness
except that a work by Miah and Zhu [20] assessed structured-
ness, conciseness, completeness, and logical clarity, as well as
attributes on the textual explanation of the code.

In summary, existing benchmarks for code generation fall
short in their support for scenario-based testing since none of
them link test cases to scenarios that might be encountered
during code generation. The solution proposed by Miah and
Zhu [20] was to include metadata with each test case to
represent the scenario it tests.

This paper further develops that metadata approach by
constructing a large scale benchmark ScenEval with 12864
Java programming tasks, of many different kinds and from
different sources, all tagged with scenario information as
metadata in JSON format. With the support of the automated
testing tool Morphy [7], the concept of test morphisms makes
it easy to form datasets with test cases that all belong to one
scenario and, by changing and combining datasets, to study
the performance of a LLM across several different scenarios.

III. SCENEVAL BENCHMARK

We now describe the structure of each task within ScenEval
and then describe the scenarios it handles. All tasks are
labelled with scenario information to improve upon existing
work and for the same reason, a variety of sources have been
used.

A. Structure of Data

In ScenEval, each test case is a coding task with the fol-
lowing metadata represented as a JSON value whose structure
is given in Figure 1.

• Task Id: an universal unique identifier of coding task;
• Title: the title of the coding task;
• Source: a list of sources, which can be more than one if

the task occurs in more than one sources.
• Topics: a list of topics covered by the coding task.
• Programming language: The programming language in

which the code is to be generated.
• Version: The version number of the task, to support the

evolution of the dataset.
• Description: A description of the coding task, which

can be a sequence of text or a code snippet (such as
a signature or a skeleton), or a fully qualified file name
for image data; see Figure 2.

• Reference Solutions: A list of reference solutions.
Currently, we distinguish three types of sources for the

coding tasks: textbook, real-world questions, and synthetic



TABLE I: Main Features of Existing Benchmarks

Benchmark Source Level #Tasks Language Signature #Tests Solution Difficulty Levels
APPS[13] Coding challenge Program 10,000 Python - + + 3
HumanEval[14] Domain Experts Function 164 Python + 7.7 - -
MBPP[15] Crowd-sourcing Function 974 Python - 3 - -
MathQA-Python[15] MathQA Function 23,914 Python - 3 - -
ClassEval[19] Repository, HumanEval, MBPP Class 100 Python + 33.1 + -
CoderEval[10] Github Function 230 Python + + - 6

Method 230 Java
Multipl-E[16] HumanEval, MBPP Function 1138 Various + 3 to 7 - -
DS-1000 [12] Stack Overflow Statement 1000 Python + 1.6 + -
HumanEval+[17] HumanEval Function 164 Python + 774.8 - -
CONCODE [11] Github Method 2000 Java + - - -
R-benchmark[20] Text Books Program 351 R - - + 3

TABLE II: Uses of Benchmark In Evaluations

Benchmark Correctness Perf. Metrics ML Model Result
APPS pass all tests, %pass@100, GPT-2 0.68, 7.96

%passed tests Avg %passed GPT-Neo 1.12, 10.15
GPT-3 0.06, 0.55

HumanEval pass all tests %pass@100 GPT-Neo 21.37
Codex 72.31

MBPP pass all tests %pass@1 Decoder 79.0
Transformer 82.8
Lang. Model 83.8

MathQA pass all tests %pass@1 Decoder 74.7
-Python Transformer 79.5

Lang. Model 81.2
ClassEval pass all tests %pass@5 GPT-4 42.0

GPT-3.5 36.0
CodeGen 13.0

CoderEval pass all tests %pass@10 CodeGen 23.48
(Python) ChatGPT 30.00
CoderEval pass all tests %pass@10 CodeGen 33.48
(Java) ChatGPT 46.09
Multipl-E pass all tests %pass@1 Codex ≈ 36
(HumanEval) CodeGen ≈ 9
Multipl-E pass all tests %pass@1 Codex ≈40
(MBPP) CodeGen ≈14
DS-1000 pass all tests %pass@1 Codex-002 41.25

CodeGen 8.4
HumanEval+ pass all tests %pass@100 CodeGen ≈64.0

ChatGPT 89.8
GPT-Neo 16.8

ConCode BLEU Avg BLEU Retrieval 20.27
Seq2Seq 23.51
Seq2Prod 21.29

R-benchmark Satisfactory Avg #attemptk ChatGPT 1.6

Fig. 1: Structure of JSON representation of Task

data. The metadata structure for each source type is given
in Figure 3. More types of sources can be easily added due to
the extensibility of JSON.

We allow multiple reference solutions to be provided for
each coding task. As shown in Figure 4, each reference
solution is also associated with metadata for its source and
complexity. Three metrics are used for the latter: cyclomatic
complexity, cognitive complexity and the number of lines.

Figure 5 shows an example of the test cases in ScenEval.

Fig. 2: Structure of JSON representation of Description and Type

Fig. 3: Structure of JSON Representation of Various Types of
Sources

B. Data Procurement and Extraction

The tasks of ScenEval are extracted from three types of
sources:

• Textbook: Exercises and solutions in four textbooks on
Java programming [24], [25], [26], [27].

• Online learning website: Exercise questions and solutions
on Java programming at the website of W3Resources1.

• Online forum: Questions and answers about Java pro-
gramming posted on Stack Overflow2.

Data in the textbooks are extracted manually and metadata
are also assigned manually. Exercise questions that do not
require code to be written are excluded. There are a total of
1306 tasks from 4 textbooks; see Table III for the number of
tasks extracted from each source.

For the online sources, data together with the metadata
are extracted automatically by running script codes. Tasks
from W3Resource have questions that are well presented as
exercises for students who are learning programming and the
solutions are tested and reliable. Therefore, in the sequel, they
are also categorised as textbook questions.

1URL: https://www.w3resource.com/java-exercises/
2URL: https://stackoverflow.com/



Fig. 4: Structure of JSON Representation of Reference Solutions

{"Source": { 
       "sourceType": "Text Book", 
       "bookName": "Introduction to Java Programming", 
       "authors": "Y. Daniel Liang", 
       "chapterName": "Abstract Classes and Interfaces"}, 
  "problemTitle": "The ComparableCircle class", 
  "includedTopics": ["Abstract Classes", "Interfaces"], 
  "problemID": "2e51f976-d621-4e5f-af52-bb061060727c", 
  "version": "v1.0", 
  "programLanguage": "java", 
  "parts": [ { "type": "text", 
      "content": "Define a class named ComparableCircle that extends Circle and implements Comparable. For the 

Circle class, tasks include defining instance variables to represent properties such as radius or diameter, 
implementing methods to calculate properties like area and circumference, providing constructors for object 
initialization, and possibly including methods for setting or getting radius/diameter values. For the 
Comparable interface, tasks involve defining the compareTo method to establish the natural ordering of 
objects, implementing it to compare the areas of two ComparableCircle objects, ensuring it returns a 
negative integer if the current object is smaller, zero if they are equal, and a positive integer if the current 
object is larger, and overriding the equals method for consistency with compareTo. Write a test class to 
determine which of two ComparableCircle objects has a larger area.}], 

  "testCases": [ ], 
  "GivenSolutions": [ 
      {"SourceType": "Text Book", 
       "SourceName": "Introduction to Java Programming", 
       "solution": [ 
        { "partsOfSolution": "C:\\ScenEval\\ChatGPT_generated_programs\\w3resourcesAbstractClass 

\\2e51f976-d621-4e5f-af52-bb061060727c\\GivenSolutionOnePart1.java", 
          "LOC": "38", 
          "CognitiveComplexity": "3", 
          "CyclomaticComplexity": "4" } ] }, 
    {"SourceType": "Web Source", 
      "SourceName": "w3school", 
      "solution": [ 
        {"partsOfSolution": "C:\\ScenEval\\ChatGPT_generated_programs\\w3resourcesAbstractClass 
 \\2e51f976-d621-4e5f-af52-bb061060727c\\GivenSolutionTwoPart1.java", 
          "LOC": "30", 
          "cognitiveComplexity": "2", 
          "CyclomaticComplexity": "3"}]}]} 
 

Fig. 5: Example of a Test Case

The questions from Stack Overflow are also extracted auto-
matically, but manually inspected to remove those not on code
generation, but apart from that, neither the questions nor their
solutions were edited, since we believe it is best to keep them
both in their natural form for testing LLMs, even though the
solutions are untested and there is little quality control other
than user votes and feedback. These tasks are referred to as
real-world questions in the sequel.

Figure 6 shows the distribution of coding tasks across
different topics. It is worth noting that the real-world questions
were posted to Stack Overflow over a period of time since
2008. Figure 7 shows the distribution of these tasks across the
time.

Figure 8 shows the distributions of tasks by complexity
according to cyclomatic complexity, cognitive complexity and
lines of code (LOC), respectively.

IV. DATAMORPHIC TEST SYSTEM

The methodology of datamorphic testing regards software
testing as a problem of systems engineering, and aims to
develop and apply a test system, in which testing is performed,
test resources are managed and testing processes are auto-
mated.

TABLE III: Number of Tasks from Various Sources

Source #Tasks
W3Resources 1058
Stack Overflow 10500
Textbooks 1306
Introduction to Java Programming by Y. Daniel Liang 791
Absolute Java by Walter Savitch 217
Java: A Beginner’s Guide by Herbert Schildt 230
Programming and Problem Solving with Java by Nell Dale et al. 68
Total 12864
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Fig. 6: Distribution of Coding Tasks by Topic

Moreover, datamorphic testing constructs test systems by
classifying the artefacts of testing into two types: test entities
(such as test data, objects, the software under testing, test
results, etc.) and test morphisms, which are operations on or
transformers of test entities. Here, benchmarks are test entities
and so are the various subsets of a benchmark that represent
various scenarios.

The tool Morphy has been developed to support datamor-
phic testing [7]. The tester can define test entities in Java
as classes and implement test morphisms as Java methods.
In addition to general test actions, Morphy recognises the
following types of test morphisms:

• Seed maker: which generates test cases from other types
of entities;

• Datamorphism: which transforms test cases;
• Metamorphism: which checks the correctness of test cases

and output a Boolean value;
• Test set filter: which add or remove test cases from a test

set;
• Test set metric: which maps a test set to a real value, such

as its test adequacy;
• Test case filter: which maps a test case to a Boolean value

to decide whether to keep it in the test set;
• Test case metric: which maps test cases to a real value,

such as its complexity.
• Analyser: which analyses the test set and produces a test

report.
• Executer: which invokes the program under test with

input data from the test case and receives the output from
the program.

In addition to providing facilities to manage test entities,
Morphy supports test automation at three levels, each of which



Fig. 7: Distribution of Real-World Questions by Year
All Tasks (%)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rc

en
ta

ge
s 

(%
)

Cyclomatic Complexities

Percentages by Cyclomatic Complexity

TextBook Tasks (%)

Real World Tasks (%)

All Tasks (%)

All Tasks (%)

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc

en
ta

ge
s 

(%
)

Cognitive Complexity

Percentages by Cognitive Complexity

TextBook Tasks (%)

Real World Tasks (%)

All Tasks (%)

All Tasks (%)

0

10

20

30

40

50

60

70

80

90

100

1-50 51-100 101-150 151-200 201-250 251-300 301-350

Pe
rc

en
ta

ge
s 

(%
)

LOC Ranges

LOC Ranges vs. Percentages

TextBook Tasks (%)

Real World Tasks (%)

All Tasks (%)

Fig. 8: Distribution of Coding Tasks

can be invoked with a button click:

• action, the level of a single test activity;
• strategy, a composition of test morphisms, which can be

defined as an algorithm that contains test morphisms as
parameters;

• process, a sequence of invocations of actions and strate-
gies that can be recorded into an editable test script.

To support scenario-based testing in particular, we defined
and implemented four different sorts of test morphisms: test
set filters, analysers, seed makers and test executors. We will
now examine each of these.

A. Test Set Filters.

Four test set filters have been implemented to select test
tasks in a dataset according to the source, topics, complexity
and years.

• filterBySource, which filters test cases according to the
source type supplied as input; if that source type is ’text
book’, the user can select a specific textbook

• filterByTopic, which filters test cases according to a set
of topics supplied as input

• filterByComplexity, which filters test case according to
complexity metric and a range within that metric

• filterByYears, which filters test cases according to a range
of years, specified with a start year and end year.

These filters can be combined. For example, you can create
a dataset with topics on threads from real-world questions after
the year 2010, by applying filterByTopic then filterBySource
then filterByYear. Datasets can be saved and then loaded to
be combined with other datasets.

B. Test Data Analysers.

There are two types of analysers, those that analyse the data
distributions and those that analyse each test case on various
quality attributes.

1) Analysers of data distributions.: Three analysers have
been implemented to calculate and display the data distribution
in the dataset according to the topic, year and complexity
respectively:

• TopicBasedDistribution, example outputs of which can be
seen in Figure 6.

• YearBasedDistribution, as seen in Figure 7.
• ComplexityBasedDistribution, as seen in Figure 8.
2) Analysers of test cases features.: Seven analysers have

been implemented to analyse various aspects of the quality of
each test task in the dataset.

• isCodeCompilable, which takes the generated code snip-
pet, compiles it and returns a message saying whether the
compilation was successful.

• isCodeExecutable, which takes the object code and exe-
cutes it to show the output.

• analyseComplexity, which calculates the cyclomatic com-
plexity and cognitive complexity of the solution and
saves it in the metadata along with the number of lines.
The function is implemented by invoking the PMD code
analyser3 and extracting the output produced.

• generateTestCode, which generates two JUnit test classes,
one for the reference solution and the other for the gen-
erated solution. It is implemented by invoking Evosuite
[8], [9].

• purifyReferenceTestCode, which runs all unit tests on the
reference solution, reports the correctness of each one and
removes the failing test cases

• purifySolutionTestCode, as for purifyReferenceTestCode,
but applied to the solution test code.

3URL: https://pmd.github.io/



• runTestCodes, which runs the test cases on both the
reference solutions and generated solutions, reports on the
correctness of the latter, and then measures test adequacy
according to various code coverage metrics by invoking
the functions provided by Evosuite [8], [9]. Figure 9
shows the average test coverage of the reference solutions
on the whole ScenEval benchmark as an example of the
output from this analyser.
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Fig. 9: Average Test Coverages

C. Seed Makers

Three seed makers have been implemented.
• ManualTaskEntry, for manually entering test tasks, as

used for those in textbooks.
• ExtractStackOverflow, to extract tasks from Stack Over-

flow.
• ExtractW3Resource, to extract data from W3Resource.
Once the data has been extracted and stored in Morphy,

it can be inspected and those tasks not suitable for code
generation can be removed. Data can be edited, but it has
not been for the current version of the benchmark.

D. Test Executer

Only one test executer has been implemented: ChatGPTTes-
tExecuter, which invokes ChatGPT through its API, sends
requests taken from the test task descriptions and extracts data
from the responses. Other LLMs can be tested by writing their
own executers which will have different APIs, URL and data
formats for request and response messages.

V. EVALUATION OF CHATGPT

This section demonstrates the use of ScenEval in forming
various subsets with the support of Morphy so that a scenario-
based evaluation can be carried out on ChatGPT.

A. Design of The Experiments

1) Test Case Generation: Test cases are generated by
applying the generateTestCode test morphism. From the refer-
ence solution, it produces a JUnit test class with test cases that
come with expected outputs that are checked using assertions.
The test cases are not always correct, however, so the ones
that failed on the reference solution are removed, by invoking
the test morphism purifyReferenceTestCode.

It is worth noting that test case generation from the reference
solution only uses the information contained in the reference

code. It can be effective to check the correctness of a generated
solution on the domain that the reference solution defines.
Defects of a generated solution on this domain are called
omission errors in software testing literature. However, a
generated solution may also provide functions beyond this
required domain, such as those containing malicious code. The
test cases generated from the reference solution cannot detect
such defects, which are called commission errors. In other
words, a test code generated from the reference solution is
effective to detect omission errors, but not commission errors.

To address this problem, we also generate the second test
code, but from the generated solution. Similarly, the test
morphism purifySolutionTestCode is applied to the generated
code to remove the incorrect test cases. This test code when
applied to the reference solution can detect commission errors.

In the sequel, the purified the test code generated from the
reference solution is called the γ test, while the purified test
code generated from the generated solution is called κ test.

2) Test Execution And Result Analysis: Once the γ and κ
test codes are ready for a test task, both γ and κ test codes are
applied to both reference solutions and generated solutions.
This is by invoking the test morphism runTestCodes, which
executes the test codes and reports the test results together
with the test adequacy measured in various coverage metrics.

3) Correctness Criteria and Performance Metrics: We use
two correctness and performance metrics to measure the
performance of ChatGPT’s code generation capability. The
first is passing all test cases as the correctness criterion and
percentage of pass@1 as the overall performance metric. Here,
a generated solution is regarded as correct by passing all test
cases, if both the reference and the generated solutions pass
all test cases in the γ and κ tests.

The other performance metric is the average pass rate over
all tasks, where pass rate for a task is calculated from the
failure rate by the formula 1 − failurerate. The failure rate
for a task is the proportion of test cases on which either
reference solution fails or the generated solution fails over
the total number of test cases in γ and κ tests.

B. Correctness Analysis

Our main research goal is to gain insight on how ChatGPT
performs on textbooks and real-world questions. Applying
the scenario-based evaluation techniques, we created two test
datasets; one with tasks from the textbook questions and the
other with tasks from the real-world questions by applying
the test morphism filterBySources. Then, ChatGPT is tested
on these two datasets. On textbook tasks, the percentage
of pass@1 is 75.64%, i.e. about three-quarters of the tasks
correctly passed all test cases, with an overall average pass
rate of 82.4%. In contrast, the percentage of pass@1 for real-
world tasks is 67.07%, and the overall average pass rate was
74.34%.

In addition to the overall performances on these two sce-
narios, we further analysed ChatGPT’s performance on tasks
of various topics and complexity. Again, by applying the
principles of scenario-based evaluation, we split the two test



datasets according to topics and complexities using the test
morphisms filterByTopics and filterByComplexity and obtained
two sets of sub-datasets. The performances of ChatGPT is
evaluated on the datasets. The results are shown in Figure 10
and 11 respectively.

Fig. 10: Variation of Performance Over Topics

Fig. 11: Variation of Performance over Cyclomatic Complexity

As shown clearly in Figure 11, ChatGPT’s performance
decreases as the cyclomatic complexity of the task increases.
It might be just a coincidence that some topics are more com-
plicated than others, however, so we pick the worst-performed
topics and see whether we observe the same phenomenon.

From the results of the evaluation shown in Figure 10, we
can identify that ChatGPT performed worst on the topics of
streams, multi-threading, lambda expressions and data struc-
tures.

To gain further insight on ChatGPT’s performance on these
topics, we split each dataset of these topics into a set of
sub-datasets according to the cyclomatic complexity. The
evaluation on these sub-datasets revealed that the decline of
performance with complexity is uniform for all topics; see
Figure 12. Therefore, it is not a coincidence.

C. Complexity Analysis

To analyse the quality of the generated code, we compare
the complexity of the generated solutions with that of the
reference solutions. We construct a random subset of the
benchmark, and submit the tasks of the dataset to ChatGPT.
The results from ChatGPT are analysed by invoking the test
morphism analyseComplexity. Figure 13 shows the distribu-
tions of cyclomatic and cognitive complexities of the reference

(a) Performance on Textbook Questions.

(b) Performances on Real-World Questions.

Fig. 12: Variation of Performance Over Complexity on Hard Topics

solutions and the generated codes, where red lines are the
complexities of reference solutions while the blue lines are
the complexities of generated codes.

(a) Comparison on Cyclomatic Complexity

(b) Comparison on Cognitive Complexity

Fig. 13: Complexity of Reference Vs Generated Solutions

Statistical analysis of the complexity data is given in
Table IV, where columns AvgRS and AvgGS are the aver-
age complexities of the reference and generated solutions,
respectively. The columns %Above, %Equal and %Below
are the percentages of the tasks that the generated solutions
have a higher, equal and lower complexity than the reference
solutions, respectively. The column Avgδ gives the average

TABLE IV: Complexity of Generated vs Reference Solutions

Complexity AvgRS AvgGS %Above %Equal %Below Avgδ
Cyclomatic 5.36 5.52 48.45 18.56 32.99 2.31
Cognitive 5.21 5.01 41.24 25.77 32.99 2.62

LOC 33.52 24.16 33.03 7.24 58.82 14.47
CLOC 39.18 24.84 24.89 4.52 69.68 18.29

CL 5.72 0.84 14.93 27.15 57.014 5.59



TABLE V: Complexities of Generated and Reference Solutions for Correct and Incorrect Tasks

Correct Subset Incorrect Subset
Complexity AvgRS AvgGS %Above %Equal %Below Avgδ AvgRS AvgGS %Above %Equal %Below Avgδ
Cyclomatic 5.25 5.69 60.66 13.11 26.23 1.92 6.00 4.81 27.78 27.78 44.44 2.97
Cognitive 5.26 5.36 39.34 29.51 31.15 2.23 5.14 4.69 36.11 19.44 44.44 3.67

LOC 31.87 23.97 34.23 9.01 54.95 12.45 35.15 24.34 31.82 5.45 62.73 16.48
CLOC 40.19 24.52 15.32 3.60 79.28 17.16 38.17 25.15 34.55 5.45 60.00 19.41

CL 8.43 0.74 3.60 6.31 88.29 7.80 3.04 0.93 26.36 25.45 48.18 3.40

absolute differences between the complexities of the generated
and reference solutions. The rows of Cyclomatic and Cognitive
are the data of cyclomatic and cognitive complexities. The row
LOC gives the data about the numbers of lines of the code
after comments are removed, CLOC is about the number of
lines with comments, and CL is about the number of lines that
contain comments.

From the data given in Table IV, the generated solutions
are often more complex than the reference solutions. The
average cyclomatic complexity of the generated solutions was
5.52, while the average of reference solutions was only 5.36.
On 48.45% of the tasks the generated solutions have higher
cyclomatic complexity than reference solutions, while only
32.99% tasks have lower cyclomatic complexity, and 18.56%
tasks were of equal complexity. For cognitive complexity, the
generated solutions have a slightly lower average cognitive
complexity than that of the reference solutions. However, there
are more cases that generated solutions have a higher cognitive
complexity than reference solutions.

Our experiment data also shows that the generated codes
are much shorter than the reference solutions in terms of the
number of lines of code. On average the generated code is
more than 14 lines shorter. This contradicts the observation
made by Miah and Zhu on the R program code generated by
ChatGPT [20]. Moreover, the generated code contains little
comments. On average there is only less than 1 line in the
generated code.

To further investigate the complexity of ChatGPT generated
code, we split the test dataset into two subsets according
to the functional correctness: one contains the tasks that the
generated code passes all test cases, and the other for those
that the generated code fails on tests. The statistical data is
shown in Table V.

The data in Table V show that the correctly generated solu-
tions are likely to be more complex than reference solutions in
both cyclomatic and cognitive complexity metrics, and longer
as well. However, for incorrectly generated codes, it is more
likely to be less complex than the reference solution and more
likely to be shorter.

D. Discussion

From the experiments, we make the following observations.
First, due to the metadata associated with the task in

the ScenEval benchmark and the support of datamorphic
testing tool Morphy, scenario-based testing and evaluation
can be conducted efficiently and effectively. Benchmarks with
metadata and a carefully developed test system with test
morphisms for dataset filtering, test result analysis and test

data distribution analysis form a powerful scenario-based test
and evaluation environment, in which experiments can be
conducted efficiently and effectively.

Second, using scenario-based evaluation, one can gain in-
sight into an LLM model effectively. For example, we can
identify the task topics on which ChatGPT performed poorly.
These topics are the areas that ChatGPT should improve. It
has been observed already that when the complexity of the
tasks increases, the LLM’s performance decreases. However,
existing works are based on an informal judgement of the diffi-
culty of tasks [20]. In our experiments, the complexity of tasks
are measured by cyclomatic complexity and performances are
evaluated on subsets of different complexities. It is further
confirmed that the decrease in performance on complexity is
not a coincidence because the complexity of tasks in certain
topics are more complicated than other topics.

Finally, the Morphy testing tool makes the test system easy
to manage and operate and flexible to extend and evolve.
Various software engineering tools can be easily integrated
together via implementation of invocations of existing tools
and code to extract data saved by such tools. Our test system
has integrated PMD and EvoSuite tools.

VI. CONCLUSION

We proposed a new approach to structure benchmark
datasets with metadata to represent the usage scenarios of each
element of the benchmark and to develop a test system for
using metadata to support scenario-based testing and evalua-
tion of LLMs. We have demonstrated how metadata makes it
possible to formulate scenarios efficiently and how scenarios
contribute to a thorough analysis of LLM performance.

For future work, we are further developing the test system
with more test morphisms for analysis of the quality of
program code. The work reported in this paper has only
considered correctness and complexity. Many other aspects of
code qualities can and should be evaluated, and this is already
in progress.

We are also working on the testing and evaluation of many
other LLMs for code generation. This can be implemented
fairly easily by writing a test morphism for executing each
LLM to invoke the model with queries extracted from the
description of the task and to receive the responses from the
LLM. Comparisons between many LLMs could be time con-
suming and labour intensive when the process involves manual
processing of data. We are working on how to automate the
whole process.
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