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Abstract— We study network error correction with unequal
link capacities. Previous results on network error correction
assume unit link capacities. We consider network error cor-
rection codes that can correct arbitrary errors occurring on
up to z links. We find the capacity of a network consisting of
parallel links, and a generalized Singleton outer bound for any
arbitrary network. We show by example that linear coding is
insufficient for achieving capacity in general. In our example,
the capacity is 50% greater than the linear coding capacity
and we achieve using a nonlinear error detection strategy. We
also present a method for finding an upper bound on the
linear coding capacity for arbitrary network. We show that
even for a single source and single sink network, it may be
necessary for intermediate nodes to do coding, nonlinear error
detection or error correction. This is unlike the equal link
capacity case, where coding only at the source and forwarding
at intermediate nodes suffices for a single source and sink
network. We conjecture that the generalized Singleton outer
bound is not achievable in general.

I. INTRODUCTION

Recently, Yeung and Cai introduced the network error-

correction problem [1], [2]. They generalized the Hamming

bound, the Singleton bound, and the Gilbert-Varshamov

bound from classical error correction coding to network

coding. In [3], Zhang introduced the concept of minimum

rank for linear network codes, which plays a similar role

in classical error-correcting codes. In [4], [5], the authors

presented a refined version of the Singleton bound for

network error correction.

In all previous works on network error correction, the

authors assume unit link capacity. A t-error-correcting code

is defined as follows: if the total number of links in the

network that may be corrupted by errors is at most t, then

the source message can be recovered by all sink nodes. In

this scenario, the tightness of the Singleton bound is proved,

and linear network error-correcting codes are optimal in the

sense of t-error-correction [2, Theorem 4]. The capacity is

C − 2t, where C is the min-cut of the network.

In the error-free case, any link l with capacity r can

be represented by r edges of capacity one without loss of

generality. However, in the case with errors, there is a loss

of generality in assuming that errors occur independently on

the unit capacity edges.
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In this paper, we consider network error correction with

unequal link capacities. For any link l in the network

with capacity r, r symbols can be transmitted on l. If an

adversary controls this link, some or all of the symbols

transmitted across the link may be corrupted. We therefore

define a z-error link- correcting code to be a code that can

recover the source message at all sink nodes if there are at

most z adversarial links in the network. In Section III, we

study a two-node network with parallel channels of varying

capacities. When this network consists of K links of arbitrary

capacity and there are at most z adversarial links, we show

that the capacity of the network is the sum of the (K − 2z)
smallest link capacities.

In Section IV, we extend the parallel channel result to

obtain a generalized Singleton outer bound that applies to all

network scenarios. In this case, we prove the insufficiency

of linear network codes to achieve the capacity in general.

The proof uses an example for which we can show that

the capacity is 50% greater than the linear coding capacity

and we achieve using nonlinear error detection strategy. We

generalize our proof and present a method for finding an

upper bound on the linear coding capacity for arbitrary

network. In Section V, we show that even for a single

source and single sink network, it may be necessary for

intermediate nodes to do coding, nonlinear error detection

or error correction. This is unlike the equal link capacity

case, where coding only at the source and forwarding at

intermediate nodes suffices for a single source and sink

network. We conjecture that the generalized Singleton outer

bound is not achievable in general. We provide an example

with some intuition. Section VI concludes this paper and

proposes future works.

II. PRELIMINARIES

We consider an acyclic communication network G =
(V, E). Source node s ∈ V transmits information to the sink

nodes u ∈ U . We use r(a, b) to denote the capacity of edge

(a, b) ∈ E . We assume that the code alphabet X is equal to

GF (q) for some prime power q. We regard an error vector

in each link l ∈ E as set of r(l) symbols in code alphabet

X , with the output yl of link l equals the modulo q sum of

the input xl to link l and the error el applied to link l. We

say that τ error links occur in the network if el 6= 0 on τ
links.

Definition 1: A network code is z-error link-correcting if

it can correct any τ adversarial links for τ 6 z. That is, if the

total number of adversarial links in the network is at most

z, then the source message can be recovered by all the sink

nodes u ∈ U .
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As in [1], [2], we consider any linear coded multi-

cast (LCM) V that assigns a linear subspace Lv(a) to

each node a ∈ V and a set of r(l) column vectors

{vτ (l)1, v
τ (l)2, .., v

τ (l)r(l)} to each link l ∈ E in the

network. Denote by Ga the matrix whose columns are

the vectors assigned to the input links of node a. For

any LCM V , there exists a set of r(l) column vectors

{cτ (l)1, c
τ (l)2, .., c

τ (l)r(l)} such that vτ (l)i = Gacτ (l)i.

Then we can define a linear network code φ based on any

LCM V as in [1]. Let

φ̃l(w) = {〈w, vτ (l)i〉 : 1 6 i 6 r(l)}

denote the error-free output of link l when the network input

is w. We again use vector el to denote the errors on link

l and e = (el : l ∈ E) to denote the entire network error.

If an error vector e occurs, its components are added to the

link inputs according to the coding order. Then the output

of a link l is a function of both the network input w and

the error vector e. We denote that output by ψl(w, e). With

this notation, a sink node u cannot distinguish between the

case where w is the network input and error e occurs and

the case where w′ is the network input and error e′ occurs

if and only if

(ψl(w, e) : l ∈ Γ+(u)) = (ψl(w
′, e′) : l ∈ Γ+(u)), (1)

where Γ+(a) = {(c, a) : (c, a) ∈ E} and Γ−(a) = {(a, b) :
(a, b) ∈ E} denote the sets of incoming and outgoing edges

of node a, respectively. Let N(e) = |{l ∈ E : el 6= 0}| denote

the number of links in which an error occurs. We say that any

pair of input vectors w and w′ are z links separable at sink

node u if (1) does not hold for any pair of error vectors e and

e′ such that N(e) 6 z and N(e′) 6 z. Lemma 1 in [2] for

the network with unit link capacity can be directly extended

to the following lemma for the network with arbitrary link

capacity.

Lemma 1: For all l ∈ E , all network inputs w and w′,

error vectors e and e′, and µ ∈ GF (q),

ψl(w + w′, e + e′) = ψl(w, e) + ψl(w
′, e′)

and

ψl(µw) = µψl(w).
From Lemma 1,

ψl(w, e) = ψl(w, 0) + ψl(0, e) = φ̃l(w) + θl(e).

In other words, ψl(w, e) can be written as the sum of a linear

function of w and a linear function of e.

Let (A,B) be a partition of V , and define the cut for the

partition (A,B) by

cut(A,B) = {(a, b) ∈ E : a ∈ A, b ∈ B}.

The quantity m(A) =
∑

(a,b)∈cut(A,B) r(a, b) is called the

volume of cut(A,B). cut(A,B) is called a cut between two

nodes a and b if a ∈ A and b ∈ B. Let CS(a, b) denote

the set of cuts between a and b and let c(a, b) denote the

minimum volume of a cut between a and b.

s

u

l1 lK

Fig. 1. Two-node network G with K parallel links : there are ki links of
capacity ci connecting s and u (c1 < c2 < .. < cm).

III. TWO-NODE NETWORK WITH PARALLEL CHANNELS

In this section, we consider a two-node network G with

K parallel links between the single source s and sink u, as

shown in Fig. 1. There are ki links of capacity ci connecting

s and u (c1 < c2 < . . . < cm). We define the min-cut n as

the sum of link capacities, i.e., n =
∑m

i=1 ciki. Under the

assumption that there are at most z adversarial links in this

network, we derive the capacity of the network.

Theorem 1: The capacity C is equal to the sum of K−2z
smallest link capacities.

Proof: First we show that C is achievable. We

decompose G into m subnetworks (G1, ..., Gm) where Gi

consists of
∑m

j=i ki links of capacity ci − ci−1, as shown in

Fig. 2. (c0 = 0). Each of Gi contains at most z adversarial

links. Since Gi consists of equal capacity links, we can apply

the achievability result in [2, Theorem 4]. Suppose that

kp + kp+1 + .. + km > 2z > kp+1 + .. + km

for some 1 6 p 6 m.

Then, for sufficiently large q, the achievable capacity C
for this network is

m
∑

i=1

(ci − ci−1)max(0,

m
∑

j=i

ki − 2z)

=

p
∑

i=1

(ci − ci−1)(

m
∑

j=i

ki − 2z)

=

p−1
∑

i=1

ciki + cp(kp + .. + km − 2z)

= C.

As shown above, C is achievable.
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Fig. 2. We decompose G into m subnetworks (G1, ..., Gm) where Gi consists of
∑m

j=i ki links of capacity ci − ci−1.

Now we show the converse. We use X to denote the source

alphabet. If there exists z-error links-correcting code on the

two-node network G with source alphabet X , then

log |X | 6 C · log q.

We assume that links E = {l1, .., lK} are indexed in

increasing order, i.e., r(l1) < . . . < r(lK).

Let {φl : l ∈ E} be a z-error link-correcting network

code transmitting an information from source with alphabet

Z . φ̃l(x) denotes the error-free output of input x on link

l. Now we assume that |X | > qC and will show that this

leads to a contradiction. We use O(x) = (φ̃l1(x), .., φ̃lK (x))
to denote the error free output of the network with input x.

From the definition, C is the sum of the (K − 2z) smallest

capacities of links in the network, i.e., C =
∑K−2z

i=1 r(li).
From our assumption |X | > qC , there exist two distinct

symbols x, x′ ∈ X such that φli(x) = φli(x
′) ∀i = 1, ..,K−

2z. So we can write

O(x) = {y1, .., yK−2z, u1, .., uz, w1, .., wz},

O(x′) = {y1, .., yK−2z, u
′
1, .., u

′
z, w

′
1, .., w

′
z}.

We can construct z-error links that changes O(x) to the value

{y1, .., yK−2z, u
′
1, .., u

′
z, w1, .., wz} as follows. We apply an

error of value (u′
i − ui) mod q on links lK−2z+i for 1 6

i 6 z. Since this does not change the output value of other

K − z links, we obtain {y1, .., yK−2z, u
′
1, .., u

′
z, w1, .., wz}.

For the source symbol x′, we can follow a similar procedure

to construct z error links that change the value of O(x′)
to {y1, .., yK−2z, u

′
1, .., u

′
z, w1, .., wz}. Thus, sink node u

cannot reliably distinguish between the source symbol x and

x′, which gives a contradiction.

Theorem 1 gives us the capacity of any two-node network

with parallel links of varying capacities.

IV. INSUFFICIENCY OF LINEAR NETWORK CODE

Here we first extend the converse part of the two-node

network result to obtain a generalized Singleton bound that

applies to all network scenarios. We show by example that

linear coding is insufficient for achieving capacity in general.

In our example, the capacity is 50% greater than the linear

coding capacity and we achieve using a nonlinear error

detection strategy. We generalize our proof and present a

strategy that gives an upper bound on the linear coding

capacity for arbitrary network.

A. Generalized Singleton bound

On an acyclic directed graph G we can define a coding

order such that lower-indexed arcs are upstream of higher-

indexed arcs. We regard the errors in the network as being

injected by a jammer according to the coding order, as in

[1].

For a cut Q ∈ cut(s, u), let K(Q) denote the number of

links in Q.

Lemma 2: Consider any z-error correcting network code

{φli : li ∈ E, 1 6 i 6 K} with source alphabet X . Consider

any set S consisting of 2z links on a source-sink cut Q such

that none of the remaining links on Q are downstream of

any link in S. Let M be the total capacity of the remaining

links. Then

log |X| 6 M · log q.

.

Proof: We assume that |X| > qM , and show that this

leads to a contradiction.

For brevity, let Q = {l1, .., lK(Q)} where S =
{lK(Q)−2z+1, ...lK(Q)} and links in S are in the coding

order of the given network code. Since |X| > qM , from the

definition of M , there exist two distinct symbols x, x′ ∈ X
such that φ′

li
(x) = φ′

li
(x′) ∀i = 1, ..,K(Q)− 2z. So we can
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write

O(x) = {y1, .., yK(Q)−2z, u1, .., uz, w1, .., wz},

O(x′) = {y1, .., yK(Q)−2z, u
′
1, .., u

′
z, w

′
1, .., w

′
z}.

We will show that it is possible for the jammer to produce

exactly the same outputs at all the channels on Q when errors

are occurred at most z links on Q.

Assume the input of network is x. The jammer will inject

errors on z links lK(Q)−2z+1, .., lK(Q)−z in this order as

follows. First the jammer applies an error on link lK(Q)−2z+1

to change the output from u1 to u′
1. Then the output of

links (lK(Q)−2z+2, .., lK(Q)) may be affected, but not the

outputs of links (l1, .., lK(Q)−2z). Let u′
i(j) and w′

i(j) denote

the outputs of links lK(Q)−2z+i and lK(Q)−z+i, respectively

after the jammer has injected errors on link lK(Q)−2z+j ,

where j = 1, 2, .., t with u′
1(1) = u′

1. Then the jammer

injects errors on link lK(Q)−2z+2 to change its output

from u′
1 to u2. This process continues until the jammer

finishes injecting errors on z links lK(Q)−2z+1, .., lK(Q)−z

and the output of this channel changes from O(x) to

{y1, .., yK(Q)−2z, u
′
1, .., u

′
z, w

′
1(t), .., w

′
z(t)}. Now suppose

the input is x′. We can follow a similar procedure by

injecting errors on z links lK(Q)−z+1, .., lK(Q). Then the

jammer can produce the outputs

{y1, .., yK(Q)−2z, u
′
1, .., u

′
z, w

′
1(t), .., w

′
z(t)}.

Thus, sink node u cannot reliably distinguish between the

source symbol x and x′, which gives a contradiction.

From above Lemma, we derive the cut-set outer bound

as follows. Given a cut Q, we consider all possible set

S consisting of 2z links on the Q such that none of the

remaining links on Q are downstream of any link in S.

Then we choose a set S∗ among them that has the maximum

total link capacities. We define M(Q) to be the sum of the

capacities of the links on Q which are not in S∗. This gives

the outer bound

log |X| 6 min
u∈U

min
Q∈cut(s,u)

M(Q) · log q.

B. Insufficiency of linear network code

We consider a single source-destination network in Fig.

3. Source s transmits the information to a sink node u. We

index the links and assume the capacities of links as shown

in Fig. 3. For a single adversarial link, generalized Singleton

bound is minΩ∈CS(s,u) M(Ω) = 2.

Theorem 2: Given a network in Fig. 3, for a single adver-

sarial link, rate 2 is asymptotically achievable with nonlinear

error detection strategy, whereas scalar linear network code

achieves at most 4/3.

Proof: We first illustrate the nonlinear error detection

strategy as follows. Source wants to transmit two packets

(X,Y ). We send them in n channel uses, but each packet

has only n − 1 bits. We use one bit as a signaling bit. We

send (X,Y ) down all links in the top layer. In the middle

layer, we do the following operations:

(1) Send the linear combination of X and Y , aX + bY ,

down link l4.

s

u

l1 l2 l3

l4 l5 l6 l7 l8 l9

l10 l11 l12 l13

a b

Fig. 3. All links on the top layer have capacity 2. All links on the middle
and bottom layer have capacity 1.

(2) Send X down both links l5 and l6.

(3) Send Y down both links l7 and l8.

(4) Send a different linear combination of X and Y , cX +
dY , down link l9.

At the bottom layer, we do the following operations:

(1) Forward the received packet on link l10.

(2) Send a 1 followed by X on link l11 if the two copies

of X match, send a 0 otherwise.

(3) Send a 1 followed by Y on link l12 if the two copies

of Y match, send a 0 otherwise.

(4) Forward the received packet on link l13.

We can show that above nonlinear error detection strategy

allows a sink node to decode (X,Y ). Suppose that (a, b) and

(c, d) are independent. Then coding vectors on any two links

on the bottom layer are independent and they satisfy with

MDS (maximum distance separable) properties. If nothing

was sent down both l11 and l12, the decoder can recover

(X,Y ) from the information received on links l10 and l13.

If nothing was sent down only on l11, then the outputs of

l12 and l13 should not be corrupted and the decoder can

recover (X,Y ). Similarly, the decoder can decode correctly

when nothing was sent down only on l12. If all the links

in the bottom layer received symbols, there is at most one

erroneous link on the bottom layer, which has MDS code.

Thus we can achieve rate 2− 2
n

with error detection strategy.

Now we show that scalar linear network code can achieve

at most rate 4/3. Suppose that we want to achieve linear

coding capacity k/n by transmitting k symbols reliably by

using scalar linear network code φ during n time slots. To

show the insufficiency of linear coding for achieving this

capacity, from (1), it is sufficient to prove that there exist

pairs (w, e) and (w′, e′) for linear network code φ such that

(ψl(w, e) : l ∈ Γ+(u)) = (ψl(w
′, e′) : l ∈ Γ+(u)),
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N(e), N(e′) 6 1. Since above equation is equivalent to

(φ̃l(w − w′) : l ∈ Γ+(u)) = (θl(−e + e′) : l ∈ Γ+(u)),

by linearity, it is enough to find x and e′′ such that x ∈ X ,

N(e′′) 6 2, and

(φ̃l(x) : l ∈ Γ+(u)) = (θl(e
′′) : l ∈ Γ+(u)), (2)

where X denotes a source alphabet and |X | = qk. We will

show that there exists (x, e′′) satisfying above equation when

errors occur on the links l1 and l3 in error vector e′′.

Let M1 and M2 denote transfer matrices between a and

u, and between b and u during n time slots respectively. To

transmit k symbols reliably in this network, both M1 and

M2 should have rank at least k, i.e., rank(M1) > k and

rank(M2) > k. Otherwise, when adversarial link is on the

top layer, we cannot transmit k symbols reliably on the top

layer from Theorem 1. Then data processing inequality gives

us contradiction.

Let e1 and e2 denote the errors occurring on links l1 and

l3, respectively. Errors on e1 propagates to l10 and l11, and

errors on e2 propagates to l12 and l13. We use 4n×k matrix

Gu to denote the transfer matrix between s and u during n
time slots. Its columns are global coding vectors assigned on

l10, l11, l12, and l13.

From (2), we have following set of equations

Gux =

(

M1 0
0 M2

)

(e1, e2)
τ = M · e′′.

If rank(Gu) < k, then there exists some x1 6= 0 such

that Gux1 = 0. Then (x, e1, e2) = (x1, 0, 0) satisfies above

equation. Actually, this network code is a bad code itself

since we cannot distinguish any pair of source messages w
and w′ such that w −w′ = x1 even when there are no error

links in the network.

Otherwise, rank(Gu) = k. Since rank(M1) > k and

rank(M2) > k, rank(M) > 2k. Then A = {Gux : x ∈ X}
and B = {Me′′ : e′′ ∈ GF 4n(q)} are both linear subspaces

of GF 4n(q), and dim(A) = k and dim(B) > 2k.

Let {x1, .., xk} denote the basis of X . Then

{Gux1, .., Guxk} is the basis of A. Similarly, since

rank(M) > 2k, there exist 2k vectors {y1, .., y2k} such

that {My1, ..,My2k} is a subset of basis of B.

If 3k > 4n, since both A and B are linear subspaces of

GF 4n(q), there exists (a1, .., ak, b1, .., b2k) 6= (0, ..., 0) such

that

k
∑

i=1

ai(Guxi) +

2k
∑

j=1

bi(Myi) = 0.

If (a1, .., ak) = (0, ..., 0) or (b1, .., b2k) = (0, ..., 0),
then it contradicts the linear independence of basis. Thus,

(a1, .., ak) 6= (0, ..., 0) and (b1, .., b2k) 6= 0. Then,

k
∑

i=1

ai(Guxi) +

2k
∑

j=1

bi(Myi)

=

k
∑

i=1

Gu(aixi) +

2k
∑

j=1

M(biyi)

=

k
∑

i=1

Gu(aixi) −
2k
∑

j=1

M(−biyi)

= 0.

Therefore, we have found nonzero x =
∑k

i=1 aixi and

(e1, e2)
τ = −

∑2k

j=1(−bjyj) such that Gux = Me′. It

completes the proof.

Corollary 1: Given a network in Fig. 1, for a single

adversarial link, vector linear network code can achieve at

most 4/3.

Proof: For a network code using vector transmission,

the outgoing edges of each node carries vectors of alphabet

symbols which are function of the vectors carried on the

incoming edges to the node. We consider a vector linear

code that groups m symbols into a vector. As in Theorem

1, we define (4n)m × km generator matrix Gu between s
and u. Transfer matrices M1 and M2 are also defined in the

same way, and rank(M1) > km and rank(M2) > km. As

in the proof of Theorem 1, when k > 4n
3 , we can show that

there exists vectors (x, e1, e2) (x 6= 0) satisfying

Gux = (M1 · e1,M2 · e2).

C. Upper bound on the linear coding capacity

Here we present a strategy that gives an upper bound on

the linear coding capacity for arbitrary network. Suppose that

we want to transmit k symbols reliably by using scalar linear

network code φ during n time slots. Then it is sufficient to

find x ∈ X and e′′ such that N(e′′) 6 2z and

(φl(x) : l ∈ Γ+(u)) = (θl(e
′′) : l ∈ Γ+(u)). (3)

Let Ωu = cut{V − {u}, u} denote the cut between sink

node u and all other nodes. C1 =
∑

l∈Ωu
r(l) denotes the

volume of Ωu. Suppose that there exists a cut Ω which

contains p > 2z links and there are m disjoint sets of

links (L1, .., Lm) such that 2z > m(p − 2z), Li ⊂ Ω,

|Li| = p − 2z, Li ∩ Lj = ∅, and Ω(L1) ∪ .. ∪ Ω(Lm) = Ωu

where Ω(Li) denotes the set of links in Ωu such that symbols

on Li can be propagated. We prove that C1/(m + 1) is an

upper bound of linear coding capacity by showing that there

is (x, e′′) that satisfies (3) when error vector e′′ consists of

error links in (L1, .., Lm).
We use ei to denote an error vector on Li. Let θi(ei) =

(θl(ei) : l ∈ Ω(Li)) denote the output on Ω(Li) ⊆ Ωu

given ei. Given a linear network code φ, let Mi denote a

transfer matrix between Li and Ω(Li). i.e., θi(ei) = Mi · ei.
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To transmit k symbols reliably in this network, Mi should

have rank at least k, i.e., rank(Mi) > k for 1 6 i 6 m.

Given an error vector e′′ = (e1, .., em) on the cut Ω, since

θl(e) =
∑

{j:l∈Ω(Lj)}
θl(ej) for l ∈ Ωu, we obtain following

equation

(θl(e
′′) : l ∈ Ωu) = A · (θ1(e1), .., θ

m(em))τ (4)

which is equivalent to

(θl(e
′′) : l ∈ Ωu)

= A









M1 .. .. 0
0 M2 .. ..
.. .. .. ..
0 .. 0 Mm









(e1, .., em)τ

= A · M · (e′′)τ .

Here a matrix A depends on the graph topology. For

instance, when L1 = l1 and L2 = l3 in Fig. 3, Ω(L1) ∪
Ω(L2) = Ωu and Ω(L1) ∩ Ω(L2) = ∅. Since M · (e′′)τ =
(θl10(e1), θl11(e1), θl12(e2), θl13(e2)) ,and θl(e

′′) = θl(e1)
for l ∈ {l10, l11} and θl(e

′′) = θl(e2) for l ∈ {l12, l13},

A = I4n. Since we assume that errors on (L1, .., Lm) can be

propagated to any link in Ωu, i.e., Ω(L1)∪. . .∪Ω(Lm) = Ωu,

A has always full rank.

We use Gu to denote the generator matrix between s and

u. Then (3) is equivalent to

Gux = A · M · (e′′)τ . (5)

Since rank(M) =
∑m

i=1 rank(Mi) > km and A has full

rank, rank(AM) = rank(M) > km.

If rank(Gu) < k, then there exists some x1 6= 0 such

that Gux1 = 0. Then (x, e′′) = (x1, 0) satisfies (4) and this

network code is a bad code itself.

When rank(Gu) = k, since rank(M) > mk, we can

always find (x, e1, e2) satisfying (4) when k + mk > C1.

Thus, the upper bound on the achievable linear coding

capacity is C1/(m + 1).

V. LINEAR AND NONLINEAR OPERATIONS AT

INTERMEDIATE NODES

In the unit link capacities problem, coding only at the

source and simple forwarding at intermediate nodes suffices

for a single source and single sink. Here we give examples

where intermediate nodes may have to do coding or error

correction for achieving the capacity in our unequal link ca-

pacities problem. We have already shown that error detection

at intermediate nodes can be used for achieving capacity.

We conjecture that the generalized Singleton bound is not

achievable in general.

A. coding at intermediate nodes

Here we give an example network that coding at intermedi-

ate nodes but not error-detection and correction is necessary

for achieving the capacity. We consider a 3-hop single source

and single sink network in Fig. 4. For a single adversarial

link, minΩ∈CS(s,u) M(Ω) = 4.

s

u

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4

Fig. 4. All links on the top or middle layer have capacity one. All links
on the bottom layer have capacity 2.

Lemma 3: Given a network in Fig. 4, for a single ad-

versarial link, coding at intermediate nodes is necessary for

achieving the rate 4.

Proof: To achieve rate 4, any four links on the top

layer should carry 4 independent packets. Otherwise, when

adversarial link is on the top layer, source cannot trans-

mit 4 packets reliably Theorem 1. Then data processing

inequality gives us contradiction. Similarly, any two links

on the bottom layer should carry 4 independent packets.

Since Yi is connected to at most four different nodes among

(X1, ..,X6) for ∀1 6 i 6 4 and all links in the middle

layer have capacity 1, each of Y1, Y2, Y3, and Y4 receives

all independent information. Thus we cannot apply error-

detection or correction at Y1, Y2, Y3, and Y4. Suppose that

only forwarding strategy is used on this network. Then we

show that rate 4 is not achievable. There are six symbols

on the top layer. Since we use only forwarding, these are

forwarded to the bottom layer. Since bottom layer links have

total capacity 8, there are at least two same symbols on the

bottom layer links. This contradicts that any two links on

the bottom layer should carry four independent information

to achieve rate 4. Therefore forwarding is insufficient for

achieving the rate 4 in this network.

Now we show that a generic linear network code, where

intermediate nodes do coding achieve rate 4. From [6, Ch

19], generic network code can be constructed with high prob-

ability by randomly choosing the global encoding kernels

provided that the base field is much larger than sufficient. So

when we apply random linear network code on this network,

it is generic with high probability when q is very large. If

adversarial link is on the top or middle layer, then each

capacity 2 on the bottom layer is equivalent to two unit

capacity links. Then all links in the network have capacity

one and this problem is reduced to the equal link capacities

problem. From [2], rate 6−2×1 = 4 is achievable. From [6,
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s

u

l1 l2 l3 l4

l5 l6 l7 l8 l9 l10

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4

Fig. 5. The link capacity in this network is as follows: r(l1) = r(l2) =
r(l3) = r(l4) = 4, r(l5) = ... = r(l10) = 2. All the links in the middle
layer have capacity 1.

Theorem 19.32], since the min-cut between s and (Yi, Yj)
is at least 4 for ∀1 6 i 6= j 6 4, in a generic network code

the global encoding kernels on any two links on the bottom

layer are linearly independent and they satisfy with MDS

property. Thus an error on the last layer can be corrected.

B. error correction at intermediate nodes

In this section, we give an example in which error correc-

tion at intermediate nodes is used for achieving the capacity.

The intuition behind our approach is that error correction

at intermediate nodes can reduce the error propagation to

the bottom layer and MDS code assigned on the bottom

layer gives the correct output. We consider a 3-hop single

source-destination network in Fig. 5. For a single adversarial

link, minΩ∈CS(s,u) M(Ω) = 8. From Sec. III-C, when Ω =
{l1, l2, l3, l4}, L1 = {l1, l4}, and m = 1, the upper bound

on the linear coding capacity is
∑10

i=5 r(li)/(m + 1) = 6.

Lemma 4: Given a network in Fig. 5, for a single ad-

versarial link, rate 8 is achievable using error correction at

intermediate nodes.

Proof: Without loss of generality, all nodes forward

the received information except Y3 and Y4. We first assign

(12, 8) MDS code (a, b, . . . , l) on the bottom layer links and

apply (4,2) MDS code at each decision node, e.g., assign

(e, f, e+f, e+2f) and (g, h, g+h, g+2h) on incoming links

to Y3 and Y4 respectively. Then we can assign codewords

on all links in the network since all nodes except Y3 and

Y4 are forwarding. If adversarial link is on the middle or

bottom layer, at most two errors are propagated to the sink

node and MDS code assigned on the bottom layer gives

the correct output. If adversarial link is on the top layer,

at most two errors are propagated to the sink node through

forwarding nodes Y1, Y2, Y5, and Y6. Since at most one

error is incoming to Y3 and Y4 respectively, (4,2) MDS code

applied at each decision node gives error-free output (e, f)

s

u

l1 l2 l3 l4

l5 l6 l7 l8 l9 l10

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4

Fig. 6. The link capacity in this network is as follows: r(l1) = r(l2) =
r(l3) = r(l4) = 3, r(l6) = r(l7) = r(l8) = r(l9) = 2, r(l5) =
r(l10) = 1. All links in the middle layer have capacity 1.

s

u

a, b, d c, e, f + g d + e, g, h f, i, j

a bc +de
−de

+fg
−fg

hi j

a b c d e
d + e

f + g
g

f h i j

Fig. 7. At nodes Y3 and Y4, we apply error-detection. At Y3, if any two
of (d, e, d + e) gives the same output, it transmits +(d, e). Otherwise, it
transmits −(d, e) where d and e are inputs from X1 and X2 and they can
be corrupted. We do the same operation at node Y4.

and (g, h). Therefore, when adversarial link is on the top

layer, at most two errors are propagated to the sink and (12,8)

MDS code returns the correct output.

C. conjecture

Conjecture 1: Generalized Singleton bound is not achiev-

able in general.

We believe the example in Fig. 6 is one in which the

generalized Singleton outer bound is not achievable. For a

single adversarial link, minΩ∈cut(s,u) M(Ω) = 6. From the

test in Sec. III-C, when Ω = {l1, l2, l3, l4}, L1 = {l1, l4},

and m = 1, the the upper bound on the linear coding
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capacity is
∑10

i=5 r(li)/(m + 1) = 5. Now we consider

nonlinear error detection strategy with MDS code and show

that this is insufficient for achieving rate 6. (a, b, . . . , j)
forms (10, 6) MDS code. As shown in Fig. 7, we assign

codewords on each link in the top layer and middle layer

based on MDS code. Without loss of generality, all nodes

except Y3 and Y4 are forwarding. We assign (d, e, d+e) and

(f, g, f + g) on incoming links to Y3 and Y4 respectively.

At Y3, if any two of (d, e, d + e) gives the same output,

it transmits +(d, e). Otherwise, it transmits −(d, e) where d
and e are inputs from X1 and X2 respectively and they can be

corrupted. We do similar operation at node Y4. If u receives

−(d, e), one of l1, l2, l3 can be adversarial link. Suppose that

source transmits a message w1. If l1 is an adversarial link,

(c, e, f, g, h, i, j) are not corrupted at the sink. In this case,

by changing (a, b, d) to (a′, b′, d′) on l1, it is able to make

that any 6 of (a′, b′, c, d′, e, f, i, j) returns the message w2

different from w1. Similarly, if source transmits w2 and l3
is an adversarial link, (a, b, c, d, e, f, i, j) are not corrupted.

By changing (g, h) to (g′′, h′′) on l3, we can make any 6

of (c, e, f, g′′, h′′, i, j) returns w1. Then, we construct two

confusable sequences at the sink and cannot distinguish w1

from w2. Therefore, error detection strategy described above

cannot be used for achieving rate 6.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a new problem, network error

correction with unequal link capacities. We define z-error

link-correcting code that can correct all errors occurring up

to z links in the network. We have found the capacity of

two-node network with parallel links and extend this result

to the generalized Singleton outer outer bound that can be

applied for all network scenarios. We have shown by example

that linear coding is insufficient for achieving capacity in

general and presented a method for finding an upper bound

on the linear coding capacity for arbitrary network. We show

that unlike the equal link capacity case, even for a single

source and single sink network, it may be necessary for

intermediate nodes to do coding, nonlinear error detection or

error correction. We conjecture that the generalized Singleton

bound is not achievable in general, even using nonlinear

operations. Future work includes to prove or disprove this

conjecture, to investigate the error correction capacity of

general network and to develop low complexity achievable

schemes.
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