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ABSTRACT

We consider the problem of detecting a known M -dimensional tar-
get signature vector from an observation corrupted by an additive
noise with unknown covariance matrix. In that case, standard statis-
tical methods of detection usually assume thatN ”target free” obser-
vations are available to perform estimation of the noise covariance
matrix. However, in several applications, the target signal may con-
taminate the training data, resulting in a deviation of the expected
performance of the detectors. In this paper, we consider the per-
formance analysis of two low-rank detectors under the assumption
that Nc elements of the training data are contaminated by the target
signal. More precisely, we derive the asymptotic false alarm and de-
tection probabilities in the high dimensional regime in which both
the dimension M , the number of training data N and contaminated
data Nc converge to infinity at the same rate. Numerical simulations
illustrate the fact that, despite the asymptotic nature of the analysis,
the results obtained are accurate for reasonable values of M , N and
Nc.

Index Terms— LR-ANMF, Contaminated Training Data, Ran-
dom Matrix Theory

1. INTRODUCTION

Detecting the presence of a known M -dimensional target signature
vector from an observation corrupted by an additive noise is a statis-
tical problem which arises in various fields such as radar and array
processing, remote sensing, wireless communications, etc. Assum-
ing a Gaussian model, this problem may be formulated as the fol-
lowing binary hypothesis test:

H0 : x ∼ NCM (0,R)

H1 : x ∼ NCM (0, α2aa∗ + R),

where under the null hypothesis H0, the observation vector x is
modeled as a complex circular Gaussian vector with covariance ma-
trix R representing the additive noise, whereas under the alternative
hypothesis H1, x is modeled as a complex circular Gaussian vector
with covariance matrix α2aa∗ + R, with α2 being the target re-
sponse variance, and a ∈ CM the unit-norm target signature vector.
Usually, the noise covariance matrix R is not directly available, and
has to be estimated based on a set of N training data y1, . . . ,yN by
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e.g. the sample covariance matrix (SCM)

R̂ =
1

N

N∑
n=1

yny∗n.

In that case, the observations y1, . . . ,yN are assumed ”target-free”
and thus modeled as i.i.d. NCM (0,R) random vectors.

However, in several applications, the homogeneity assumption
of the training data is unrealistic, and a certain number Nc of these
data may have a covariance matrix substantially different from R,
in particular when the target signal contaminates the training data.
Such situation may occur e.g. in radar processing where N repre-
sents the number of range/Doppler/angle cells in an area surrounding
the cell under test, and where multiple target returns are located in
Nc of those adjacent cells, or in array processing whereN represents
the number of time samples and where a potential source is transmit-
ting during only Nc samples. In that case, the training data may be
modeled 1 such that y1, . . . ,yNc are i.i.d. NCM (0, ρ2aa∗+R) and
yNc+1, . . . ,yN are i.i.d. NCM (0,R), where ρ2 represents the con-
tamination variance. We also mention that homogeneity assumption
may be violated due to noise covariance mismatch [1, 2], but we do
not consider this scenario here.

Unlike the standard case of non-contaminated training data, for
which the theoretical performance analysis of various test statis-
tics has been derived, the case of contaminated data seems to have
received much less attention. The contamination of training data
by target signal implies in general a substantial degradation of per-
formance for standard detectors because, loosely speaking, the tar-
get signature becomes now partly assimilated to the noise covari-
ance, resulting in a decrease of the probability of false alarm (PFA)
and thus a decrease of the probability of detection (PD). The ref-
erence work [3] on the topic considers the Generalized Likelihood
Ratio Test (GLRT) statistic and derives the exact PFA and PD, un-
der the special case Nc = 1. The main difficulty in the approach
comes from the fact that the GLR is an intricate statistic of x and
y1, . . . ,yN , which requires the evaluation of various joint distribu-
tions. Other works on the topic include the derivation of improved
estimators of R by censoring outlier samples [4] or via Bayesian
modeling [5], and non-probabilistic or experimental approaches for
performance evaluation such as [6–8].

In this paper, we consider the ”clutter + noise” covariance model
defined as R = Γ + σ2I, where σ2 represents a background noise

1We choose here to sort the training data indexes y1, . . . ,yN in the order
contaminated to non-contaminated for ease of reading and without loss of
generality, since R̂ is invariant to any indexes permutation.



variance and Γ models the covariance matrix of a clutter contribu-
tion, which is assumed rank-deficient such that

Γ =

K∑
k=1

γkuku
∗
k,

with K < M , γ1 ≥ . . . ≥ γK > 0 and where u1, . . . ,uK ∈ CM

are orthonormal vectors. Under this covariance model, we focus on
the performance analysis of the low-rank ANMF (Adaptive Normal-
ized Matched Filter) test statistic derived in [9] and given by:

T =
2M

∣∣∣b∗Π̂x
∣∣∣2∥∥∥Π̂b

∥∥∥2

2

∥∥∥Π̂x
∥∥∥2

2

, (1)

where b ∈ CM is a unit-norm test signature vector, Π̂ is the orthog-
onal projection matrix onto the eigenspace of R̂ associated with the
M − K smallest eigenvalues. Under the non-contaminated model,
the performance of T in terms of PFA and PD has been derived in the
asymptotic regime where N → ∞ while M is kept fixed. Since in
several pratical scenarios, the numberN of observations may be con-
strained to be of the same order magnitude than the dimension M ,
an alternative asymptotic regime was proposed in [10], where both
M and N are assumed to converge to infinity at the same rate, while
the clutter rank K is kept fixed. In this high dimensional regime, it
was shown that the LR-ANMF does not have an asymptotically con-
stant false alarm rate (CFAR), and an alternative test statistic, which
we denote T̃ for the remainder, was derived and proved to retrieve
the CFAR property in this double asymptotic regime.

To the best of our knowledge, there is no study on the perfor-
mance evaluation of T (and a fortiori T̃ ) for the training data con-
tamination model, and we derive in this paper the asymptotic PFA
and PD of both T and T̃ , under the high dimensional regime men-
tioned above. To that purpose, we study in Section 2 the behaviour
of the eigenvalues and eigenvectors of the SCM R̂ by extending the
study of [11]. Depending on the alignment of the target signature a
with respect to the clutter subspace span(u1, . . . ,uK), several in-
teresting phenomena are exhibited. In Section 3, simple closed-form
expressions of the asymptotic PFA and PD are provided, and numer-
ical evaluations in Section 4 confirm the accuracy of the predicted
results for realistic values of M , N and Nc.

2. SPECTRAL BEHAVIOUR OF THE SCM WITH
CONTAMINATED SAMPLES

From now on, we consider as in [10] the high dimensional asymp-
totic regime in which M = M(N) and Nc = Nc(N) are functions
of N such that

M

N
−−−−→
N→∞

c ∈ (0, 1), and
Nc
N
−−−−→
N→∞

κ ∈ (0, 1),

while K, γ1, . . . , γK are considered fixed with respect to N . We
further assume that 2 γ1 > . . . > γK > 0 and that for all k =
1, . . . ,K,

|a∗uk|2 −−−−→
N→∞

τk.

2The two assumptions c ∈ (0, 1) and eigenvalues of Γ having multiplic-
ity one are made here to keep light notations and presentation, but could be
relaxed to c ∈ (0,+∞) and multiplicity greater than one.

We also set τ =
∑K
k=1 τk ∈ [0, 1] and T = {k : τk 6= 0}, the

latter representing the set of indexes k for which the target signature
projects a non-vanishing energy onto the clutter eigendirection uk.

Let us define

φ(w) = w

(
1− σ2c

σ2 − w

)
(2)

and

ψ(w) =
(w − σ2)2 − σ4c

(w − σ2)(w − σ2 + σ2c)
. (3)

In the case of non-contaminated training data, we recall the fol-
lowing well-known result concerning the behaviour of the eigenval-
ues and eigenvectors of the SCM R̂, which we denote by λ̂1 ≥ . . . ≥
λ̂M and û1, . . . , ûM respectively.

Theorem 1 ( [11]). Assume that ρ2 = 0 and that γ1 > . . . > γK >
σ2√c. Then for all k = 1, . . . ,K,

λ̂k
a.s.−−−−→
N→∞

φ(γk + σ2),

while λ̂K+1 → σ2(1 +
√
c)2 and λ̂M → σ2(1 −

√
c)2 a.s. as

N → +∞. Moreover, for all deterministic unit-norm b ∈ CM ,

|b∗ûk|2 = ψ(γk + σ2) |b∗uk|2 + o(1) a.s.

Let us give some comments about the results of Theorem 1, in
preparation for the statement of Theorem 2 below. For the non-
contaminated model (i.e. ρ2 = 0), E[R̂] = R is a rank K per-
turbation of σ2I, and we observe from Theorem 1 that each ”clutter”
eigenvalue γk, k = 1, . . . ,K asymptotically pulls out an eigenvalue
λ̂k of R̂ out of the ”noise” eigenvalues bulk [σ2(1 −

√
c)2, σ2(1 +√

c)2], assuming γk, k = 1, . . . ,K are large enough (i.e. above
the threshold σ2√c). In this context, λ̂1, . . . , λ̂K , which are usually
called spikes, follow in some sense the behaviour of γ1, . . . , γK .

For the contaminated model, matrix

E
[
R̂
]

= (1− κ)R + κρ2aa∗,

is itself a rank 1 perturbation of R and intuitively, it is again expected
that some eigenvalues among λ̂1, . . . , λ̂K will be shifted compared
to the non-contaminated model. Moreover, the additional eigenvalue
λ̂K+1 may also be pulled out from the noise eigenvalues bulk. The-
orem 2 below gives the precise perturbation which occurs; of course,
this behaviour cannot be deduced from Theorem 1 due to the non-
stationarity inherent to the contaminated model, which requires a
particular treatment.

Define now the function

χ(w) =
∑
k∈T

τk
γk + σ2 − w +

1− τ
σ2 − w , (4)

where a typical representation is depicted in Figure 1. If τ > 0,
the equation χ(w) = −

(
κρ2
)−1 admits |T | real solutions located

in the interval (γmin(T ) + σ2,+∞), and if τ < 1, there exists an
additional solution located in the interval (σ2, γmin(T )+σ

2). Hence,
if τ > 0, we denote by ωk the smallest solution greater than γk+σ2

for k ∈ T , and if τ < 1, we denote by ωK+1 the smallest solution
greater than σ2.

Then we have the following result concerning the behaviour of
the eigenvalues and eigenvectors of R̂, whose proof, inspired from
[11], is omitted due to space constraints.
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Fig. 1. Typical representation of w 7→ χ(w) for K = 3, τ1, τ3 > 0,
τ2 = 0 and τ = τ1 + τ3 < 1.

Theorem 2. Assume that ρ2 > 0 and γ1 > . . . > γK > σ2√c.
Then for all k = 1, . . . ,K,

λ̂k
a.s.−−−−→
N→∞

{
φ(wk) if k ∈ T
φ(γk + σ2) if k 6∈ T

.

Moreover, if τ < 1,

λ̂K+1
a.s.−−−−→
N→∞

{
φ (wK+1) if wK+1 > σ2(1 +

√
c)

σ2(1 +
√
c)2 if wK+1 ≤ σ2(1 +

√
c)

while λ̂K+2 → σ2(1 +
√
c)2, and if τ = 1, then λ̂K+1 → σ2(1 +√

c)2, a.s. as N → ∞. Finally, for all deterministic unit-norm
vector b,d ∈ CM and k ∈ T ,

b∗ûkû
∗
kd = ψ(ωk)b∗vkv

∗
kd + o(1) a.s. (5)

with 3 vk = (R−ωkI)
+a

‖(R−ωkI)
+a‖

2

, whereas for k ∈ {1, . . . ,K}\T ,

b∗ûkû
∗
kd = ψ(γk + σ2)b∗uku

∗
kd + o(1) a.s. (6)

Recall that T represents the set of indexes k for which the tar-
get vector a projects a non-vanishing energy onto clutter eigenvector
uk. Then Theorem 2 shows that among the spikes, only those in the
set {λ̂k : k ∈ T } will be (asymptotically) affected by the contam-
ination, the asymptotic limit φ(γk + σ2) in the non-contaminated
model being shifted upward to φ(ωk) in the contaminated model.

Concerning the eigenvectors associated with the shifted spikes,
the behaviour also differs significantly from the non-contaminated
case. Indeed, from Theorem 1, we see that in the non-contaminated
model, each eigenvector ûk, k = 1, . . . ,K projects a non-vanishing
energy only onto the corresponding uk and the noise subspace
span({uK+1, . . . ,uM}). In the contaminated case, the eigenvec-
tors ûk, for k ∈ T , will asymptotically spread onto span({u` : ` ∈
T }) and span({uK+1, . . . ,uM}).

Remark 1. Observe that for k ∈ T ,

|b∗vk|2 =
1

χ′(ωk)

∣∣∣∣∣∑
`∈T

b∗u`u
∗
`a

γ` + σ2 − ωk
+

b∗Πa

σ2 − ωk

∣∣∣∣∣
2

+ o(1)

as N → ∞. If either ρ2 → 0 or κ → 0, then for k ∈ T , ωk →
γk + σ2 and

1

χ′(ωk)

∣∣∣∣∣∑
`∈T

b∗u`u
∗
`a

γ` + σ2 − ωk
+

b∗Πa

σ2 − ωk

∣∣∣∣∣
2

−→ |b∗uk|2,

and we retrieve, in some sense, the eigenvectors behaviour predicted
in Theorem 1.

3Note that {vk : k ∈ T } forms a set of unit norm, but not orthogonal,
vectors.

Remark 2. If τ < 1 and ωK+1 > σ2(1 +
√
c) (which occurs if ρ2

is large enough), then the sample eigenvalue λ̂K+1 will split from
the noise eigenvalues bulk [σ2(1−

√
c)2, σ2(1 +

√
c)2]. Thus, any

estimator of the clutter subspace dimension based on the eigenval-
ues λ̂1, . . . , λ̂M and consistent in the non-contaminated model may
suffer from an asymptotic bias in that case.

3. PERFORMANCE ANALYSIS OF AN IMPROVED
LR-ANMF

We study the asymptotic distribution under 4 H0 and H1 of both
the LR-ANMF [9] and improved LR-ANMF [10] in the large di-
mensional regime, under the contaminated model for training data.
The proofs of Propositions 1 and 2 below follow verbatim the one
of [10, Th.1], and are therefore omitted.

For ease of reading, we define

wk =

{
vk if k ∈ T
uk if k 6∈ T

and

µk =

{
ωk if k ∈ T
γk + σ2 if k 6∈ T

,

so that for all k ∈ {1, . . . ,K}, under the assumptions of Theorem
2,

λ̂k
a.s.−−−−→
N→∞

φ(µk)

and

b∗ûkû
∗
kd = ψ(µk)b∗wkw

∗
kd + o(1)

with probability one as N →∞. We also set

Ξ = I−
K∑
k=1

ψ(µk)wkw
∗
k.

Proposition 1. Assume that ρ2 > 0 and γ1 > . . . > γK > σ2√c.
Then,

T

ϑ

D−−−−→
N→∞

χ2(2)

where

ϑ =
σ2b∗Ξb +

∑K
k=1 γk |b

∗Ξuk|2 + α2 |b∗Ξa|2(
σ2 + ∆

M

)
b∗Ξb

,

and with ∆ = α2a∗Ξa +
∑K
k=1 γku

∗
kΞuk − σ2K.

We consider now the improved LR-ANMF derived in [10], de-
fined as the test statistic

T̃ =
2|b∗Π̂x|2

β̂
,

where

β̂ = σ̂2
∥∥∥Π̂b

∥∥∥2

2
+

K∑
k=1

(µ̂k − σ̂2)
(1− ψ̂(µ̂k))2

ψ̂(µ̂k)
|b∗ûk|2,

4In fact, results are presented only for H1 and may be deduced directly
for H0 by taking α2 = 0.



with σ̂2 = (M −K)−1∑M
k=K+1 λ̂k,

ψ̂(µ) =
(µ− σ̂2)2 − σ̂4c)

(µ− σ̂2)(µ− σ̂2 + σ̂2c)
,

and where we have defined µ̂k to be the unique solution to the equa-
tion µ(µ − σ̂2(1 − c)) = λ̂k(µ − σ̂2) in the interval (σ̂2(1 +√
c),+∞) if it exists, or µ̂k = σ̂2(1 +

√
c) otherwise.

Proposition 2. Assume that ρ2 > 0 and γ1 > . . . > γK > σ2√c.
Then,

T̃

ϑ̃

D−−−−→
N→∞

χ2(2)

where

ϑ̃ =
σ2b∗Ξb +

∑K
k=1 γk |b

∗Ξuk|2 + α2 |b∗Ξa|2

σ2b∗Ξb +
∑K
k=1(µk − σ2)(1− ψ(µk))2|b∗wk|2

.

4. NUMERICAL RESULTS

To illustrate the results of the previous sections, we consider an ar-
ray processing scenario where we have a uniform linear array of M
sensors with a spacing of half the wavelength, and thus the signature
vector takes the form

a = a(θt) = M−1/2
(

1, e−iπ sin(θt), . . . , e−i(M−1)π sin(θt)
)T

,

where θt is the target DoA, fixed to 20.1
◦

. Similarly, we have
b = b(θ) where θ is the DoA under test. The clutter is composed
by 3 sources with DoA −20

◦
, 0
◦
, 20
◦

and variances 0.2, 0.3, 0.5.
The noise variance σ2 is fixed through the Clutter to Noise Ratio
defined as CNR = 1

σ2 , the target variance α2 through the Signal to

Noise Ratio SNR = α2

1+σ2 while the contamination variance ρ2 is

fixed through the Outlier to Noise Ratio as ONR = ρ2

1+σ2 . In the
following, we only consider T̃ , but the conclusions are similar for T .

In Figure 2, we consider the PFA of the improved LR-ANMF
by plotting the empirical Complementary Cumulative Distribution
Function (CCDF) of T̃

ϑ̃
under H0. We notice that the high dimen-

sional asymptotic approximation predicted by Proposition 1 is quite
accurate. In [10, Th. 1], it was proved that T̃ is asymptotically χ2(2)
distributed under the non-contaminated model, and we also plot in
Figure 2 the empirical CCDF of T̃ . When contamination is present,
we notice that the CCDF of T̃ is below the χ2(2) CCDF (i.e the
predicted asymptotic CCDF in the non-contaminated model). Thus
contamination of the training data induces a decrease of the false
alarm probability, which is intuitively expected since the signal tar-
get is now incorporated in the covariance of the training samples.

In Figure 3, we consider the PD of the improved LR-ANMF by
plotting the empirical CCDF of T̃

ϑ̃
under H1. The empirical CCDF

of T̃

ϑ̃′
is also plotted, where ϑ̃′ corresponds to the limit of ϑ̃ when

ρ2 → 0, i.e. ϑ̃′ is the renormalization under the non-contaminated
model such that T̃

ϑ̃′
is asymptotically χ2(2) distributed. Again, we

notice as expected that the contamination of the training data implies
a decrease of the detection probability, compared to what happens in
the non-contaminated case.
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Fig. 2. PFA of the improved LR-ANMF with M = 60, N = 120,
Nc = 60, θ = 20.1

◦
, CNR = 10 dB, SNR=5 dB and ONR = 5 dB.
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5. CONCLUSION

In this paper, we have addressed the performance analysis of two
low-rank detectors in a scenario where the training data used to
estimate noise statistical properties are contaminated by the target
signal. Both the PFA and PD have been studied in the asymptotic
regime where the number of training samples and the dimension of
the observations both converge to infinity at the same rate. Numeri-
cal results confirm the accuracy of the asymptotic predictions for re-
alistic values of sample size and observations dimension, and make
it possible to quantify the decrease of the PFA and PD induced by
the contamination.
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