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Abstract—We present an algorithm for constructing fitness
functions that improve the efficiency of search-based testing when
trying to generate branch adequate test data. The algorithm
combines symbolic information with dynamic analysis and has
two key advantages: It does not require any change in the
underlying test data generation technique and it avoids many
problems traditionally associated with symbolic execution, in
particular the presence of loops. We have evaluated the algorithm
on industrial closed source and open source systems using both
local and global search-based testing techniques, demonstrating
that both are statistically significantly more efficient using our
approach. The test for significance was done using a one-
sided, paired Wilcoxon signed rank test. On average, the local
search requires 23.41% and the global search 7.78% fewer
fitness evaluations when using a symbolic execution based fitness
function generated by the algorithm.

Index Terms—Search–Based Testing, Symbolic Execution, Fit-
ness Functions

I. INTRODUCTION

Automation is essential in software testing because the

process is very slow and consequently expensive if undertaken

manually. This need to automate software testing has provided

a rich set of challenging problems for the research community

for over thirty years. One approach to software test automation

that has achieved a great deal of recent attention is Search-

Based Software Testing (SBST). SBST uses meta-heuristic

algorithms to automate the generation of test inputs that meet

a test adequacy criterion. One of the most widely-studied test

adequacy criteria in SBST is branch coverage ([1], [2], [3], [4],

[5], [6], [7]), the adequacy criterion considered in this paper.

Despite the large body of work in SBST focusing on branch

coverage, the state of the art fitness function definitions used

for branch adequate testing have changed little since the early

seminal work on the Daimler Automated Software Testing

System, which has been in use for more than a decade [7].

Though there have been many developments in SBST, these

focus on changing the search algorithms and the way in which

they are used, rather than the underlying fitness functions on

which all metaheuristic search relies.

This paper takes a different approach and proposes to use

static analysis. In particular, we use a form of partial symbolic

execution to statically collect information available at compile

time that can be used to define richer and more expressive

fitness functions. We do not perform a complete symbolic

execution, as this would be computationally expensive. Rather,

we compute smaller amounts of symbolic information that

can be used to imbue a fitness function with a much finer

characterisation of the true search landscape, which defines

the location of the global optima that represent the coverage

of individual branches.

Our aim in attacking the underlying fitness function is to

provide an approach that makes SBST more efficient (and

possibly more effective), regardless of the particular search

algorithm used to generate the test data. We present results for

two widely used approaches to demonstrate, empirically, that

our approach does indeed make SBST more efficient. There

are many search algorithms that we could have chosen to study

in our experimental work. A recent survey of Search-Based

Approaches in Software Engineering [8] listed 15 search-based

algorithms that have been used in SBST work. Clearly, it is

not possible to report results for all of them in this paper.

Rather than make an arbitrary choice of algorithms to study,

we choose to empirically study a local search (the widely

used Alternating Variable Method (AVM) of Korel [3]) and

a global search (the Genetic Algorithm approach used by

Wegener et al. [7] and widely followed by other subsequent

SBST research). Our reason for this choice was that these

two approaches characterise the two possible outcomes for

the primary choice of which algorithm to use; whether it

will be local or global. Most of the other algorithms used in

SBST are formed by a combination of local and global search.

Our results indicate that the partial symbolic information we

compute can indeed improve the efficiency of SBST, for both

real world production code and for open source. In the case

of a local search, the information also leads to improved

effectiveness of SBST.

The primary contributions of this paper are:

• We introduce an algorithm for improving SBST by en-

riching fitness functions with statically collected symbolic

information. Because our approach targets the fitness

function itself, it applies to any and every SBST technique



and can be incorporated without change to the search-

based algorithm that uses the enriched fitness function.

• We introduce an approach to overcome the problem of

loops in traditional symbolic execution that allows us

to approximate the impact of symbolic information on

fitness. We introduce a new metric called the approx-

imation level1 to account for uncertainty whenever we

cannot compute precise symbolic information, such as in

the presence of loops.

• We present the results of an empirical study on both open

and closed source code, the results of which indicate

that our enriched fitness functions are significantly more

efficient than their traditional counterparts.

The rest of the paper is organised as follows: The next sec-

tion provides an overview of the standard fitness function used

in SBST for branch coverage. Section III introduces our fitness

function enhancement approach, while Section IV introduces

the code analysis algorithm based on symbolic execution. Sec-

tion V presents the empirical study, with corresponding threats

to validity discussed in Section VI. Section VII describes

related work and Section VIII draws conclusions.

II. BACKGROUND

Meta-heuristic algorithms rely on a fitness function to guide

the search towards a global optimum, i.e., the desired test

data. For branch coverage, the state of the art fitness function

comprises two measures: A branch distance and an approach

level. When both these measures are 0 the desired test data

has been found. The approach level records how many of a

target branch’s control dependent nodes were not executed by a

particular input. The fewer control dependent nodes executed,

the ‘further away’ the input is from executing the target in

control flow terms. Consider the example from Figure 1 and

assume the target is the true branch of node (3). If an input

takes the false branch at node (1) then the approach level is 2,

and if an input takes the false branch at node (2), the approach

level is 1 and so forth.

Whenever an input misses the target branch, the branch

distance measure is used to compute how close the input was

to staying on a path leading to the target. It is computed

using the condition of the last (Control Flow Graph) node

in an input’s execution trace which holds a transitive control

dependence on the target, and where execution diverged from

the target. Resuming the example from Figure 1, if an input

takes the false branch at node (1), the branch distance is

computed through |x− 0|+K, where K is a failure constant

(K = 1 throughout this paper). Different branch distance

formulae exist depending on the relational predicate types used

within the condition of branching nodes on which the target

is control dependent. The interested reader is referred to the

work of Tracey et al. [9] for a complete list of branch distance

functions.

1Note that the definition of approximation level in this paper is not to be
confused with the approximation level defined in [7], which is equivalent to
the approach level metric described in Section II.

void foo(int x, int y, int z) {
1 if( x == 0 )
2 if( y == z )
3 if( x == z ) {
4 //TARGET

}
}

Fig. 1. Example C code used to demonstrate the standard fitness function
used in Search-Based Testing.

For a target branch t, an input vector v, and a node n

where execution diverged from t, the complete fitness value is

then computed by combining the branch distance and approach

level:

ff n(t, v) =
approach level(t, v) + norm(branch distance(t, v))

Note that the branch distance measure is normalized to a

value between [0, 1], using either of the following normaliza-

tion functions [10]:

norm(d) =

{

1− 1.001−d or,
d

(d+1) (used in this paper)

This fitness function can be inefficient when multiple, in-

terdependent conditions need to be satisfied as in the example

from Figure 1. For instance, when trying to cover the true

branch at node (3), the values chosen for the inputs x,y and

z that satisfy the first two conditions are unlikely to traverse

the true branch at node (3). This is because the probability of

the search optimizing both y and z to 0 is low.

In general, optimizing each condition in ‘isolation’, as is

the case with the standard fitness function, can be considered

sub-optimal. Symbolic execution on the other hand is able

to capture such constraints and interdependencies between

variables in the form of a path condition. For example, the

path condition describing the execution where all conditions

evaluate to true in Figure 1 would be 〈x = 0∧y = z∧x = z〉,
where x, y and z denote symbolic variables corresponding to

the three integer inputs x,y,z. For the purpose of testing,

a path condition can be fed to a constraint solver to obtain

concrete input values which can be used to execute the

program.

However, it is well known that static symbolic execution of a

program faces several challenges, arising from loops and code

constructs that cannot easily be symbolically executed such

as unknown (library) functions, complex pointer arithmetic

and functions pointers to name but a few. Loops in particular

are a common problem, because they can result in infinitely

many program paths and further, when trying to cover a target

branch, it may not be possible to determine the number of loop

iterations necessary to reach the target a priori.



The field of Dynamic Symbolic Execution (DSE), also

known as concolic testing, first introduced by Godefroid et

al. [11] tries to overcome some of the challenges faced

by static symbolic execution. In DSE, information obtained

through dynamic analysis is used to aid symbolic execution.

The work presented in this paper proposes to do the opposite,

i.e., use information gathered through symbolic execution to

aid SBST.

III. SYMBOLICALLY ENHANCED FITNESS FUNCTION

The hypothesis underlying the research work presented in

this paper assumes that incorporating information obtained

from symbolic execution into the fitness function for branch

coverage reduces the number of fitness evaluations required to

cover a branch. We call our approach fitness function enhance-

ment because the information collected along a program path

using symbolic execution is used in place of the traditional

approach level and branch distance measures.

Before the formal presentation of the fitness function en-

hancement algorithm we provide some initial intuition. We

propose to replace the branch distance measure introduced in

Section II with a path distance measure. Assume an input

follows the false branch at node (1) in Figure 1 and that our

target is the true branch of node (3). We start by computing a

path expression [12] representing all paths from node (1) to the

target. Let this path expression be abc (the edge labels a, b, c

refer to the sub-graph shown on the right in Figure 1). We

then symbolically execute this path expression to obtain a set

of (partial) path conditions. In our example this set denotes a

singleton of the form {〈x = 0∧y = z∧x = z〉} because there

is only one path from node (1) to the true branch of node (3).

Next we apply the branch distance measure from Section II

to each of the atomic conditions in the path condition (i.e.,

x = 0, y = z, x = z), and sum the results to form a path

distance. In case we have more than one path distance, we

choose the minimum for our fitness computation. The intuition

behind this choice is that the path condition with the smallest

path distance is the closest to being satisfied by an input.

It may not always be possible to symbolically execute a

path expression due to sources of uncertainty. To account for

this we introduce a second measure called the approximation

level. The approximation level will be defined as the number

of conditions that cannot be added to a path condition, and

are thus not considered in the path distance. For example, a

condition that uses variables whose definition originates from

a statement inside a loop will be dropped. This is because in

general we do not know how often a loop is executed, thus

we also do not know the final value of the variables that are

defined in a loop. Other sources of uncertainty can include

variables defined through system calls to which we do not

have access.

The next section will provide formal definitions of the ap-

proximation level and path distance, along with the algorithm

for computing the enhanced fitness function (eff ).

void foo(int n, int a, int b) {
1 int s = 0;
2 if (n > 0) {
3 for (int i = 0 ; i < n ; i++)
4 s += i;
5 if (a == n) {
6 if (s == 10) {
7 if (b == s) {
8 // TARGET (t)

}
}

}
}

}

Fig. 2. Illustrative C code involving a loop with nested if-statements, used
to demonstrate the symbolically enhanced fitness function.

A. Definitions

Let p be the path expression representing all paths between

a start node n and a target node t. This path expression may

contain loops, represented as terms of the form A∗. For such

terms, we may opt for an arbitrary level of unrolling (e.g. k

times), but we cannot handle unbounded (potentially infinite)

unrollings. As a consequence, when the upper limit for the

number of unrollings is reached, we make the assumption

that variables defined in any successive loop iterations are

destroyed, since in general, we cannot determine the required

number of loop iterations. Such variables will be represented

by the term D[A]. The path expression involving loops (i.e.,

A∗) can thus be expanded as:

A∗ = 1 +A+A2 +A3 + . . .+AkD[A]

By replacing A∗ with A∗ = 1+A+A2+A3+. . .+AkD[A]
in the path expression p we obtain an approximated path

expression p′ which contains some destroy terms of the form

D[A]. In the path condition produced by symbolic execution

of p′, we drop any clauses involving variables whose definition

is inside a destroyed sub-path. Such destroyed clauses are

counted and their number defines the approximation level used

in the fitness function. Path conditions built by dropping one

or more conditions are said to be partial; the others are said

to be complete.

Definition 1. Branch distance: A quantification in the range

[0, 1] of a boolean branch condition, such that the value zero

is obtained iff the condition evaluates to true. Values close

to 1 indicate that the condition is far from being satisfied.

Intermediate values should be such as to smoothly guide the

search toward satisfying the condition.

Definition 2. Path distance: A quantification of the (partial

or complete) path condition, given by the sum of the branch

distances computed for the conditions appearing as non-

destroyed in the path condition for the approximated path

expression. It is zero when all conjuncts in the path condition

evaluate to true.



Whenever we build a partial path condition, we are dropping

a number of conditions which involve data dependencies

originating in a loop. The number of dropped conditions is

the approximation level.

Definition 3. Approximation level: The approximation level

along a path is the number of conditions that are dropped

from the path condition since they involve variables defined

inside loops that are used in the condition.

An approximated path expression p′ can always be normal-

ized into a sum of alternative paths. In fact, in p′, loops A∗

are replaced by alternative k-bounded loop iterations, hence p′

contains only sequence (multiplication) and alternative (sum)

operators, which can be normalized into a sum of products by

resorting to distribution of multiplication over sum.

Definition 4. Fitness function: Let the normalized approxi-

mated path expression p′ have the form p1 + p2 + . . . + ph,

the fitness function eff for a node n is defined as:

eff n = min{ff 1,ff 2, . . . ,ff h}

where ff 1,ff 2, . . . ,ff h are the fitness functions for the atomic

paths in p′, each being computed as the sum of approximation

level and path distance:

ff i = approximation level + path distance(pi)

Consider the example code in Figure 2 and assume our

target is the true branch at node (7). If an input traverses the

false branch at node (2), the path expression representing all

paths from node (2) to the target is a(bc)∗defg. We may

distinguish paths not entering the loop, (bc)∗, from paths

which enter it one or more times (i.e., k = 1). The first case

(not entering the loop) is described by the path expression

adefg. Symbolically executing this path expression yields the

following path condition: 〈n > 0 ∧ 0 ≥ n ∧ a = n ∧ s =
10 ∧ b = s〉. The path described by this path condition is

clearly infeasible, because the conditions n > 0 and 0 ≥ n

are mutually exclusive. Hence, we will not consider it any

further.

The second case (entering the loop one or more times) can

be described by the path expression abcD[bc]defg. The term

D[bc] indicates that all variable definitions occurring along the

path bc are to be treated as unknown, because the number of

iterations for the loop bc is unknown (it will be one or more).

For the example in Figure 2, two variables are defined inside

the loop bc; s and i. Since we do not know how often the

loop will be executed, we also do not know the final values

of s and i when we exit the loop. Therefore we drop any

conditions obtained by symbolically executing the sub-path

following the term D[bc] that involve such variables, i.e., we

do not add those conditions to the path condition.

The approximation level accounts for this by being in-

cremented for each condition that is dropped. Completing

our example, symbolically executing the path expression

abcD[bc]defg yields the path condition: 〈n > 0∧0 < n∧a =
n〉. Since we dropped three conditions (1 ≥ n, s = 10, b = s)

the approximation level is 3. Thus, the approximation level

allows us to distinguish an input reaching node (2) and taking

the false branch, from an input taking the true branch at

node (2) and thus getting closer to the target. Note that the

approximation level reaches 0 once we reach node (5).

IV. ALGORITHM TO COMPUTE SYMBOLICALLY

ENHANCED FITNESS FUNCTIONS

Algorithm 1 Compute symbolically enhanced fitness func-

tions
Input CFG: Control flow graph of the program under test; t: Target

edge to be covered
Output eff

n
: Fitness function to be used by each test case reaching

node n, for each CFG node n holding a transitive control
dependency on t

1: for each CFG node n ∈ N |n holds a transitive control
dependency on t do

2: Compute the sub-graph subCFGn of CFG from n to t, i.e.,
the intersection between nodes/edges forward reachable from
n and nodes/edges backward reachable from t

3: Apply the node reduction algorithm [12] to determine the path
expression p for subCFGn

4: Compute the approximated path expression p′ from p by
approximating loops A∗ in the path expression p as A∗ ≈
1+A+A2 +A3 + . . .+AkD[A], for some fixed value of k

5: Normalize the approximated path expression p′ into a sum of
products: p′ = p1 + p2 + . . .+ ph

6: for each path pi in the normalized path expression p′ do
7: Perform a symbolic execution along pi, keeping track of

destroyed variables and annotating destroyed conditions as
D[c]; the result is path condition pci

8: Turn the path condition pci into a fitness function ff
i

by
replacing conditions with branch distances and destroyed
conditions with 1

9: end for
10: Define the fitness function eff

n
for node n as: eff

n
=

min{ff
1
,ff

2
, . . . ,ff

h
}

11: end for

Algorithm 1 shows the pseudo-code for the computation

of the enhanced fitness functions introduced in the previous

section. Input to the algorithm is a program, represented as its

Control Flow Graph (CFG), and a CFG edge t that represents

the current test target, i.e., the branch to be covered. The

output produced by the algorithm is a set of symbolically

enhanced fitness functions, one for each CFG node n that

holds a transitive control dependency on t. For each such node

that is part of the execution trace of an input, the corresponding

fitness function is evaluated, with the minimum value forming

the overall fitness for that input.

For all nodes n that hold a transitive control dependency on

the target branch, Algorithm 1 determines the path expression

p representing all paths from n to the target t (steps 2-3).

Then, loops are approximated (typically as A∗ ≈ 1+AD[A])
and an approximated path expression p′ is computed and

normalized into a sum of products (steps 4-5). For each nor-

malized approximated path expression pi composing the path

p′, symbolic execution is used to compute the corresponding

path condition pci (step 7). Whenever a destroyed sub-path



is encountered during the symbolic execution, all variables

defined inside the sub-path are collected among the destroyed

variables. Successively added conditions which make use of

destroyed variables are marked as destroyed conditions. In step

8, the path condition pci is converted into a fitness function

for pi by replacing conditions with branch distances, except

for destroyed conditions, which increase the approximation

level by one. The final fitness function for node n is the

minimum among the fitness function values computed along

the alternative paths appearing in the normalized approximated

path expression.

It is important to note that we cannot use a constraint solver

to provide a set of input values that satisfy a path condition

pci. This is because the path expression pi not always captures

all execution paths from the entry node of a CFG to a target

edge t. It is computed using only a sub-graph of the entire

CFG (see Step 2 in Algorithm 1), i.e. the graph representing

all execution paths between a critical branching node and t.

Consequently, pci may contain local variables, rendering the

use of a constraint solver infeasible.

V. EMPIRICAL STUDY

The aim of the empirical study in this paper is to analyse

the impact of using the enhanced fitness function in SBST.

The two research questions to be addressed by the study are

as follows:

Research Question 1 - Effect of eff on branch coverage.

The level of branch coverage achieved, i.e., effectiveness of the

testing technique, is often the main focus when investigating

an automated test data generation approach. Our proposed

change in fitness function should not negatively affect the level

of coverage achieved by a test data generation technique. Does

this hypothesis hold?

Research Question 2 - Effect of eff on efficiency. Alongside

coverage, efficiency is also an important factor of any testing

technique. Does the enhanced fitness function make SBST

more efficient, and if so, what is the performance increase?

We selected two commonly used search algorithms for

evaluation; a form of hill climbing known as the Alternating

Variable Method (AVM), first introduced by Korel [3], and

a Genetic Algorithm (GA) based on the approach described

by Wegener et al. [7]. Details of the two algorithms can

be found in Section V-A and Section V-B respectively. The

search-based testing framework, IGUANA [13], was extended

to include the enhanced fitness function proposed in this paper

and subsequently used to perform the test data searches.

The study was performed on 338 branches, drawn from

five different C programs 2, two of which were provided by

Daimler, two are open source and one is the well-studied

triangle program. The input domain for each function is

composed of global variables and formal parameters. We chose

2Programs were chosen arbitrarily. However, all branches in the empirical
study have been used to evaluate search-based testing techniques in the
past [1], [2], [14]. Thus, we considered them good candidates for evaluating
a new fitness function for SBST

not to use any input domain reduction and defined the domain

of each variable according to its declared type. Details of the

subjects used in the empirical study can be found in Table I.

The programs f2 and defroster are industrial case

studies provided by Daimler and represent production code

for engine and rear window defroster control systems. The

code is machine generated from a design model of the desired

behaviour. To complement the industrial examples, two open-

source case studies were selected. tiff-3.8.2 is a library

for manipulating images in the Tag Image File Format (TIFF).

The functions tested comprise routines for placing images on

pages and for building ‘overview’ compressed sample images.

Finally, triangle is the well-known triangle classification pro-

gram, often used as a benchmark program in automated test

data generation studies.

Each search for test data was performed 30 times for

every combination of fitness function and search algorithm.

If test data was not found to cover a branch after 100, 000
fitness evaluations, the search was terminated. Serendipitous

coverage, i.e., branches covered by accident during the test

data generation process, was ignored, so that a distinct search

was carried out for every branch. The success or failure of

each search was recorded, along with the number of fitness

evaluations required to find the test data. From this, the ‘suc-

cess rate’ of each branch can be calculated – the percentage

of the 30 runs in which test data to execute the branch was

found. The 30 runs were performed using an identical list of

fixed seeds for random number generation, so as to provide

a basis for assessment with tests for statistical significance

using a one-sided, paired Wilcoxon signed rank test. Such tests

are necessary to provide robust results in the presence of the

inherently stochastic behaviour of the search algorithms.

To facilitate replication, we will now discuss the configura-

tion of the two search algorithms used in the study.

A. Alternating Variable Method Setup

The AVM is a simple but effective optimization tech-

nique [2]. It is a form of hill climbing and works by continu-

ously changing an input parameter to a function in isolation.

Initially all (arithmetic type) inputs are initialized with

random values. Then, so called exploratory moves are made

for each input in turn. These consist of adding or subtracting

a delta from the value of an input. For integral types the delta

starts off at 1, i.e., the smallest increment (decrement).

When a change leads to an improved fitness value, the

search tries to accelerate towards an optimum by increasing

the size of the neighbourhood move with every step. These

are known as pattern moves. The formula used to calculate

the delta added or subtracted from an input is: δ = 2it · dir ·
10−preci , where it is the repeat iteration of the current move

(for pattern moves), dir either −1 or 1, and preci the precision

of the ith input variable. The precision applies to floating point

variables only (i.e., it is 0 for integral types). It denotes a scale

factor for the size of a neighbourhood move. For example,

setting the precision (preci) of an input to 1 limits the smallest

possible move to ±0.1. Increasing the precision to 2 limits



TABLE I
DETAILS OF THE TEST SUBJECTS.THE LINES OF CODE COLUMN CONTAINS THE ansic OUTPUT OF THE SLOCCOUNT TOOL [15] USED IN ITS DEFAULT

SETTING AND APPLIED TO THE ROOT SOURCE DIRECTORY OF EACH PROGRAM.

Test Lines of Number of Number of Approximate Domain
Subject / Function Code Branches Loops Size

bibclean 10,252

check ISBN 54 1 2112

check ISSN 54 1 2112

defroster 179

Defroster main 72 0 2137

f2 305

F2 46 0 2272

tiff-3.8.2 47,794

TIFF GetSourceSamples 32 2 2135

TIFF SetSample 28 0 21102

PlaceImage 24 0 28402

triangle 53

triangle 28 0 296

Total 58,583 338 4

the smallest possible move to ±0.01, and so forth. For all

experiments carried out in this paper, the precision for floating

point variables was fixed at 3.

Once no further improvements can be found for an input,

the search continues optimizing the next input parameter, and

may recommence with the first input if necessary. In case

the search stagnates, i.e., no move leads to an improvement,

the search restarts at another randomly chosen location in the

search-space. This is known as a random restart strategy and

is designed to overcome local optima and enable the AVM to

explore a wider region of the input domain for the function

under test.

B. Genetic Algorithm Setup

A GA is a global search algorithm first proposed by Holland

in the 1970s [16]. The configuration of the GA used in this

paper is based on the approach described by Wegener et al. [7]

who used GEATbx by Hartmut Pohlheim [17].

An overall population of 300 individuals is divided into six

competing sub-populations, which begin with 50 individuals

each. Each sub-population evolves separately using selection,

recombination, mutation and re-insertion strategies. After eval-

uation, individuals in each sub-population are sorted using

a linear ranking method [18] with a selection pressure of

1.7. Then, individuals are selected for reproduction through

Stochastic Universal Sampling (SUS) [19]. In SUS, the prob-

ability of an individual being selected is proportionate to its

(rank-based) fitness value. Selected individuals are recombined

using a discrete recombination strategy [20], whereby an

offspring receives each gene from either parent with an equal

probability.

After recombination, offspring individuals are mutated ac-

cording to the breeder genetic algorithm mutation strat-

egy [20]. The mutation operator is applied with probability
1

len
, where len is the number of genes in an individual (i.e.,

the length of the input vector). For each gene to be mutated,

a mutation range ri = size · domi is defined, where domi

is the domain size of the ith input parameter and size is a

mutation step size. The mutation step size varies for each of

the six sub-populations and is defined as size = 10−pop with

1 ≤ pop ≤ 6. The mutated value of an input parameter can

thus be computed as vi = xi ± ri · η. Addition or subtraction

is chosen with an equal probability, and η =
∑15

x=0 αx · 2−x,

where αx is 1 with a probability of
1

16
and 0 otherwise. After

mutation, offspring are reinserted into a sub-population using

an elitist reinsertion strategy. That is, the top 10% of the

current generation is retained and the remaining individuals

are replaced by fitter offspring.

A feature of the Wegener model is that the six sub-

populations of the GA compete with one another for the num-

ber of individuals each sub-population evolves. An average

fitness value is computed for each sub-population and this

value is used to linearly rank the sub-populations (again using

a selection pressure of 1.7). The rank-based fitness value rank

of a sub-population is then used to compute a progress value

prog for the population in generation g using the formula

progg+1 = 0.9 · progg + 0.1 · rank. Then, after every four

generations, the populations are ranked according to their

progress value prog, and the size of each sub-population is

updated, with weaker sub-populations transferring individuals

to stronger ones. However, no sub-population can lose its

last five individuals, preventing it from dying out. Finally, a

general migration of individuals takes place after every 20th

generation, where sub-populations randomly exchange 10% of

their individuals with one another.

C. Results

Research Question 1 - Effect of eff on branch coverage.

Figure 3 shows the coverage achieved by the AVM and the

GA for each test subject. A branch is counted as covered if

the search for test data succeeded in at least one out of the

thirty runs. As can be seen, using a symbolically enhanced

fitness function does not negatively affect the level of branch

coverage achieved by either local or global search. Instead, the



GA is able to cover a branch that it previously failed to cover.

Similarly, the local search is able to cover more branches when

using the enhanced fitness functions.

To gain a better understanding of how the proposed ap-

proach affects each search algorithm, we also computed the

success rate for each search target. Table II lists the branches

for which we observed a difference in success rate when using

the enhanced fitness function. The GA exhibits little variation.

For three branches, the success rate is slightly reduced when

using the enhanced fitness function. However, for five branches

the success rate increases.

Compared to the GA, the enhanced fitness function has a

bigger impact on the success rate of the AVM. For branches

where we observed a difference, the trend is in an increase in

success rate. Five branches stand out particularly because the

AVM failed to find test data for these using the standard fitness

function. With the enhanced fitness function, the search was

able to find the required test data in all of the 30 runs. The

effect of the enhanced fitness function is not always beneficial

though; for example branches in the function F2 from Daimler

are covered with a reduced success rate. This function is

interesting because some if statements check if a subtraction

operation (on operands of type short int) resulted in an

over- or underflow. For example, for one branch where the

enhanced fitness function performed worse than the standard

fitness function, the path distance measure is computed using

the path condition 〈V 11 ≥ 0 ∧ V 9 < 0 ∧ (V 11 − V 9) < 0〉.
The conjuncts of the path condition correspond to three nested

if statements in the original code. When the path distance

is computed, the first two conjuncts pull into the opposite

direction of the last conjunct. That is, as the branch distance

for the first two conjuncts converges towards 0, the branch

distance for the third conjunct increases until an overflow

occurs. The standard fitness function, which optimizes each

of the conjuncts in turn, does not appear to suffer from this

problem and is able to reliably find the required test data. All

cases where the enhanced fitness function did worse than the

standard fitness function for F2 were in code that checks for

over- or underflow errors.

Research Question 2 - Effect of eff on efficiency. The results

support the hypothesis that enhancing the fitness function with

information gathered from symbolic execution can reduce the

number of fitness evaluations required to cover a branch.

Details of the average number of fitness evaluations required

by each search technique are given in Table III.

The trend for the GA is to require fewer fitness evaluations

with the enhanced fitness function. This difference is partic-

ularly visible for three functions, where we observed more

than a 25% reduction in fitness computations. However, there

is again one case (PlaceImage from tiff-3.8.2) where

we see a small increase in the number of fitness evaluations.

As with the success rates, the AVM benefits more from the

enhanced fitness function than the GA. Four functions require

fewer than 50% of the fitness evaluations compared to the

standard fitness function. This is not surprising since all these

functions contain branches for which the AVM failed to find
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Fig. 3. This Figure shows the branch coverage achieved by the Genetic
Algorithm (top) and the Alternating Variable Method (bottom) when using the
standard and enhanced fitness functions. The graphs confirm that symbolically
enhanced fitness functions are equally or more effective than the standard
fitness functions.

test data using the standard fitness function, but for which

it achieved a 100% success rate using the enhanced fitness

function. Conversely, the AVM uses more fitness evaluations

with the enhanced fitness function for F2, because branches

are covered with a lower success rate, and each failed search

results in 100, 000 fitness evaluations.

To see if the differences in efficiency for the GA and the

AVM are statistically significant, we used the statistical tool

R [21] to perform a paired, one-sided Wilcoxon signed rank

test with continuity correction and specified an alpha level

of 0.01. For both the GA and AVM we obtained a p value

of 2.2 × 10−16. This p value indicates that the difference

in the number of fitness evaluations required by each search

algorithm is statistically significant (p ≤ α).

Finally, we also recorded the time taken to perform the up-

front static analysis required by the enhanced fitness function.

To obtain a reasonable sample pool we repeated this analy-

sis 30 times for each function. The average analysis times,

alongside standard deviation are recorded in Table IV.

Loops often result in path explosion, even when only a

single loop unrolling is performed. Thus, the analysis takes

longer for functions containing one or more loops. Note that

the symbolic analysis is performed once per function and can

be re-used by a search algorithm for all branches contained



TABLE II
DIFFERENCE IN SUCCESS RATES WITH THE STANDARD FITNESS FUNCTION AND THE ENHANCED FITNESS FUNCTION. BRANCHES ARE ONLY LISTED IF

THERE IS A DIFFERENCE FOR EITHER THE AVM OR GA. A 0% SUCCESS RATE MEANS A SEARCH ALGORITHM WAS UNABLE TO COVER A BRANCH IN ALL

OF THE 30 REPEAT RUNS. A 100% SUCCESS RATE MEANS A SEARCH WAS ABLE TO FIND THE REQUIRED TEST DATA IN EACH OF THE 30 TRIALS.

Test Subject/ AVM GA
Function (Branch ID) Standard / Enhanced Standard / Enhanced

bibclean
check ISSN (53T) 0% / 0% (0%) 43.33% / 60.00% (+16.67%)
check ISSN (55T) 0% / 0% (0%) 16.67% / 66.67% (+50.00%)
check ISSN (58T) 0% / 0% (0%) 100% / 96.67% (-3.33%)
check ISSN (58F) 0% / 0% (0%) 100% / 76.67% (-23.33%)

f2
F2 (4T) 100% / 53.33% (-46.67%) 100% / 100% (0%)
F2 (15T) 100% / 46.67% (-53.33%) 100% / 100% (0%)
F2 (35T) 100% / 100% (0%) 100% / 96.67% (-3.33%)
F2 (43T) 3.33% / 3.33% (0%) 0% / 6.67% (+6.67%)

tiff-3.8.2
TIFF GetSourceSamples (14T) 6.67% / 100% (+93.33%) 100% / 100% (0%)
TIFF GetSourceSamples (17T) 0% / 100% (+100%) 100% / 100% (0%)
TIFF GetSourceSamples (20T) 10.00% / 100% (+90.00%) 100% / 100% (0%)
TIFF GetSourceSamples (23T) 10.00% / 100% (+90.00%) 100% / 100% (0%)
TIFF GetSourceSamples (26T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF GetSourceSamples (29T) 16.67% / 100% (+83.33%) 100% / 100% (0%)
TIFF GetSourceSamples (32T) 23.33% / 100% (+76.67%) 100% / 100% (0%)
TIFF SetSample (2T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (5T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (8T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (11T) 26.67% / 100% (+73.33%) 100% / 100% (0%)
TIFF SetSample (14T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (17T) 20.00% / 100% (+80.00%) 100% / 100% (0%)
TIFF SetSample (20T) 23.33% / 100% (+76.67%) 100% / 100% (0%)

triangle
triangle (14T) 0% / 100% (+100%) 100% / 100% (0%)
triangle (15T) 0% / 93.33% (+93.33%) 100% / 100% (0%)
triangle (15F) 0% / 100% (+100%) 96.67% / 100% (+3.33%)
triangle (17T) 0% / 100% (+100%) 100% / 100% (0%)
triangle (17F) 0% / 100% (+100%) 96.67% / 100% (+3.33%)
triangle (19T) 0% / 96.67% (+96.67%) 100% / 100% (0%)
triangle (21T) 0% / 96.67% (+96.67%) 100% / 100% (0%)

TABLE III
NORMALIZED AVERAGE FITNESS EVALUATIONS REQUIRED BY THE GA AND AVM USING THE STANDARD AND ENHANCED FITNESS FUNCTIONS.

Test Subject/ AVM GA
Function Standard / Enhanced Standard / Enhanced

bibclean
check ISBN 100% / 99.99% (-0.01%) 100% / 99.99% (-0.01%)
check ISSN 100% / 99.98% (-0.02%) 100% / 93.71% (-6.29%)

defroster
Defroster main 100% / 99.57% (-0.43%) 100% / 68.15% (-31.85%)

f2
F2 100% / 157.44% (+57.44%) 100% / 91.61% (-8.39%)

tiff-3.8.2
TIFF GetSourceSamples 100% / 12.41% (-87.59%) 100% / 73.05% (-26.95%)
TIFF SetSample 100% / 8.78% (-91.22%) 100% / 73.87% (-26.13%)
PlaceImage 100% / 99.17% (-0.83%) 100% / 100.53% (+0.53%)

triangle
triangle 100% / 35.35% (-64.65%) 100% / 98.79% (-1.21%)



TABLE IV
AVERAGE TIME (IN MILLISECONDS) TAKEN OVER 30 TRIALS TO PERFORM

THE UP-FRONT STATIC ANALYSIS REQUIRED BY THE ENHANCED FITNESS

FUNCTION. THE STANDARD DEVIATION IS SHOWN IN THE RIGHT MOST

COLUMN.

Test Subject/ Analysis Time(ms) (StdDev)
Function

bibclean
check ISBN 1,909,741.13 (2,172.47)
check ISSN 1,792,913.50 (2,827.38)

defroster
Defroster main 34,509.87 (345.55)

f2
F2 318,279.23 (431.68)

tiff-3.8.2
TIFF GetSourceSamples 516,514.23 (878.52)
TIFF SetSample 1,092.77 (12.22)
PlaceImage 956.43 (105.36)

triangle
triangle 716.03 (6.24)

within that function. Therefore, compared to the overall exe-

cution time of the test data generation algorithms, we consider

the analysis times reported in this paper as acceptable. Future

work might investigate how we can make the static analysis

more efficient, for example by re-using symbolic information

for nested branches.

VI. THREATS TO VALIDITY

Naturally there are threats to validity in any empirical study

such as this. The first issue to address is the threat to the

internal validity of the experiments, i.e., whether there has

been a bias in the experimental design that could affect the

obtained results.

One potential source of bias comes from the configuration of

the algorithms used in the test data generation tool IGUANA.

The settings for the GA and AVM were taken from previous

studies [1], [22], [14] that looked at generating branch ade-

quate test data. Thus, they have been shown in the past to

provide a good trade-off between effectiveness and efficiency.

Another potential source of bias comes from the inherent

stochastic behaviour of the meta-heuristic search algorithms.

The most reliable (and widely used) technique for overcom-

ing this source of variability is to perform statistical tests

using a sufficiently large sample of result data. In order to

ensure a large sample size, experiments were repeated 30
times, providing a reasonable pool of data from which to

draw observations, and ensuring sample means were normally

distributed. To show that the enhanced fitness function is more

efficient than the standard fitness function used in SBST, a test

for a statistical significant difference in the sample means was

performed. We used a one-sided, paired Wilcoxon signed rank

test with the confidence level set at 99%.

A further source of bias includes the selection of the

functions used in the empirical study, which could potentially

affect its external validity, i.e., the extent to which it is possible

to generalize from the results obtained. The study draws

upon code from real world programs, both from industrial

production code and from open source. While we sampled a

variety of programming styles and sources, we only considered

functions from five programs. Therefore caution is required

before making any claims as to whether these results would

be observed on other functions. Instead, the results reported

herein should only be seen to provide some initial intuition and

a larger study is required to validate or refute our findings.

VII. RELATED WORK

The present paper is the first to develop an amended form

of symbolic execution for SBST. Previous work on developing

symbolic execution as a practical means of improving auto-

mated testing focussed on constraint based testing techniques,

leading to the development of the very active field now known

as ‘Dynamic Symbolic Execution’ (DSE). This field began

with the seminal work by Godefroid et al. [11] on Directed

Automated Random Testing (DART), which combined sym-

bolic execution with random testing. Since then a number

of authors have followed this approach, which is sometimes

referred to as ‘concolic testing’ [23] as well as DSE [24], [11],

[25].

DSE and SBST have developed as separate schools of

thought in automated software testing, each with their own

advantages and disadvantages. The introduction of Dynamic

Symbolic Execution creates a significant step forward in

the development of previous constraint based approaches to

automated test data generation, on which DSE builds.

Our introduction of partial symbolic execution as a means of

augmenting SBST seeks to provide a similar impetus to SBST

research. Like DSE, we augment an existing test automation

technique with a form of symbolic execution and like DSE,

we need to amend traditional symbolic execution to ameliorate

its problems. However, DSE performs a complete symbolic

execution, sometimes using concrete values in place of sym-

bolic values, whereas our approach does not use concrete

values, but retains the symbolic nature of symbolic execution.

Rather than performing a complete symbolic execution, we

perform a localised or ‘partial’ symbolic computation and use

approximation to overcome the problems of static symbolic

execution.

The first authors to propose a combination of SBST and

DSE were Inkumsah and Xie [26] with the EVACON frame-

work. Their framework targets test data generation for object

oriented code written in JAVA and uses two existing tools:

eToc [27], an evolutionary test data generation tool, and

jCUTE [28], a DSE tool. Method sequences putting the class

containing the method under test into specific states, are

constructed by eToc. Then, jCUTE is used to maximize code

coverage of a given method sequence by generating values for

the sequences’ input parameters. The method sequences with

optimized parameter values are then passed back to eToc for

further optimization.

More recently, Lakhotia et al. [29] investigated a combi-

nation of SBST and DSE in order to improve DSE’s ability

to handle constraints over floating point variables. Their work



integrated the AVM, also used in this paper, and Evolution

Strategies into Pex [25], a DSE tool for .NET.

Lakhotia et al. [30] also proposed a combination of sym-

bolic execution with search in order to improve SBST. Inspired

by the work on CUTE [23], they use symbolic execution to

extend and improve the AVM for pointer inputs.

The work presented in this paper differs from all previous

work in that it is the first to consider symbolic execution

in order to improve a fitness function used in SBST. A

benefit of this approach lies in its generality; it may be used

with any search algorithm. Furthermore, the enhanced fitness

function does not require a constraint solver, despite making

use of symbolic execution techniques. The path condition

generated through symbolic execution is transformed into a

fitness function to guide an optimisation algorithm. This is

an advantage when testing code that contains floating point

computations or calls to system libraries.

VIII. CONCLUSION

This paper has introduced and evaluated a symbolic search-

based software testing approach for the branch coverage test

adequacy criterion. We propose to replace the existing branch

distance and approach level measures with two new measures:

Path distance and approximation level. The new metrics make

use of information gathered from symbolic execution. An

empirical study, performed on 338 branches, taken from a

mix of open source and industrial programs, confirmed our

hypothesis that a symbolically enhanced fitness function can

make search algorithms more efficient. The proposed approach

was evaluated with two commonly used algorithms in Search-

Based Software Testing: The Alternating Variable Method and

a Genetic Algorithm.

The main goal of the enhanced fitness function is to make

search-based testing more efficient. However, it also enables

the Alternating Variable Method, a form of hill climbing,

to cover branches for which the search failed using the

traditional fitness function. Future work will investigate how

symbolic search-based testing can be further developed to not

only improve efficiency, but also effectiveness of a search

algorithm.
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