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Abstract— Increasing experimental evidence suggests that 

axonal action potential conduction velocity is a highly adaptive 

parameter in the adult central nervous system. Yet, the effects of 

this newfound plasticity on global brain dynamics is poorly 

understood. In this work, we analyzed oscillations in biologically 

plausible neuronal networks with different conduction velocity 

distributions. Changes of 𝟏 − 𝟐  (ms) in network mean signal 

transmission time resulted in substantial network oscillation 

frequency changes ranging in 𝟎 − 𝟏𝟐𝟎 (Hz). Our results suggest 

that changes in axonal conduction velocity may significantly affect 

both the frequency and synchrony of brain rhythms, which have 

well established connections to learning, memory, and other 

cognitive processes.   
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I. INTRODUCTION  

The timing of action potential (AP) arrival is of great 
importance to information processing in brain circuits [1]. 
Experimental studies have revealed that a number of pathways, 
such as thalamic pathways to the cortex or the auditory 
brainstem, maintain fine-tuned spike time arrival, with sub-
millisecond precision [2,3]. Individual axons primarily control 
spike time arrival through their AP conduction velocity, which 
is modifiable through various mechanisms including ion 
channel densities, axonal structure, and myelinating glia, which 
wrap their processes around axons and form the myelin sheath 
that changes AP propagation speeds [1]. The prevailing 
hypothesis has always been that these mechanisms actively 
shape neuronal circuits during development of the central 
nervous system (CNS) [4]. Aside from slow homeostatic 
adjustments, conduction velocities in the adult brain have been 
considered static [4]. However, the emergence of new 
visualization tools has revealed that AP conduction velocities 
are highly adaptive in adult neuronal circuits [4]. 

Axons exhibit conduction velocity plasticity in response to 
neuronal activity through multiple mechanisms operating at 
different time scales [1]. Unmyelinated axons can adjust their 
conduction velocity through axon depolarization and diameter 
adjustment, while myelinated axons tend to rely more on their 
interaction with the myelin sheath [5,6]. Interestingly, some of 
these mechanisms rapidly alter conduction velocity in a matter 
of seconds or minutes. For example, depolarization of an 

unmyelinated axonal cell membrane, by prior APs, results in 
conduction velocity slowing within a matter of minutes [5]. 
Similarly, depolarization of oligodendrocytes, the primary 
myelinating glial cell in the CNS, increases conduction velocity 
in the axons they myelinate from 20 seconds to 3 hours [9]. 
Moreover, new myelin formation is driven by local neuronal 
activity, thereby changing local axonal conduction velocities 
over the course of several hours [10]. This last form of myelin 
plasticity has been shown to play a critical role in motor 
learning, suggesting that the effects of adaptive axonal AP 
conduction velocities may translate to network level dynamics.  

In this work, we computationally investigated the effects of 
axonal AP conduction velocity distributions on the oscillatory 
behavior of neuronal networks. To do so we developed an 
Izhikevich-type network that conformed to several generally 
observed characteristics of cortical networks including the ratio 
between excitatory and inhibitory neurons, sparseness of 
connectivity, local interneuron inhibition, and lognormal 
synaptic weight distributions [8,11,13]. Most essential to our 
goal, is that such an Izhikevich network has been shown to 
exhibit brain-like rhythms [12]. Our analysis revealed multiple, 
nontrivial relationships between network conduction velocity 
statistics and the corresponding network oscillation frequency, 
and synchrony level. Our results suggest a fascinating possibility 
that neuronal networks may change their oscillatory activity in 
response to precisely tuned AP propagation delays.            

II. METHODS 

We developed Izhikevich-type neuronal networks with all 
parameters being static. Each network was initialized and 
simulated with a different conduction velocity distribution that 
was biologically constrained within the reported range [14]. The 
networks were analyzed for the ability of all their neurons to get 
entrained into synchronized activity, namely oscillation 
frequencies and levels(extent) of neuronal synchrony.  

 Our network architecture followed the one previously 
reported in [12]. Briefly, our network consisted of 1000 
Izhikevich neurons, a simple, semi-empirical model of a cortical 
neuron [12]. The neuronal membrane fluctuation was described 
by a set of two differential equations: 
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𝑑𝑣 = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 

𝑑𝑢 = 𝑎(𝑏𝑣 − 𝑢) 
(1) 

where 𝑣, 𝑢 ∈ ℛ  are the fast activation and slow recovery 
variables, and 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℛ determined neuron type. Neurons 
spiked if 𝑣 > 30 (mV), and variables 𝑣, 𝑢 were reset as, 

 
𝑣 = 𝑐 

𝑢 = 𝑢 + 𝑑 
(2) 

The neuronal population consisted of 80% excitatory, regular 
spiking (RS), and 20% inhibitory, fast spiking (FS), neuron 
types, per experimental data [11]. Neuron parameters were 
obtained from [12]. Network connectivity depended on neuron 
type, with each neuron uniformly connected to 10% of the 
network [8]. Outgoing connections from excitatory neurons 
were connected to both excitatory and inhibitory neurons, while 
inhibitory neurons were connected only to excitatory neurons. 
We initialized excitatory and inhibitory synaptic weights with 
(μ, σ2)exc = (1.67,0.5) and (μ, σ2)inh = (1.49,0.5) lognormal 
distributions, preserving the experimentally observed functional 
form of the distribution [13]. Lastly, axonal AP conduction 
velocities were modeled as discrete time delays, with a 
resolution of 1 (ms); same as the network integration timestep. 
All inhibitory connections were assigned the minimum delay of 
1 (ms), mimicking local interneuron inhibition [11].  
Experimental data shows that the distributions of cortico-
cortical axonal AP conduction delays from various cortical areas 
to the midline can be approximated using normal distributions 
described by moments ranging in  𝜇 = [3,6]  (ms) and σ2 =
[0.5,5.0]  with all measured delays largely limited to 0 − 10 
(ms) [14]. We doubled this range to 0 − 20 (ms) to account for 
the fact that experimental data measured pathway delays only up 
to the midline, or half of possible total length. Therefore, for 
simulation purposes we restricted excitatory conduction delay 

distributions to normal distributions with 𝜇 ∈ [0,20] (ms) and 
𝜎2 ∈ [0.5,5.0].  

 The purpose of the simulation process was to relate 
conduction delay distribution to global network dynamics. 
Simulations consisted of four steps, repeated for each unique 
delay distribution. First, a neuronal network was generated with 
a unique conduction delay distribution using the previously 
described rules and statistics. Second, the network was launched 
and stimulated continuously for 5 (s). Stimulation consisted of 
randomly selecting a neuron every millisecond and injecting 20 
(pA) of current into it. During network run time, all network 
parameters remained constant. Third, spike data was collected 
for the last 4 (s) of simulation time. This simulation process was 
repeated several times for each conduction delay distribution 
simulated to ensure robustness and generalization of our results. 
We found the results were repeatable with little to no variation. 
Lastly, spectral and synchronization analysis were performed on 
the recorded data. 

 Network oscillation frequency was obtained from recorded 
network spike data through spectral analysis. First, each 
simulated network’s 2-dimensional, 800 × 4000 , spike data 
was averaged over all neurons resulting in the 1-dimensional 
network activity time series, 𝑆(t), signal. We then applied the 
Fast Fourier Transform (FFT) algorithm to 1000 (ms) segments 
of the 𝑆(t) signal, to extract its frequency components. Lastly, 
the largest frequency component was taken to represent the 
oscillation frequency of the corresponding network. 

  Network synchrony was measured on spike data using a 
metric based on variance of time-averaged, neuronal spike 
fluctuations [15]. This measure computes the variance of 
network level fluctuations, normalized by the average variance 
of fluctuations of individual neurons, as described by the 
following equation: 

Fig. 1. Network oscillation frequency as a function of connection delay 

average, displayed for delay variances, 𝜎2 ≥ 2.  The relationship is nonlinear 

and step-like, with delay variance controlling its shift. 
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Fig. 2. Network oscillation frequency as a function of connection delay 

average, displayed for delay variances, 𝜎2 < 2.  The relationship is highly 

nonlinear with a double peak form.  Delay variance both shifted and noticeably 

altered the response curve. 
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 χn =
σ𝑆

2

σ𝑆𝑖
2

=
〈[𝑆(𝑡)]2〉𝑡 − [〈𝑆(𝑡)〉𝑡]2

1
𝑁

∑〈[𝑆𝑖(𝑡)]2〉𝑡 − [〈𝑆𝑖(𝑡)〉𝑡]2
 (3) 

where 〈. . . 〉𝑡 represents an average over time, 𝑆𝑖(𝑡) is the spike 
train over time 𝑡 for neuron 𝑖, and 𝑆(𝑡) is the network spike train 
signal averaged over 𝑁  neurons. This measure positively 
quantifies network synchrony on a scale 0 to 1.   

III. RESULTS 

We analyzed the effects of different axonal conduction delay 
distributions on network oscillations and synchronization.  Our 
results revealed a nonlinear relationship between network 
oscillation frequency and mean delay of network connections. 
Additionally, network delay variance impacted both the form of 
the oscillation frequency response and network synchronization.  

Network oscillation frequency exhibited a highly sensitive 
response to the mean delay of network connections. This 
nonlinear relationship is depicted in Fig. 1 and 2, depicting 
network oscillation as a function of average network delay. 
Oscillations ranged in the biologically relevant 0 - 120 (Hz). 
Interestingly, sub-millisecond changes in mean delay produced 
frequency changes on the order of tens of Hertz, shown in Fig. 
1 and 2.  For example, more than 80 (Hz) of oscillation 
frequency range is covered by a mere 1 − 2  (ms) change in 
network mean conduction delay.   

Variance of network delay distribution appeared to control 
both the position and form of the network oscillation frequency 
response curve. First, variance determined the shift of the 
response curve along the mean delay axis. Fig. 1 demonstrates 
this relationship most clearly, where higher variance values tend 
to shift the response curve towards higher mean delay values and 
lower frequency ranges. Conversely, Fig. 2 shows that for 
variance values, 𝜎2  <  2 , the form of the response curve 

completely changes resulting in multiple high frequency peaks. 
Interestingly, the low variance regime resulted in highest 
network frequency of approximately 125 (Hz). Additionally, 
variance impacted network synchrony. 

Our model exhibited an inverse relationship between the 
variance of network delay distributions and the degree of 
network synchronization. This phenomenon was initially 
observed through network oscillation frequency power levels 
and network raster plots. Fig. 3 shows that the relative power 

Fig. 5. Raster plots comparing network oscillations and amplitude for two 

different AP conduction delay distributions. [Top] Delay distribution of 
(𝜇, 𝜎2) = (8,1), resulted in network oscillation frequency ≈120 (Hz) with high 

network activity. [Bottom] Delay distribution of  (𝜇, 𝜎2) = (8,3), resulted in 

network oscillation frequency ≈ 35 (Hz) with low network activity. 
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Fig. 4. Extent of network synchrony as a function of delay variance.  Lower 

variance values resulted in higher increased synchrony and vice versa.  (Inset) 

Each point corresponds to the rapid network frequency change shown in Fig. 1.   
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Fig. 3. Relative power of network oscillation frequency as a function of delay 

variance.  Lower variance values resulted in higher relative power levels and 
vice versa.   
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level increases with decreasing delay variance, suggesting that 
network dynamics tended towards greater order with minor 
frequency components becoming less pronounced. Analysis of 
individual network raster plots confirmed this through large 
amplitude oscillations for low delay variance values, and small 
amplitudes for higher delay variance values, shown in Fig. 5. To 
conclusively verify this relationship, we measured network 
synchrony, shown in Fig. 4. Network synchrony appeared to be 
inversely related to delay variance, while the mean delay 
positively shifted the synchrony curve. Interestingly, for delay 
distributions with variance, σ2 ≥ 2,  the abrupt rise in network 
frequency occurred precisely at the cusp of rapidly increasing 
synchronization. This can be seen in the inset of Fig. 4, where 
the point on each curve corresponds to the mean at which 
network frequency rapidly rose as seen in Fig. 1. 

IV. DISCUSSION 

In this paper, we demonstrated the existence of a nonlinear 
relationship between neuronal network conduction delay 
distribution and network oscillation frequency, and 
synchronization. Both the distribution mean and variance 
inflicted non-trivial effects on network behavior. Conforming to 
experimental evidence our model proposed a new perspective 
on the origins of brain rhythms. 

Our modeling results suggested that the entire biologically 
observed network oscillation frequency range of approximately 
0 − 100  (Hz), could be partly driven by precise, sub-
millisecond changes in the neuronal network’s average axonal 
conduction delay. Intriguingly, experimental evidence 
corroborates such precise tuning in neuronal signal 
transmission, where it has been shown that the AP transmission 
speed between any two specific neurons is maintained at the 
sub-millisecond time scale with high degree of reproducibility 
[1]. This hints at the possibility that adaptive signal velocity 
mechanisms play a significant role in observed network level 
phenomena.   

Our computational results further suggested a fascinating 
possibility that AP propagation speeds impact global network 
dynamics. Given that oscillations and synchronization are 
fundamental components of information processing in the brain 
[16], understanding the role that neuronal and non-neuronal cells 
have in higher cognitive functions is crucial. This challenges the 
long-held notion of glial passivity in information processing and 
reveals potential roles for non-neuronal cells proposed by us and 
others [18,19]. For instance, since oligodendrocytes are now 
known to adaptively affect AP velocity, through actively 
restructuring white matter [1,17], this study paves the way for 
computationally studying the interaction of neuronal and non-
neuronal cells in brain health and disease. 

This work supports our ongoing effort to investigate network 
AP conduction velocity distributions in the context of other 
network parameters such as connectivity, excitation vs. 
inhibition ratio, and synaptic weight distributions all of which 
are known to affect network level properties. This will enable us 
to study the prevalence of our findings in more comprehensive 
models of brain cells and networks.   
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