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Abstract

The detection of secondary structure of proteins using three dimensional (3D) cryo-electron 

microscopy (cryo-EM) images is still a challenging task when the spatial resolution of cryo-EM 

images is at medium level (5–10Å ). Prior researches focused on the usage of local features that 

may not capture the global information of image objects. In this study, we propose to use deep 

learning methods to extract high representative global features and then automatically detect 

secondary structures of proteins. In particular, we build a convolutional neural network (CNN) 

classifier that predicts the probability of label for every individual voxel in 3D cryo-EM image 

with respect to the secondary structure elements of proteins such as α-helix, β-sheet and 

background. To effectively incorporate the 3D spatial information in protein structures, we 

propose to perform 3D convolutions in the convolutional layers of CNNs. We show that the 

proposed CNN classifier can outperform existing SVM method on identifying the secondary 

structure elements of proteins from 3D cryo-EM medium resolution images.

I. Introduction and related work

Proteins perform most of the work of living cells with unique and stable three-dimensional 

(3D) structures. Cryo-electron microscopy (cryo-EM) is an experimental technique with 

increasing popularity to study the structures of protein complexes. Through cryo-EM, a 

number of large molecular complexes, such as ribosome and viruses, have been resolved to 

near atomic resolutions [21]. For cryo-EM images at lower resolutions such as 5–10Å 

(referred as medium resolution in the paper), detailed molecular features are not resolved. It 

is a challenging problem to derive atomic structures from such density images. Two types of 

approaches have been proposed. Fitting relies on a suitable atomic structure [9], [26], [32] 

and de novo modeling relies on the match of secondary structures between those in the 

density image and those in the protein sequence [1]–[4], [8], [20], [24].
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The major difficulty in detecting secondary structures from images of medium resolution is 

that the spatial shape patterns of secondary structure elements (SSEs) at medium resolution 

are hard to distinguish from their closely located neighbours. The most common secondary 

structure elements (SSEs) are α-helices, β-sheets, and turns/loops. An example showing 

their shapes is given in Figure 1. In general, the long α-helices and large β-sheets can be 

detected fairly accurately. However, short α-helices appear to be similar to turns/loops in 

density images at medium resolution. A β-sheet with two strands can be confused with an α-

helix. The spacing between two neighboring β-strands is about 5Å, and therefore they are 

not resolved at medium resolution. We previously proposed different approaches to predict 

the location of β-strands using StrandTwister and StrandRoller [6], [7], [28]. More accurate 

detection methods are needed for accurately and automatically identifying SSEs from cryo-

EM images at medium resolution.

Most prior methods for detecting SSEs at medium resolution are based on image-processing 

techniques [5], [12], [16], [17], [25], [27], [29], [34]. These methods search for cylinder-like 

regions for α-helices and plane-like regions for β-sheets. In general, these existing methods 

have two common drawbacks. The first one is that users often need to carefully select 

parameters for the method to work. The second drawback is that they do not fully explore 

the existing data to assist in detecting SSEs of new samples. Recently, learning based 

methods with few user interventions are attracting more research attentions in detecting 

protein SSEs. The studies in [23] used a nested K nearest neighbors classifiers for improving 

the α-helices detection. The authors in [29] developed a machine learning framework based 

on support vector machine (SVM) method to automatically identify α-helices and β-sheets 

in one density image using other existing volumetric images. However, the sample features 

they used are local features which are not representative enough for the essential 

characteristics of protein structures.

Convolutional neural networks (CNNs) are a type of fully trainable models that learn a 

hierarchy of features through nonlinear mappings between multiple stacked layers. CNNs 

have been widely used in a number of image related applications and achieved state-of-the-

art performance on tasks including large-scale image and video recognition [15], [18], [35], 

[36], digit recognition [11], and object recognition tasks [19]. Recently, many attempts have 

been made to extend these models to the field of image segmentation, leading to improved 

performance [14], [31], [37]. One appealing property of CNNs is that the learned features 

through trainable parameters can capture highly nonlinear relationship between inputs and 

out-puts. Therefore, it is natural to employ CNNs for obtaining high representative features 

from cryo-EM images to improve the performance of detecting protein SSEs.

In this study, we show CNNs for detecting protein secondary structures in cryo-EM images. 

Specifically, we built a voxel CNN classifier that predicts the probabilities of every 

individual voxel in a given cryo-EM image with respect to different kinds of SSEs. To 

effectively incorporate the 3D spatial information in protein structures, we propose to 

perform 3D convolutions in the convolutional layers of CNNs so that discriminative features 

along three spatial dimensions are all captured. The proposed CNN classifier accepts voxel 

cryo-EM densities as input and learns highly discriminative features automatically for 

producing intermediate label prediction. These intermediate label predictions are then 
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integrated with post-processing steps for detecting the final secondary structures. In 

addition, the conventional approaches used patch-based predictions to obtain the outputs of 

CNNs on test images, which is very time-consuming for large images. To reduce the 

computational complexity, we apply a stack of deconvolution layers in the CNN architecture 

to produce a dense pixel-wise prediction very efficiently. We compare the performance of 

our approach with that of commonly used learning based methods on a number of 

challenging 3D simulated density images. Results show that the proposed model 

significantly outperforms prior methods on detecting secondary structures of proteins from 

volumetric images.

II. The proposed deep model

One major challenge of using CNNs for cryo-EM segmentation is the large image diversity 

in the database. The complicated structures of proteins require designed networks be able to 

learn features from multiple scales. For example, the recognition of α-helices needs large 

filters, since an α-helix usually extends long in 3D space. On the other hand, detecting β-

sheet structures needs small filters to capture local information in a short and flat 

neighborhood. To overcome the above-mentioned difficulty, we propose a novel 3D CNN 

with inception learning and residual learning (Figure 2). An inception network [30] usually 

utilizes multiple convolutional layers with different kernel sizes and max pooling layers to 

form different paths between two hidden layers. Such design allows us to increase the 

number of trainable parameters at each stage significantly without sharply increasing the 

computational complexity at later stages. The residual learning [13] is designed to simulate 

the desired nonlinear mapping between the input and output of some stage by adding a 

shortcut identity mapping connection. A residual network can achieve more accurate results 

in a very deep model without increasing computation costs.

Another challenge of using CNNs on the cryo-EM segmentation is that the sizes of 

volumetric images are various and some images are very large. This requires predictions on 

test images to be more efficient. In the traditional patch-based prediction mechanism, for 

generating image segmentations using CNNs, we firstly extract patches from the images and 

then use those patches as inputs to the trained network. The output of each patch is a single 

label of the center pixel of that patch. Such patch-based prediction results in a huge amount 

of redundant computations. It is thus desirable to design a fast prediction algorithm that can 

segment the whole image directly without generating patches. To be specific, we applied 

deconvolutional layers to offset the size reduction caused by convolution and max-pooling 

operations. One significant advantage of using deconvolution operations is that the output 

feature map could have same size as the input image if the deconvolution kernel and stride 

sizes are carefully selected. In this paper, we used multiple deconvolution operations at 

different intermediate layers to generate feature maps with same size. The deconvolved 

feature maps were then summed to form a multi-scale representation of the model input. 

Through such design, our network is able to generate an end-to-end mapping between inputs 

and outputs. This leads to dense voxel-wise prediction over images without any 

computational redundancy.

Li et al. Page 3

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Dilated convolution

Many image related applications such as semantic segmentation problems required the 

developed model could keep the local pixel-level accuracy such as precise detection of 

edges, and also utilize the knowledge from the wider global context. To this end, researchers 

have developed various techniques in deep learning field for acquiring the multi-scale 

representation of the input. Besides the inception learning and residual learning introduced 

in the above two sections, the convolution with a dilated filter has also been studied and 

shown excellent performance in many computer vision applications. The convolution with a 

dilated filter is an extension of the original convolution. Its significant property is that the 

dilated convolutions support exponentially expanding receptive fields without losing 

resolution or coverage. Therefore, a neural network with it could capture information from 

different scales without increasing the number of parameters too much. In particular, the 

formula of the original convolution over the 1-D input signal f with the kernel k is defined as 

follows,

(k ∗ f )t = ∑
τ = − ∞

∞
kr f t − τ

where t is the variable of f. Instead, the convolution with a dilated filter factor l between f 
and k is defined as:

(k ∗l f )
t

= ∑
τ = − ∞

∞
kr f t − t

In the dilated convolution, the kernel only touches the signal at every l-th entry. This formula 

applies to a 1-D signal, but it can be straightforwardly extended to higher dimensional 

convolutions.

Recently, dilated convolutions have been employed for semantic segmentation on natural 

images. The authors in [22] analyzed filter dilation and performed preliminary experiments 

for comparisons with other developed tricks. The authors of [10] used dilated convolutions 

to simplify the architecture of [22]. A new convolutional network architecture that 

systematically used dilated convolutions is proposed in [33] for multi-scale\context 

aggregation. In [33], the spatial pooling layers were replaced with convolutions with 

increased filter dilated sizes. In this paper, we propose to integrate the dilated convolution 

with inception and residual learning to build an efficient neural network for identifying 

protein SSEs from cryo-EM images. To be specific, we used the dilated convolution at the 

inception Module A and inception Module B of Figure 3 respectively. Before the residual 

learning was implemented, we used the dilation convolution with filter size 3 for obtaining a 

larger size of receptive fields.

B. The detailed architecture

We provide the detailed configuration of our proposed deep network in Figure 3, which 

generates the final probability map about the α-helix and β-sheet voxels. The whole network 
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contains 6 modules, and each of them used multiple paths for realizing inception learning. 

There are 3 modules (Inception A, B, C) mainly for building the nonlinear relationship 

between input and output, and an additional 3 modules mainly for reducing sizes of feature 

maps (Reduction A, B, C). In order to extract more multi-scale information from the input 

images, we adopted dilated convolutions in 3 ‘Inception’ modules. To be specific, we 

introduced one extra dilated convolution layer with kernel size of 3 and dilation factor size 

of 2 on top of those concatenation layers before the residual learning was applied.

III. Experimental evaluation

A. Experiments setup

In this work, we select 25 simulated cryo-EM images for training and testing. In particular, 

we generate the training and test simulated images to 8Å using the program command 

“pdb2mrc” of “EMAN” with a sampling size of 1Å/pixel. We choose 15 of these 25 subjects 

for training the proposed model. Then the models are evaluated subjects to test the SSE 

detection performance.

To present a quantitative estimation about the size of the identified helices and β-sheets, we 

estimate the number of Cα atoms that are close to the identified helix voxels and β-sheet 

voxels. The detailed selections of parameters for closeness are similar to those given in [29].

We further use specificity and sensitivity to evaluate the accuracy of our model. The 

sensitivity records the ratio of correctly detected (true positive) voxels over all detected 

(true) voxels by computational methods. The specificity calculates the percentage of true 

negative voxels over all un-detected (negative) voxels by computational methods. We also 

use “F1” score to measure the segmentation accuracy on detecting helix and sheet Cα 
atoms. The F1 score is defined as

F1 = 2(A ∩ B)
∣ A ∣ + ∣ B ∣

where |A| denotes the number of α-helix (or β-sheet) voxels in the segmentation A by CNN. 

|B| is the number of α-helix (or β-sheet) voxels in the ground truth segmentation B, and |A ∩ 
B| is the number of shared α-helix (or β-sheet) voxels by A and B. The F 1 score lies in 

[0,1], and a higher value indicates a better detection accuracy.

During the training phase, we used small patches of size 32 × 32 × 7 extracted from training 

images as inputs and outputs, which is based on comprehensive considerations over both 

computational cost and training image sizes. We trimmed off the background margins of the 

training images according to the ground truth for saving computational resources. In order to 

improve model performance, we used data augmentation to enlarge the training data set. The 

data augmentation includes transformations of the original images with rotation and flipping 

along different dimensions. During the test phase, we employed the whole test images as 

inputs of the proposed model. The carefully selected kernel sizes in convolutions and 

deconvolutions can ensure the outputs have the same size of inputs, which significantly 

increased the prediction speed for obtaining the output probability values over SSEs.
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B. Performance on simulated cryo-EM density images

In order to demonstrate the effectiveness of the proposed method, we firstly report the 

specificity and sensitivity based on detected helix and sheet Cα atoms. In this study, we 

consider a Cα atom as an identified helix Cα if it is in the neighbourhood of an identified 

helix voxel with radius of 2.5Å. Similarly, an identified sheet Cα should be within the 

neighbourhood with radius of 3Å of an identified sheet voxel. The detailed numbers of 

identified Cα atoms for all test cryo-EM density images are given in Table I. We can observe 

that the average of sensitivity and specificity of helix identification can reach 71.52% and 

97.86%, respectively, in Table I. The average sensitivity and specificity for β-sheet 

identification is 76.04% and 91.87%, respectively. The high specificity shows the ability our 

CNN method for correctly detecting the SSEs.

In order to provide a comprehensive and quantitative evaluation of the proposed method on 

detecting protein SSEs, we also report the identification performance on all 10 test cryo-EM 

images. The performance of our proposed method outperformed the existing method for 

both α-helix and β-sheet detection. Specifically, CNN could achieve F1 score as 78.66% for 

α-helix and 67.5% for β-sheet on average over 10 test subjects, yielding an overall value 

73.08%. In contrast, SVM method achieves F1 score as 60.04% for α-helix and 41.19% for 

β-sheet, yielding an overall value 50.62%. Moreover, the authors in [29] proposed a post-

processing step for improving the detection performance. In this work, we also reported the 

results by SVM and CNN after the post-processing step in [29] respectively. The quantitative 

evaluation results are listed in Table III. We found that SVM detects more accurately than 

CNN after post-processing. The main reason is that the post-processing step proposed in 

[29] was specially designed for SVM to remove those sparse false positive voxels, and 

current post-processing method may not be effective for the data generated by the proposed 

CNN model. In general, we can see that the performance of CNN is still comparable with 

SVM after a post-processing step specially designed for SVM is used. Designing an efficient 

and customized post-processing step for deep learning is one of our future research 

directions. In addition to quantitatively demonstrate the advantage of the proposed CNN 

method, we visually examined the identification results of α-helix and β-sheet without post-

processing for two test samples in Figure 4. The ground truth three-dimensional structural 

morphologies are shown with purple ribbons. It can be seen that the CNN method generates 

less false positive voxels than SVM method. This explains the high specificity of CNN 

method.

IV. Conclusion

Identification of secondary structure of proteins is challenging because of their structural 

similarities in 3D space. We demonstrate the use of 3D CNNs to segment cryo-EM images. 

The comparison between CNN and SVM shows significant advantage of CNN in accuracy 

before post-processing.

In the protein cryo-EM images, we used only a small number of simulated density images 

with medium resolution of 8Å. Our initial results applying CNN in experimentally derived 

cryo-EM data (data not shown) shows similar conclusion. Meanwhile, we used one single 
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model for segmenting the cryo-EM image voxels. We will develop ensemble novel CNN 

models with more efficient architectures to obtain a better segmentation accuracy.
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Fig. 1. 
Illustration of different SSEs in an example protein including α-helix, β-sheet and turns/

loops. The backbone of a protein structure is shown as a ribbon, and the surface view of the 

corresponding density image is superimposed.
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Fig. 2. 
Illustration of the inception (left) and residual (right) learning.
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Fig. 3. 
Detailed architecture of the 3D convolutional neuron network with dense prediction. For 

each module in the architecture, convolutional layers are denoted by filter sizes and the 

numbers in parentheses denote the numbers of feature maps used. Except for those layers 

with a stride size of 2, which are indicated by “s=2”, the stride sizes in other layers are all 1. 

The filter sizes in the third dimension are all 1, and thus are omitted in the figure. The 

orange arrows indicate the shortcuts in residual learning. The red blocks indicate dilated 

convolution layers with kernel size 3 × 3 and dilation factor size 2 which is indicated by 

“L=2”.
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Fig. 4. 
Comparisons with different identification methods for two test cryo-EM images. The first 

row is for the protein’1wab’, and the second row is for the protein ‘2itg’. The first column 

shows the results by proposed CNN method. The second column shows the results by SVM 

method. Note that these results for both two methods are generated without any post-

processing steps.
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