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Abstract— Recently, robots have seen rapidly increasing use
in homes and warehouses to declutter by collecting objects
from a planar surface and placing them into a container.
While current techniques grasp objects individually, Multi-
Object Grasping (MOG) can improve efficiency by increasing
the average number of objects grasped per trip (OpT). However,
grasping multiple objects requires the objects to be aligned
and in close proximity. In this work, we propose Push-MOG,
an algorithm that computes “fork pushing” actions using a
parallel-jaw gripper to create graspable object clusters. In
physical decluttering experiments, we find that Push-MOG
enables multi-object grasps, increasing the average OpT by
34%. Code and videos are available at https://sites.
google.com/berkeley.edu/push-mog.

I. INTRODUCTION

Efficient object manipulation is a key task in industrial,
commercial, and domestic robotics, incorporating elements
from motion planning, grasping, and task planning [1], [2],
[3], [4]. In particular, many applications focus on the task
of transferring a collection of objects from a surface into
a bin or basket, for the purpose of either clearing the
surface or preparing the objects for transportation to another
location. This task is typically solved by picking one object
at a time. However, an alternative approach of removing
multiple objects at once with multi-object grasping (MOG)
has received relatively little attention. MOG can provide
better efficiency than traditional single-object grasping [5],
[6], especially when the bin is relatively far away. Prior
work on MOG mainly focused on developing techniques
(such as MOG-Net [6]) for detecting and executing effective
multi-object grasps in a scene. However, grasping multiple
objects at once requires all of them to be close enough to
fit within the gripper width, which may be rare when the
objects are distributed randomly. Thus, to create graspable
object clusters, pushing [7], [8] can be useful.

In this work, we propose Push-MOG, an algorithm that
uses pushes to increase the average number of objects trans-
ported per trip to the bin. Push-MOG uses hierarchical clus-
tering to identify clusters of objects which could potentially
be grasped together. To execute stable pushes on polygonal
objects with a parallel-jaw gripper, Push-MOG utilizes fork
pushing, in which the jaw is opened to an appropriate width
and the object is pushed perpendicular to the jaw, thus
enabling a variety of stable pushes (see Fig. 3).

We also propose (mean) objects per trip (OpT) as a metric
for evaluating the effectiveness of multi-object grasps. Thus,
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Figure 1: An example of Push-MOG pushing and grasping objects into a
cluster. (1) A cluster is identified containing three objects; (2) two objects
are moved toward the center object using fork pushing. (3) Once the cluster
fits within the robot’s gripper, (4) the gripper closes to create a tight fit and
grasps the objects that will be transported to the bin.

in single-object grasping, the OpT is 1 (or slightly less than
1 due to failed grasp attempts), whereas MOG improves
efficiency by increasing OpT. We evaluate Push-MOG in
a physical environment consisting of randomly-distributed
polygonal objects on a flat surface, in which the robot exe-
cutes both grasps and pushes using a parallel-jaw gripper. We
consider two baselines: (i) Single-Object Grasping (SOG),
which removes objects at random, one at a time; (ii) and
MOG-Net, which searches for multi-object grasps but does
not apply rearrange objects with pushes. In physical robot
experiments, we find that prior work (MOG-Net) achieves an
OpT of ≈ 1, suggesting that naturally occurring multi-object
grasps are rare, while Push-MOG achieves an OpT of 1.339,
though at a cost of extra time for executing pushes. Since
increasing OpT is more valuable when the bin is further
away, Push-MOG can improve picking efficiency when trips
are long. We make the same assumptions as Agboh et al. [5]:
that the objects are extruded convex polygons, and have
roughly uniform mass so that their centers of mass coincide
with their geometric centers. However, unlike [5], we also
assume the objects are stable and do not topple when pushed.

In this work, we make the following contributions:
• We formulate a new variant of the decluttering problem,

in which a robot uses pushing actions to increase the
number of objects it can move simultaneously to the
bin. To solve this problem, we propose and implement
Push-MOG. We also propose objects per trip (OpT)
as a metric for evaluating the effectiveness of MOG
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algorithms.
• We propose and implement fork pushing as a way to

quickly and stably move objects on a work surface using
a parallel-jaw gripper.

• We evaluate the performance of Push-MOG and two
baselines (one using only single-object grasping and one
using multi-object grasping without pushes) and find
that Push-MOG increases OpT by 34%.

II. RELATED WORK

A. Multi-object grasps

Prior work on multi-object grasping [9], [10], [11], [12]
used multi-fingered robot hands and proposed conditions for
a stable grasp of objects, focusing on numerical simulations
without physical robot multi-object grasps or a focus on
automation. Chen et al. [13] propose a method for a robot
to dip its gripper inside a pile of identical spherical objects,
close it, and estimate the number of grasped objects. Shenoy
et al. [14] focus on the same problem but with the goal of
transporting the picked spherical objects to another bin.

Another line of work has focused on designing appropriate
grippers for picking up multiple objects at once. Jiang et. al.
[15] proposed a multiple suction cup vacuum gripper, while
Nguyen et. al. [16] proposed a soft gripper based on elastic
wires for multi-object grasping.

Our work is focused on efficiently rearranging scenes with
pushes [17], [18], [19], [20] before multi-object grasping.
Sakamoto et al. [21] proposed such a picking system where
the robot first uses pushing [22], [23], [24], to move one
cuboid to the other and thereafter grasp both cuboids. Our
approach handles any multi-sided polygonal object and fo-
cuses on large-scale problems where clustering is required
to decide which objects to push and where.

B. Pushing

Pushing is a fundamental primitive in robot manipulation
[25]. Robotic pushing has been used to move a target object
to a goal location [8], [26], rearrange a working surface [27],
[28], and retrieve items from cluttered shelves [19], [20],
[29].

During robotic pushing, uncertainty in the state, control,
and model can result in failures [30], [31]. Prior work
[32], [7] has trained networks to generate robust pushing
actions. Others have taken an open-loop approach to generate
these robust pushes [33], [34]. For example, Johnson et. al.
[35] propose robustness metrics and use them to generate
robust open-loop pushes. They exploit gripper and object
geometries to generate these robust pushes. We take a similar
open-loop pushing approach and leverage object and gripper
geometries to generate robust pushes.

C. Point Clustering

Prior work in point clustering is well-established [36],
[37], specifically in the hierarchical variant [38], [39], which
aims to cluster data in an unsupervised fashion. This method
constructs a distance-based tree that forms clusters of points
from the bottom up which is then split at a ‘height’ to

determine the final clusters. Additional work by Dao et
al. [40] explores clustering with human-defined constraints.
It introduces the idea of simplifying and solving NP-Hard
problems by constraining them through a limit on inter-
cluster distance metrics, such as maximum cluster diame-
ter, or within-cluster variation [40]. In this work, we use
a distance-based hierarchical clustering algorithm but split
object clusters to satisfy gripper width constraints.

III. PROBLEM STATEMENT

Agboh et al [5] studied the problem of using an overhead
camera and a parallel-jaw gripper to transport a collection
O of extruded polygonal convex objects (prisms) from a flat
work surface to a bin or box adjacent to the workspace by
taking advantage of multi-object grasping, in which multiple
objects are grasped simultaneously and transported together
to the bin.

In this work, we extend this problem by adding the fork
push action, in which the gripper pushes an object. By doing
so, the robot can arrange the objects to create more efficient
grasps. Since pushing is faster to execute than grasping and
the objects are typically closer to each other than to the bin,
using pushes to facilitate multi-object grasps can reduce the
number of trips needed to clear the objects. As in Agboh et
al. [6], we consider a frictional model of planar grasping,
which not only corresponds better to real grasping problems
but also permits a larger set of stable grasps, thus allowing
the algorithm to consider a wider range of potential solutions.

A. State, Action, and Objective

Let the set of objects on the work surface be O =
{o0, o1, . . . , oNo−1

} where each oi is a convex polygonal
object and No is the number of objects on the work surface.
The robot executes a sequence of pushes and transports (
which we call trips); each push translates and/or rotates a
single object in the workspace without colliding with others,
while each trip grasps a set of closely clustered objects and
transfers them to the bin.

We divide this problem into three sub-problems:

1) Clustering: Divide the objects into clusters. No cluster
should contain more objects than can be stably grasped
by the gripper.

2) Pushing: Push the objects in each cluster close together.
3) Trip: Perform grasps (containing as many objects as

possible each time) and transport the grasped objects to
the bin until no clusters remain.

Due to the inherent uncertainty of working with real objects,
a grasp might not get every object in a cluster, so a cluster
may need multiple grasps to clear completely. The clustering
step is purely computational and does not involve any
physical action.

Since we don’t optimize an explicit objective in the
clustering or pushing problems, we instead aim to guide the
choice of algorithm to maximize overall OpT.



B. The Clustering Problem

In the clustering stage, the goal is to partition the set of
objects O into clusters in such a way that (i) the objects in
any cluster are close together and (ii) each cluster consists
of objects that can be stably grasped together (provided they
are pushed into an appropriate configuration). Finally, since
the goal of clustering the objects is to reduce the number
of grasps necessary to clear the workspace, a good overall
clustering will partition the objects into as few clusters as
possible, as each cluster roughly corresponds to one grasp.
We denote the output of the clustering algorithm as a list of
clusters C, and each individual cluster as c ⊆ O (since a
cluster is a set of objects).

In this problem, each object o’s position is represented
by its geometric centroid, which we denote Mo. This allows
the application of an appropriately modified version of the
hierarchical clustering algorithm (which clusters points).

An important characteristic of each object o is its minimum
final grasp diameter d∗o, corresponding to the minimum
width of a stable single-object grasp on o. Then, given a
cluster c, we denote the minimum grasp diameter of c as
d∗c =

∑
o∈c d

∗
o. The gripper also has a width d(gr), and if

d∗c > d(gr) we regard cluster c as ungraspable (thus requiring
division into smaller clusters)1.

Also, it is important for the clusters to not interfere with
each other during the pushing step, which might happen if
clusters are spatially intermingled. While point clustering
usually avoids this (such clusters are locally non-optimal),
the grasp diameter constraint may make such a solution to
be ‘optimal’ unless it is specifically excluded. We thus add a
constraint that for any c1, c2 ∈ C, the centroids of the objects
in c1 (i.e. the set {Mo : o ∈ c1}) are linearly separable from
the centroids of the objects in c2.

The clustering problem is then defined to partition O into
a set of clusters C such that: (1) d∗c ≤ d(gr) for all c ∈ C;
(2) any c1, c2 ∈ C have a line which separates the centers of
mass of the objects they contain; (3) each cluster has small
pairwise distances between its objects; and (4) there are few
clusters overall. It is solved using a modified hierarchical
clustering algorithm.

C. The Pushing and Grasping Problems

After the clusters have been defined, the next step is
to push each cluster closer together to make multi-object
grasping more effective (see Fig. 1 for an illustration). We
assume that (due to the separating line constraint in the
clustering problem) each cluster can be treated as a separate
instance of the pushing problem.

Finally, once the pushing is done, we move the objects to
the bin via multi-object grasping. As in [6], the objective is
to move the objects to the bin with as few grasps as possible
(without pushing, as that has already been done).

1It is possible that even if d∗c ≤ d(gr) the cluster does not have a stable
grasp. For example, a cluster of three identical equilateral triangles cannot
be stably grasped at all.

Figure 2: As illustrated in Fig. 1, Push-MOG uses “fork pushes” to
consolidate objects for multi-object grasping as shown on the right.

Algorithm 1: Push-MOG

1 do
2 I ← Image of the workspace
3 Parse I into a 2D object map of all objects O
4 Partition O into clusters C (Alg. 2, see IV-A)
5 Get a cluster c from C at random
6 Plan the pushes, P (Alg. 3, see IV-B)
7 for push p ∈ P do
8 Predict post-push location of pushed object
9 Run MOG-Net (IV-C), using predicted post-push

locations, to identify grasp g
10 Execute g to remove c
11 while objects remain on the workspace;

IV. PUSH-MOG ALGORITHM

We present the Push-MOG algorithm in Alg. 1. After
perceiving an initial scene, it computes a cluster of objects.
We plan and execute a series of pushing actions to bring
together the clustered objects so that they are touching each
other. Finally, we query the MOG-Net algorithm [6] to
transport that cluster through Multi-Object grasps. Below,
we outline how the Push-MOG algorithm plans and executes
these steps.

A. Clustering Details (Alg 2)

As described in Section III-B, the goal of this step is to
cluster objects into graspable subsets. In order to accomplish
this we compute the centroids of each object and use
a bottom-up hierarchical clustering. We find the smallest
bounding box that encloses each object and cluster them
based on their proximity to each other. Once these clusters
are formed, we check that the sum of the widths of all
the objects in the cluster does not exceed the width of the
gripper. If we encounter a non-valid cluster c (i.e. such
that d∗c > d(gr)), then we split c into two clusters c1, c2
using a separating line (objects are divided based on their
centroids), minimizing the difference between the cluster
grasp diameters |d∗c1 − d∗c2 |.



Algorithm 2: Clustering Algorithm
Input : O: List of objects
Output : C: List of clusters

1 Compute centroids Mo for all o ∈ O
2 Hierarchical clustering on {Mo : o ∈ O} to generate

clusters C
3 Check the validity of each cluster c ∈ C based on

max gripper width
4 for non-valid cluster c ∈ C do
5 Minimize weight W over θ using the following:

for θ ∈ [−π
4 ,

π
4 ] do

6 v = ⟨cos θ, sin θ⟩
7 Split the objects into two clusters c1, c2 on an

infinite line defined by v, through the
centroid of c

8 For this θ, calculate weight difference
W = |

∑
o∈c1

d∗o −
∑

o∈c2
d∗o|

9 Split the cluster on this θ

B. Push Planning (Alg 3)

Push planning considers how to push objects in a cluster
closer together in order to facilitate grasping. This can be
broken into two steps: (i) determining the desired locations
of the cluster’s objects; (ii) computing the parameters of the
pushes to get them there. For object o, we denote the desired
location of its centroid as M ′

o, which is chosen both to make
pushing easier and to position the objects for grasping. For
simplicity, we only specify a desired location for the centroid
(and not a desired orientation). All pushes are executed in
one motion in a straight line; the direction and distance that
o is pushed is given by the vector M ′

o −Mo (to move its
center of mass from Mo to M ′

o).
For executing a push with a parallel-jaw gripper, we

propose the technique of fork pushing: we angle the gripper
so the line between the jaws is perpendicular to the desired
push direction. This allows the gripper to push both along
an edge or around a vertex of an object (see Fig. 3), whereas
a flat-edged pusher could not push against a vertex without
the object undergoing a major rotation, deviating from the
desired path.

C. MOG-Net Integration

Following the pushing step, we use MOG-Net [6] on the
clusters to clear the workspace. To improve efficiency, we use
the simulated coordinates of the push action to plan grasps
instead of taking an image of the workspace again.

However, this process is not fully robust, because pushes
may cause other blocks in the way to deviate from their
estimated location, leading to a faulty grasp.

To remedy this, whenever a trip is performed (thus moving
the gripper out of the camera’s view of the workspace), a
new image of the workspace is taken, allowing these errors
to be corrected; the algorithm also uses this image to re-plan
the clustering (IV-A) and pushing (IV-B) on the remaining
blocks (which may have been pushed aside or missed during
an earlier grasp).

Algorithm 3: Push Planning Algorithm
Input : C: List of Clusters
Output : vstart, vend: Start and end push points

for each object
1 for valid cluster c ∈ C do
2 Mc =

∑
object o∈c Mo

|c|
3 m = argmino∈c ∥Mo −Mc∥, the central object in

the cluster
4 for object o ∈ c\m do
5 v = Mo −Mm, vl line with endpoints

Mo,Mm

6 Calculate center of furthest edge eo and
corner do of object o from m, which
intersects with vl

7 Calculate closest edge em on o to om on vl
8 Scale v → vp to capture the length of the

push vector ∥v∥
9 Ensure no collisions by shortening vp, such

that vp + o does not collide with om

Figure 3: Examples of fork pushing with a parallel-jaw gripper, both against
an edge ((a) and (d)) and around a vertex ((b) and (c)) noticing that the
direction the object will move to is roughly perpendicular to the parallel-
jaw gripper.

V. EXPERIMENTS AND RESULTS

To evaluate the performance of the policies developed in
the paper, we run experiments in a real workspace.

A. Experimental Setup

An example input is shown in Fig. 4. We use a Univer-
sal Robotics (UR) 5 Robot with a Robotiq 2F-85 gripper
mounted to its wrist. We perform experiments on 34 convex
objects of various sizes, ranging from 3-sided to 8-sided. All
experiments assume a random placement of the objects in the
workspace, and one such configuration is shown in Fig. 4.
To generate a random placement, we uniformly sample the
workspace and create circles that encompass the max radius
of any object we are using. Before creating each circle we
ensure that they do not overlap, and continue sampling the
object set without replacement until all objects are placed.
Then a human sets up the configuration in real, mirroring the
randomly generated image. We generated 5 random scenes,
on which we will perform all experiments. We add friction
on the graspable faces of the objects by wrapping them in
frictional tape.

To perceive the environment, we use an Intel RealSense
L515 Camera, which outputs RGB-D images, mounted di-



TABLE I: Physical decluttering experimental results for random scenes,
comparing baselines Frictional SOG, MOG-Net, and the method Push-
MOG. Experiments were conducted with a Robotiq 2F-85 parallel-jaw
gripper mounted on a UR5 robot arm, on 5 random scenes of 34 objects,
with the goal placed directly adjacent (see Figs 2 and 4).

Methods Objects per Trip (OpT)
Frictional SOG 0.993 ± 0.014
MOG-Net 0.986 ± 0.038
Push-MOG 1.339 ± 0.145

rectly above the workspace. To calibrate the Camera-Robot
transform, use an ArUco marker [41] which is manually
calibrated with an accuracy of ∼ 1cm.

The pushing action consists of 5 repeated steps:

1) Open the jaws to 30 percent width
2) Move the gripper above the desired push location
3) Move down to the object’s Z-height
4) Move the gripper and push it to its planned location
5) Move the gripper above its planned location

The Multi-Object Grasping action is executed with the
MOG-Net algorithm [6]. Here we repeat the following:

1) Plan a grasp for each cluster
2) Move the gripper above the desired grasp location
3) Open the jaws fully
4) Move down to the work surface
5) Close the jaws to complete the grasp
6) Move the gripper outside the workspace and open the

jaws fully to drop the objects into the basket

B. Baselines

We compare Push-MOG against two baselines: Frictional
SOG, which uses single-object grasps, and MOG-Net [6],
which uses multi-object grasps but does not use additional
actions to help group the objects together. See Section I for
detailed information on baselines.

C. Results

Results are given in Table I. We find that randomly-placed
objects are not generally well-positioned for multi-object
grasps, as OpT is almost identical between MOG-Net and
Frictional SOG, thus requiring the use of additional actions
such as pushes to assist MOG. Indeed, the similarity in
the performance of Frictional SOG and MOG-Net suggests
that there are few if any, ‘naturally occurring’ multi-object
grasps in a typical scene of randomly-scattered objects.
Push-MOG successfully uses the pushing action to generate
graspable object clusters, increasing OpT by roughly 34%.
This comparatively modest increase in OpT (as compared
to the experimental results on the original MOG-Net [6]) is
because objects that are stable under pushing tend to have
larger minimum grasp diameters and the gripper we used has
a relatively small max opening width, so it can grasp at most
2 or 3 objects at a time.

Figure 4: This figure shows the clustering formed by Push-MOG of an initial
scene. The numbers on each cluster identify the order that the algorithm will
perform the pushing and grasping actions.

VI. LIMITATIONS AND FUTURE WORK

This work proposes Push-MOG, a novel algorithm that
consolidates polygonal objects into optimal clusters which
increase the number of objects per grasp. This work has the
following limitations: 1) pushing can cause misalignments
where grasps fail 2) Push-MOG does not always avoid
collisions 3) total time is slow, leading to fewer picks per
hour, even though Push-MOG gets more objects per trip. In
future work, we can incorporate vertical stacking to create
larger multi-object clusters.
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[41] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
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