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Abstract

The traditional de novo drug discovery is known as a high cost and high risk process. In response,

recently there is an increasing interest in discovering new indications for known drugs—a process

known as drug repositioning—using computational methods. In this study, we present a new

systematic approach for identifying potential new indications of an existing drug through its

relation to similar drugs. Different from the previous similarity-based methods, we adapted a

novel bipartite-graph based method when considering common drug targets and their interaction

information. Furthermore, we added drug structure information into the calculation of drug

pairwise similarity. In cross-validation experiments, our method achieved a sensitivity of 0.77 and

specificity of 0.92 (AUC = 0.888) and compared favorably to the state of the art. When compared

with a control group of drug uses, our drug repositioning results were found to be significantly

enriched in both the biomedical literature and clinical trials. Our results indicate that combining

chemical structure and drug target information results in better prediction performance and that the

proposed approach successfully captures the implicit information between drug targets.
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I. Introduction

In response to the high cost and risk in traditional de novo drug discovery [1], discovering

potential new uses for existing drugs, also known as drug repositioning, has attracted

increasing interests from both the pharmaceutical industry and research community.

Nowadays, the advances in molecular measurements laid a foundation for a surging domain

—computational drug repositioning [2]. For instance, with the availability of the

Connectivity Map (CMap) [3], a comprehensive reference collection of ranked gene

expression profiles produced by different drug candidates, several approaches have been

developed to leverage such drug molecular information. Iorio et al. used gene expression

profiles of drugs in the CMap to compute drug pairwise similarity [4] and the resulting drug-

drug network to explore repositioning opportunities for known drugs. Hu et al. compared the
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gene expression profiles of drugs with those of diseases and identified the correlation/anti-

correlation between drugs and diseases [5]. They further showed that the anti-correlation

relationships in the resulting disease-drug network can suggest new therapeutic uses for

existing drugs. In addition to the genomic data, other drug-related information has also been

investigated in similarity-based approaches, which assume that similar drugs are indicated

for similar diseases. For instance, Campillos et al. used drug adverse effects to identify

novel drug-target relationships (off-target interactions) which further connected drugs to

new uses [6]. Li et al. integrated disease, gene/protein and drug connectivity information

based on protein interaction networks and literature mining [7]. More recently, Chiang et al.

presented a ‘Guilt by Association’ (GBA) approach to predict novel drug uses based on the

known treatment relationships between drugs and diseases [8]. In this study, we

implemented the GBA method and used it for comparison.

In this study, we proposed a new systematic method to identify a drug's potential new uses

through its similar drugs found. Different from other similarity-based methods, we adapted a

novel bipartite-graph based method when considering common drug target proteins and their

interaction information. By applying it to our data, we were able to boost target similarity by

making use of their corresponding interaction information and to obtain target similarity

scores for drug pairs in cases where no common targets can be found.

II. Methods

In this study, we identify a target drug dx's potential new indications through its similar

drugs (e.g., dy) as follows:

If two drugs dx and dy are found to be similar, and dy is used for treating disease s,

then dx is a repositioning candidate for disease s treatment.

When computing pairwise similarity between a drug pair dx and dy, we combine the

similarities of their chemical structures SIMchem(dx, dy) and target profiles SIMtarget(dx, dy).

A. Computing Similarity of Drug Chemical Structures

For each drug pair, we compute the chemical structure similarity SIMchem(dx, dy) as the

Tanimoto coefficient of their 2D chemical fingerprints f(dx) and f(dy):

(1)

Where, |f(dx)| and |f(dy)| are the count of structure fragments drugs dx and dy respectively.

The dot product f(dx)•f(dy) represents the number of structure fragments shared by two

drugs.

B. Computing Similarity of Drug Target Profiles

We represent the relationships between drugs and their target proteins as a bipartite graph

G(V, E) for computing SIMtarget(dx, dy). The node set, V(G)={D, P}, consists of two types of

object (i.e., the drug set D and protein set P). The edge set, E(G) ⊆ D×P, consists of
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relationships between drugs and their target proteins. Fig 1(A) shows an example bipartite

graph, where there are four drugs D={d1, d2, d3, d4}, two proteins P={p1, p2}, and five links

(proteins p1 and p2 are the targets of drugs {d1, d2} and {d2, d3, d4} respectively). Given a

drug d, we represent its target protein set as P(d). In this example, P(d1)={p1}, P(d2)={p1,

p2}, P(d3)={p2}, and P(d4)={p2}. Likewise, we represent a protein's linked drug set as D(p).

For instance, D(p1)={d1, d2}. Based on this bipartite graph, many methods can be applied to

compute SIMtarget(dx, dy). Perhaps the most straightforward approach is to simply count the

number of common proteins shared by two drugs i.e., . As

shown in Fig 1(B), drug pairs are only connected if they share common target proteins. This

is not ideal because no target protein stands alone in biological systems. With an aim to

capture the interactions between target proteins, we derived a graph model G2 [9] from the

bipartite graph G(V, E), as shown in Fig 1(C). Where, the nodes in G2 are all the possible

combinations of drug pairs and protein pairs V2={D2,P2}={D×D, P×P}. Let R(dx, dy) and

R(pa, pb) denote similarity of drug pairs and protein pair respectively. For self-pairs such as

{d1, d1} and {p1, p1}, their similarity scores are set to be 1. The edges between drug and

protein pairs in G2 are built based on the drug-protein connections in the original bipartite

graph G. For instant, an edge is established in G2 between a drug pair {d1, d2} and protein

pair {p1, p2} because there exist edges <d1, p1> and <d2, p2> in G.

Given the G2 graph model, we can iteratively compute the pairwise similarity of drug pairs

R2k+1(dx, dy) and protein pairs R2k+2(pa, pb) as follows:

(2)

As can be seen in equation (2), the drug pairwise similarity R2k+1(dx, dy) is the average

similarity of protein pairs they connected to in the G2 graph. In turn, the protein pairwise

similarity R2k+2(pa , pb) also depends on the drug pairwise similarities. The iterative

calculation is initialized with the protein pairwise similarity R0(pa , pb) as follows:

(3)

In theory, the similarity of drug target profiles should be calculated as:

(4)

It has been reported that the similarity score is rapidly converged, with relative rankings

stabilizing within a fixed number of iterations to perform [9]. We have the same observation

on our large-scale real-world data (see the Result section for details).
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C. Computing Drug Pairwise Similarity

The final drug pairwise similarity SIM(dx, dy) score is derived by summing up the weighted

chemical similarity and target similarity as shown in equation (5), which readily integrates

drug chemical structure, drug target and target interaction in one score ranging from 0 to 1.

(5)

Where, λ (0<λ<1) is a predefined constant for weighting the target similarity.

III. Results and Discussion

A. Experimental Data

1) Approved Drug List and Target Protein Information—From DrugBank [10], a

widely used public database of drug data, we collected 1007 approved small-molecule drugs

with their corresponding target protein information.

2) Drug-Disease Treatment Relationships—From the National Drug File - Reference

Terminology (NDF-RT) [11], we extracted therapeutic uses for 799 drugs out of the 1007

drugs, which constructed a gold standard set of 3250 treatment relationships between 799

drugs and 719 diseases.

3) Protein-protein Interactions—From the Human Protein Reference Database (HPRD)

[12], we collected 39,240 binary interactions between 9673 human proteins.

B. Test of Our Method Assumption

In this study, we built our method on the basis that similar drugs are indicated for similar

diseases and conditions. To confirm this, we compared the computed pairwise similarities of

4066 drug pairs involved in treating cardiovascular diseases (e.g., both ‘Doxazosin’ and

‘Terazosin’ are known to treat hypertension) against 4,000 randomly selected drug pairs. As

expected, the drug pairs with similar therapeutic uses have significantly higher chemical and

target similarities (t-test P value < 2.2×10-16).

C. Leave-One-Out Cross Validation

To assess our method in predicting novel indications, we conducted cross-validation

experiments in which we used the known treatment relationships between drugs and

diseases as the gold standard. Specifically, for each target drug, we removed its known uses

and attempted to recover them through its top N similar drugs found. For instance,

‘Fluoxetine’ is a drug known to treat 4 different diseases ‘Bulimia’, ‘Depressive Disorder’,

‘Obsessive-Compulsive Disorder’, and ‘Panic Disorder’ in our gold standard. Table I shows

its top 3 most similar drugs found by our method. To measure our prediction performance,

we report sensitivity, specificity and positive predictive value (PPV) in this work. In the

‘Fluoxetine’ example in Table I (B), the corresponding values for the three metrics are 0.5,

0.99 and 0.33 respectively when only considering the first returned drug, and the

performance increase to 0.75, 0.99 and 0.43 when the top 2 drugs are considered.
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To show the performance over the entire dataset of 799 drugs, we calculated overall

sensitivity and specificity tradeoffs for different drug pair-wise similarity calculation by

varying N—the number of similar drugs—from 1 to 798. The area under the ROC curve

(AUC) score was used as the evaluation metric.

1) Comparison of Three Different Ways of Computing Target Similarity—(a) the

number of overlapping target proteins (|P(dx, dy)|); (b) Pearson's correlation of drug targets

(Pearson); and (c) drug target similarity using the our G2 method with iterations varying

from R1 to R9 (see Fig 2). As can be seen, our G2 method achieved stable performance after

3-5 iterations as the result of the rapid convergence of drug pairwise similarity and stabilized

relative ranking. Hereafter, we set SIMtarget to be R5(dx, dy).

Using target similarity alone, our G2 method achieved higher AUC score (0.876) than using

Pearson's correlation (0.842) or simply counting the overlap (0.838). This indicates that our

method is able to better capture interactions between target proteins through iteratively

propagating similarities from protein pairs to drug pairs, and vice versa.

2) Combination of Chemical Similarity and Target Similarity—We assessed the

performance of combining target similarity (R5(dx, dy)) with chemical similarity. By

experimenting with different values (from 0 to 1) of the weight parameter λ in equation 5,

we observed the highest performance (AUC=0.888) when λ = 0.8. This confirmed our

hypothesis that the two similarities can complement each other in identifying similar drugs.

We show in Fig 3 the overall performance of our method with respect to the number of top-

ranked similar drugs returned in a ROC curve. As highlighted in Fig 3, when N (the number

of most similar drugs returned) was 20, our method achieved a specificity of 0.92 and

sensitivity of 0.77.

3) Comparison with the state of the art—We implemented the guilt-by-association

(GBA) approach [8] and evaluated it on our data. As shown in Fig 3, the GBA approach

yielded a specificity of 0.85 and sensitivity of 0.74, which is below the ROC curve of our

method. Not only does our method outperform the GBA approach, it is also able to rank its

prediction results (the GBA approach cannot), an important feature for prioritizing drug

repositioning candidates in practice.

D. Analysis of Novel Predictions in Clinical Trials and the Biomedical Literature

In addition to cross validation, we further evaluated the validity of our novel drug use

prediction by searching the predicted drug-disease pairs against the trials in

ClinicalTrials.gov and scientific abstracts in PubMed. Take the drug ‘Fluoxetine’ for

example (see Table I). As stated above, our method would predict 6 indications based on its

most similar drug ‘Citalopram’. Two of the predicted uses are known uses, thus leaving the

other 4 as novel predictions. When searching for their evidence, we found that the

‘Alcoholism’ use is indicated in a clinical trial (NCT00027378) which was conducted to

study Fluoxetine in treatment adolescents with alcohol use disorder and major depression

and that the other three uses have been investigated with study results published in the

literature [13-15].
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When setting λ = 0.8 and N = 20 (best performance obtained in cross-validation

experiments), our method predicted 30,872 novel indications for the 1,007 drugs. 1,340 of

these predictions can be found in clinical trials. As a matter of fact, it is 5 times more likely

for our predicted uses to be found in a trial than those drug uses not predicted by our method

(Chi2 test P value < 2.2×10-16). In addition, 8,564 (~30%) of the predicted novel uses can be

found in the literature. Hence, we conclude that the novel uses predicted by our method are

significantly enriched in both scientific literature and clinical trials.

IV. Conclusions and future work

Computational drug repositioning offers promise for discovering new uses of existing drugs,

as drug related molecular, chemical, and clinical information has increased over the past

decade and become broadly accessible. In this study, we developed a systematic method for

mining potential new drug indications by exploring both chemical and molecular features in

similar drugs. The proposed bipartite graph model successfully boosted target similarity by

iteratively integrating explicit evidence (common target proteins shared by drugs) and

implicit evidence (common drugs shared by target proteins).

Our method has some limitations. First, our method relies on existing knowledge of drugs,

targets, protein interactions. The incompleteness of such information would limit our

prediction power. Second, our method would fail to identify any reusable drugs for a disease

if no current treatment is available for that disease. This is because our predicted indications

are based on the known uses of other drugs. Lastly, in this work we limit our method to only

the approved small molecules with known target proteins. This would exclude some drugs

which is not a small molecular (e.g., Rituximab) or whose protein targets are not known yet

(e.g., Mannitol). We plan to investigate these issues in future.
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Figure 1.
Models for computing drug pairwise similarity.
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Figure 2.
Comparison of different target similarity calculation methods.
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Figure 3.
ROC curve of our method with combining SIMchem and SIMtarget with respect to different N

(iteration R5(dx, dy), weight λ = 0.8)
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TABLE I

Top 3 Drugs Simialr with ‘Fluoxetine’

(A)

Given drug Chemical Structure Target

Fluoxetine P28223 (5-hydroxytryptamine 2A receptor)
P31645 (Sodium-dependent serotonin transporter)

(B)

Similar Drug (SIM) Drug Chemical Structure (SIMchem) Drug Targe (SIMtarget) Original Use

1 Citalopram
SIM=0.556

SIMchem=0.66

P31645
SIMtarge=0.53

•Alcoholism
•Depressive Disorder
•Diabetic Neuropathies
•Obsessive-Compulsive Disorder
•Tobacco Use Disorder
•Dementia

2 Fluvoxamine
SIM=0.542

SIMchem=0.59

P31645
SIMtarge=0.53

•Depressive Disorder
•Obsessive-Compulsive Disorder
•Panic Disorder

3 Cyclobenzaprine
SIM=0.532

SIMchem=0.54

P28223
SIMtarge=0.53

•Myositis
•Muscle Rigidity
•Pain
•Spasm
•Muscle Cramp
•Muscle Spasticity
•Tetanus
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