
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
WORKEM: Representing and Emulating Distributed Scientific Workflow Execution State

Permalink
https://escholarship.org/uc/item/7050q8mk

Author
Ramakrishnan, Lavanya

Publication Date
2011-05-10

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7050q8mk
https://escholarship.org
http://www.cdlib.org/

DISCLAIMER

This document was prepared as an account of work sponsored by the United States

Government. While this document is believed to contain correct information, neither the

United States Government nor any agency thereof, nor the Regents of the University of

California, nor any of their employees, makes any warranty, express or implied, or assumes

any legal responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or

service by its trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof, or the Regents of the University of California. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof or the Regents of the University of

California.

 1

WORKEM: Representing and Emulating

Distributed Scientific Workflow Execution State

Lavanya Ramakrishnan

Lawrence Berkeley National

Lab, Berkeley, CA

LRamakrishnan@lbl.gov

Dennis Gannon

Microsoft Research,

Redmond, WA

dennis.gannon@microsoft.co

m

Beth Plale

Indiana University
Bloomington, IN

plale@cs.indiana.edu

Abstract - Scientific workflows have become an integral

part of cyberinfrastructure as their computational

complexity and data sizes have grown. However, the

complexity of the distributed infrastructure makes

design of new workflows, determining the right

management policies, debugging, testing or

reproduction of errors challenging. Today, workflow

engines manage the dependencies between tasks of

workflows and there are tools available to wrap

scientific codes. There is a need for a customizable,

isolated and manageable testing container for design,

evaluation and deployment of distributed workflows. To

build such an environment, we need to be able to model

and represent, capture and possibly reuse the execution

flows within each task of a workflow that accurately

captures the execution behavior. In this paper, we

present the design and implementation of WORKEM,

an extensible framework that can be used to represent

and emulate workflow execution state. We also detail

the use of the framework in two specific case studies (a)

design and testing of an orchestration system (b)

generation of a provenance database. Our evaluation

shows that the framework has minimal overheads and

can be scaled to run hundreds of workflows in short

durations of time and with a high amount of

parallelism.

Keywords – Scientific Workflows, workflow emulator,

distributed systems.

I. INTRODUCTION

In the last few years, workflows and workflow
tools have become an integral part of
cyberinfrastructure [1]. Workflow tools allow
scientists to compose and manage complex
computation and data in distributed environments.
Each task of a workflow is a legacy scientific code
and cyberinfrastructure environments today use
application web services to represent and manage the
execution of each task. There are tools [11],[13]
available today that help scientists wrap scientific
codes with a web service frontend. The workflow
systems interact with grid and cloud middleware
including workflow planners, schedulers, web
services, provenance systems and Globus services at

the sites. For example, the LEAD system [3] has
around thirty services deployed that support different
parts of the infrastructure. In addition, the middleware
interacts with other Globus services on TeraGrid sites.
The scientific exploration process varies significantly
and often has requirements that need to be resolved at
runtime in conjunction with the variability associated
with the underlying systems. These complex
requirements drive the development and research to
investigate and apply innovative techniques and
mechanisms to manage these environments. The
complexity and cost of these systems such as LEAD
often makes it hard to experiment and test new
mechanisms and policies during actual workflow
execution. Often there is also a need to replay a
workflow execution to generate, inspect and verify the
sequence of events associated with workflow
execution. Thus there is a need for a contained
environment where it is possible to plug-and-play
various workflow execution states to study, evaluate
and develop new solutions to manage these complex
environments.

There are emulation or simulation frameworks
associated with testing isolated components in the
cyberinfrastructure [2]. However we have a limited
understanding of the execution within each task of a
workflow today. Each task has a complex execution
flow that includes ingest of data products from
distributed sources, interaction with diverse web
services for data, resource and job execution
management, transfer of output products to archives,
other execution dependencies, etc. There are no tools
available that abstract and represent the execution
state of each task. The accurate abstraction of the
states of each task would make development,
customization, reuse and deployment of these services
more generally accessible.

There are few tools available today that provide an
integrated environment that enables representation of
the various task states and reproduce workflow
execution state. In this paper, we describe WORKEM,
a framework for representing and emulating
distributed scientific workflow execution state.
Specifically, WORKEM provides:

 2

• a task state model that aims to capture the
intricacies in the execution flow for each task
and,

• a workflow emulation container that uses the
extensible task state model to allow a plug-
and-play framework.

WORKEM is a web service based workflow
emulation framework and serves as a benchmark
platform to experiment with mechanisms and policies
in a controlled environment. It is a minimalistic
framework that can be configured with external event
handlers to register the execution activities that might
be of interest for a particular case study. WORKEM
has been successfully deployed and used in two
contexts for large-scale provenance data generation
and testing and evaluating workflow orchestration
strategies.

The rest of the paper is organized as follows. First,
we detail use cases and design principles in Section II
and related work in Section III. We present an
overview of the emulation architecture and task state
model in Section IV. We describe the system
components of the emulation framework in Section V.
The implementation details and a discussion of the
case studies using the emulation framework are
provided in Sections VI. We discuss scalability of the
emulation framework in our evaluation in Section VII.
Finally, we present our conclusions in Section VIII

II. BACKGROUND

Distributed cyberinfrastructure environments
consist of a multitude of web services, tools and
resources. The complexity of these environments
makes it hard to design, test and verify operation of
various components. First, we detail our diverse set of
use cases that motivates the design and
implementation of WORKEM.

A. USE CASES

Workflows are being widely deployed in diverse
scientific domains for use with distributed grid
resources. More recently tools like Hadoop[15] are
being tested to see their applicability for managing
parameteric scientific studies[14] in cloud
environments. We discuss here some use cases that
demonstrate the need for contained debug and test
emulation environments.

Workflow Composition Verification. Users
might want to test composed workflows for structure
and logic validity before executing the workflow on
distributed resources. This issue is important since
users have to wait for access to resources that are
often over-subscribed.

Policy design and debugging. Workflow
execution in distributed environments is complex and
includes coordination of services and resources at
distributed supercomputing centers. It is hard to
debug, design new policies or solutions in these
environments without significant overhead in system

personnel time and resources. Thus we need a
contained environment to emulate execution while
enabling plug and play model for other system
components.

Provenance Data Generation. Digital data from
scientific experiments are being generated every day.
Tracking the origin of the data and determining the
validity and quality of data is crucial for the scientific
exploration process. The NSF funded Digital Data
Provenance [16] project is building tools to collect
and provide case-based reasoning on provenance data.
There is a need for large amounts of data reflecting
real-time workflow execution, both success and
failures, to validate and test these tools.

Workflow orchestration. Linked Environments
for Atmospheric Discovery (LEAD) is a
cyberinfrastructure for mesoscale meteorology. LEAD
weather prediction workflows have many
configurable parameters and computing an exact
result is often impossible by a given deadline [19].
However, the confidence in the result can be
improved by getting QoS guarantees on at least a
minimal number of workflows completing by a
deadline. This requires advanced workflow
orchestration methods. Experimentation and testing
in the LEAD production environment is tedious given
the multitude of services and components [3]. We
need an isolated, but representative environment to
test and demonstrate the various policy choices.

Cloud MapReduce for Scientific Workflows.
Cloud computing is a recent resource model that
enables on-demand access to resources based on a
pay-as-you-go model. The main programming model
in cloud environments today is MapReduce [18].
Hadoop[15], an open source implementation is now
increasingly used to manage parallel scientific
computations. The MapReduce model enables a high
level definition of tasks (maps and reduces) that
operate on data. The maps and reduces required for
scientific workflows require a number of operations
such as data management, data transfers and
computations. Tools do not allow such fine-grained
representation of execution state. Thus there is a need
to be able to represent application execution state in
this paradigm as well.

B. DESIGN GOALS

Based on our use cases, we use the following
goals in the design and implementation of the
emulation framework.

Simple. Managing multiple setups (for
development, testing and production) is cumbersome
and a major administrative burden for site
administrators and developers. A simple emulation
framework is a good tool for early development and
testing of system components if a developer can easily
manage it on his or her desktop. This minimizes the
resource and human overhead required for managing
test environments.

 3

Accurate. It is important that the emulation
framework is an accurate depiction of the sequence of
events that happen in the real system. An accurate
representation of the execution then enables us to
develop and test policies and new components in a
realistic setting and also reduces the time for moving
new components from development to production.

Scalable. Scalability is inherent to most
distributed systems. For large-scale research and
analysis we need large amounts of data that mirror
realistic execution of workflows. Hence, scalability of
the emulation framework to scale to hundreds of
workflows is a critical aspect of our design

Customizable. Next-generation
cyberinfrastructure environment needs tools to test
and iterate various scenarios and policy choices. Thus
the emulation framework is designed to be

customizable with different parameters (e.g. failure
levels) during execution allowing thorough testing
and playback of various scenarios.

Extensible. There is a need for tools that
application users and middleware developers can
customize for specific functionality and/or what-if
scenarios. WORKEM enables an extensible
framework that other users and developers can use for
specific purposes.

Repeatable. High variability is inherent to the
nature of distributed systems. It is often a challenge to
repeat the same experiment and it is almost
impossible to replicate an identical sequence of
events, making debugging and analysis very difficult.
WORKEM is designed to be repeatable such that
experiments would yield the same results enabling
isolation for identifying problems and testing
solutions.

Portable. Emulation frameworks are useful for
testing and debugging but it is critical to be able to

quickly transfer the code and results to production
environments. A state based task simulation
environment allows easy portability of emulation code
to real environments.

III. RELATED WORK

This paper describes a representation for execution
state of scientific applications and an emulation
framework for large-scale workflow execution and
testing. We describe some related work in this section.

Workflow engines [20] are used for representing
task dependencies and controlling execution. Generic
Application Factory (GFac)[11], Opal toolkit [13], etc
provide tools to wrap legacy scientific application
codes as web services. The wrapper handles grid
security and interaction with other grid services for
file transfer and job submission. However the
execution logic state for each application has to be
managed individually and there is no easy way to
abstract out, customize and reuse policies (e.g.,
resource selection) or code (e.g., provenance
instrumentation) across implementations.

GridSim [21] and CloudSim [23] provide a
simulator framework of grid and cloud resources
enabling modeling of large grid and cloud resources.
Simgrid [22] is a simulation toolkit that enables the
study of scheduling algorithms for distributed
applications. Mumak is a Hadoop based simulator that
can be used with the real job and task trackers to
simulate execution on thousands of nodes for testing
and debugging [15]. These simulators represent and
reflect various resource level properties and behavior.
However these tools do not reflect application level
execution intricacies that require extensive testing.

IV. OVERVIEW

We provide an overview of our emulation
architecture and describe the task state model that is a
central component of our architecture in greater detail.

A. EMULATION ARCHITECTURE

Figure 1 shows the workflow emulation
architecture. It consists of a workflow engine that
invokes an emulation service to recreate the execution
flow. In normal execution an application service is
invoked during execution for each step in the
workflow or directed acyclic graph (DAG). The
engine invokes the emulation service in place of the
application service. The application service emulation
follows a state based execution flow that captures
different stages of task execution including data
transfer, computation, post-processing, etc.

The specific information for a task such as
execution time and data transfer details are retrieved
from a local database during execution. The emulation
service may also interact with external systems like a
grid emulator [2] (that emulates application running
on different resource provider sites) or other

Figure 1. Workflow Emulation Architecture. The

workflow engine invokes the application service

emulation. The emulation uses the application information

to determine what emulation needs to occur for the

particular task. The application emulation interacts with

other cyberinfastructure services or other distributed

resources as required.

 4

cyberinfastructure services [3] for specific functions
(detailed in Section VI).

B. TASK STATE MODEL

The state diagram in Figure 2 depicts the
application service execution flow. The flow captures
the various states that a scientific application might
traverse during its execution. The knowledge of the
states a particular application might traverse is
captured in the information model of the emulator
(Section V.E) and stored in a database before
execution. The state diagram shows the nine states
defined in our system. The arrows in the diagram
show the typical sequential flow between the different
states for scientific application codes. However,
applications might have specific characteristics that
skip one or more states. For example, if there was no
input data to be transferred after the task-started state,
the pre-computing state would be invoked. Similarly
an application with streaming input data might not
have the input data transfer completed state.

The service is configured to invoke the appropriate
handler. The service might use multiple event
handlers, e.g., for provenance generation and
scheduling. The states are described below:

Task Started. This marks the start of an activity
or task. This is the state that marks various
initialization activities for task execution. For
example, handlers might invoke a workflow planning
component to get resource information and then
retrieve the task information (e.g. list of input data
files) based on the resource information.

Input Data Transfer Started and Input Data
Transfer Completed. These states are used to capture
the data transfers that might be required for the
particular task at hand. These steps will be repeated
for each data product that might be required by the
computation. These steps can also be skipped for
special circumstances – e.g. if there are no input data
transfers that are required or the input data transfer
completed state might not be relevant for streaming
input data.

Pre-computation. In this state typically pre-
computation steps are invoked. For example, input
data products might be registered with a meta-data
catalog or specific resource based information for the
computation might be retrieved

Computation. In this state the emulation of the
computation stage might be done. This could be a
NOP (no operation) for the application execution time
or an external grid emulator might be invoked.

Post computation. This represents the post-
computation activities that might include data product
registration

Output Data Transfer Started and Output
Data Transfer Completed. These states are used to
capture the data transfers that might be required for
the output data generated by the emulated task. These
steps will be repeated for each data product that might
be required by the computation. These steps can also
be skipped if data transfers are not required for this
task.

Task Complete. This is the final state in a normal
execution flow and the task result is sent back to the
workflow engine, which then uses that to invoke the
next task in the DAG.

Failure. If a failure occurs in any of the above
states, the execution flow transitions to a failure state.
The failure state (not shown in the diagram) might be
defined to perform remedial measures that might
enable normal execution flow to be resumed.

This generic state model enables us to accurately
capture the execution flow resulting in a richer
emulation framework. The state handler enables us to
implement different handlers for specific policy
choices and thus provides a customizable and
extensible framework for application execution flow.
In this paper, we describe how this state model is used
to implement a framework for representing and
emulating workflow execution state. However, the
application state model has wider applicability and
can be used as a model to represent execution flow in
building application services that operate in grid and
cloud environments. In addition as additional
performance data on different stages of task execution
become available, this base model can be expanded
for more statistical characterization.

V. SYSTEM COMPONENTS

We describe the various system components in the
container framework that enables the emulation of
distributed workflows.

A. WORKFLOW ENGINE

We use an existing workflow engine - Apache
ODE [4] which supports the WS-BPEL [5]
specification, to support workflow execution. Using
an existing workflow engine enables reuse of
workflow descriptions and support of different
workflow patterns as available in the WS-BPEL
specifications.

Figure 2. Application Service Emulation Execution Flow. A

failure in any of the states would result in the application

flow to result in the failure state (not shown in the figure).

 5

Apache ODE operates as a web application in
containers (such as Apache Tomcat) and supports
Axis and JBI based communication layers. We
configure ODE to use the MySQL database to store
transaction information. The workflow documents
(the BPEL file, the WSDL file and the ODE
deployment descriptor) are deployed in a running
instance of the workflow engine. These documents are
identical to the original documents used in production
environments except for one change. The service
invocations are redirected to use the emulator’s proxy
service instead of the original service locations. The
proxy service simulates the task execution and returns
a result back to the engine that then triggers the other
activities.

Apache ODE, designed primarily for business
workflows, supports web-service based invocations
that are run for short durations of time. Thus, ODE by
default uses synchronous communication between the
engine and the services. However scientific
workflows can take anywhere from a few minutes to
hours during execution [19]. Thus, in addition to the
vanilla ODE version, we also support a modified
ODE engine (originally used in the LEAD project).
The asynchronous version also enables us to achieve
higher levels of scalability. The patches support
asynchronous communication that facilitates long
invocations, and provenance notifications to track
invocations from the engine.

B. APPLICATION EMULATION

The application service emulation or the proxy
service receives an invocation for each task in the
workflow. The service is responsible for parsing the
incoming input SOAP message and generating the
appropriate output messages. Once the proxy service
receives the input message, it invokes the task state
simulation execution. Once the task simulation
finishes execution, the proxy service generates the
correct output types using the web service
descriptions (i.e, WSDL files). The output is
initialized with dummy data and control of workflow
execution is transferred back to the workflow engine.
The proxy service supports both synchronous and
asynchronous responses back to the workflow engine.
The proxy service also manages the emulation clock
that is detailed in Section D.

Our implementation works with BPEL and web
services at the moment. However the application
emulation design is general enough to work with other
scenarios. The emulation service could be invoked by
Hadoop to emulate map and reduce tasks. In addition,
the emulator is powerful enough to handle scenarios
where resources might be pre-selected for execution.

C. INPUT MESSAGES

Workflow tools need the ability to differentiate
between different workflow instances. Workflow
systems provide a methodology to identify and

differentiate between different instances. In the LEAD
production system, instance identification numbers
are generated by the meta-workflow management
tool, Xbaya[7]. Similarly in our emulation framework,
the workflow engine client generates the instance
identification. We use the LEAD header specification
to pass this and other parameters through the
workflow execution process. The LEAD header
enables us to pass workflow instance and node
identification.

D. CLOCK

The proxy service manages the clock for the
simulation. It uses real system time or a trace file to
determine the start time for the first task in the
workflow at the first invocation time. This time is
then handed to the task simulation execution, which
generates appropriate time stamps for different task
completion stages. This time is then used as the start
time for the next task in the workflow.

E. INFORMATION MODEL

The emulator needs information about the
application and its typical behavior to provide a
realistic environment. We use the following sources
of information for the same.

State Transitions. The emulator maintains a state
transition database for each task in the workflow.
When the emulator is invoked for a task, it invokes
the specified handler that handles execution of each of
the states.

Performance model. For each task, we also
maintain timing information for each state. This
performance information, captured from real
workflow executions is used to track the task and
workflow execution times.

Data transfer. In addition to the running time of
the application, it is important to consider the data
transfer times between the tasks in the workflow. The
data sizes for the workflow inputs, intermediate data
products and workflow outputs are maintained. The
bandwidth is then used to determine the data transfer
time. We use a Pareto distribution to model bandwidth
in these systems in conjunction with data captured on
real systems [8].

Traces. An important consideration for emulation
is to realistically emulate submission time of
workflows. In addition to the emulator clock that is
used to track submission time of workflows, we
enable a trace mode in the emulator. In the trace
mode, the emulator is initialized with start times
provided in a trace file for a set of workflows. On
arrival of a workflow, the initialization table queried
to determine submission time and execution time is
managed relative to the specified time. This mode is
useful for situations where real traces might need to
be replayed for parameter studies.

 6

F. AVAILABILITY AND FAILURE MODEL

Availability variations and failures are inherent to
distributed systems. An emulator has to capture this
behavior for realistic representation of workflow
execution. We model three availability properties in
our emulator model that can be optionally enabled as
required by the application.

Performance Variance Generator. We provide a
performance variance generator that uses a normal
distribution to model application execution times.
Previous studies show that variation in performance of
application execution follows the normal distribution
[9, 10].

Failure Model. We provide a configurable failure
model. The user of the emulator can set the failure
percentage in each of the above states of the task
handler i.e., there is a 50% probability that a task
might fail in the computation stage. Similarly
communication failures can be modeled as failure
rates in the data transfer states. A failure in a
particular state results in the workflow to fail. During
execution, these specified values are used in a uniform
distribution to model if a particular invocation must
fail.

Information Loss. Finally in real environments
there are cases where a task will execute but
information about the execution, such as a notification
is lost due to communication failures. We model this
behavior by allowing a user to specify the percentage
of dropped messages in the system. Thus with the
performance variation plug-in and the failure model,
applications can realistically emulate variability in
these environments.

VI. IMPLEMENTATION

The emulator framework has been used in the
following context: a) gigabyte provenance database
generation and, b) workflow orchestration across grid
and cloud systems. These scenarios illustrate how the
emulator can be used in design and development of
workflows. In addition, the ability to compose and
execute experiments in a controlled framework helps
workflow composers and designers to debug
workflow structures and execution characteristics.

In this section, we present the workflow examples
we have deployed in our system and the
implementation details of the above use cases. We
also discuss the design of the emulation framework
that enables easy extension of the framework for a)
adding new workflows b) customized task simulation.

A. WORKFLOW EXAMPLES

In previous work, we conducted a survey of
scientific workflows from different domains[6]. We
have modeled a subset of these workflows using
Xbaya, a workflow composition tool [7]. Xbaya
generates WS-BPEL documents that can then be
deployed in the workflow engine used with the

Description of

workflow

Structure of workflow

LEAD Weather

Prediction. weather

forecasting

initialized with

terrain and

observational data

Small computational steps

that operate on large sized

data sets followed by a

computationally intensive

weather model

Motif. Domain

analysis of genome

sized collections of

input sequences

A large sized workflow

with about 140 tasks where

sequences are processed in

parallel and then fed to the

motif analysis code

SCOOP. Storm

surge modeling

ensemble

A number of parallel

model execution followed

by a post processing that

aggregates the results

NCFS. Flood-plain

modeling of the

North Carolina cost

Long running workflow

that has use a large number

of processors and takes

about a day of execution

time.

Animation. Frame

processing for

animation

A pre-processing step that

launches parallel frame

processing followed by a

post-processing step

Gene2Life.

Molecular Biology

analysis of DNA

sequences

Two parallel execution

paths that are triggered

with the same input.

Table 1. Examples of workflows deployed in the current

implementation of the emulator

Figure 3. Gigabyte Provenance database generation using

the workflow emulator

 7

emulator. Table 1 provides a description of the
workflows deployed in our implementation. The
workflows are from diverse scientific domains and
have different levels of parallelism and length or
duration of the workflow.

B. PROVENANCE DATABASE

 In the provenance database use case we
implement an emulator handler to publish provenance
messages. Figure 3 shows the interaction of the
application service emulation with the provenance
system. Karma [24] is a tool that collects and manages
provenance data. Karma has a modular architecture
that supports multiple types of data sources for
provenance data. Karma can listen to notifications on
a messenger bus or receive messages synchronously
and process the notifications to determine provenance
information.

The application service emulation supports both
modes of operation. The Karma2.0 handler in the
emulator publishes provenance messages to a WS-
messenger bus [11]. The Karma3.0 handler in the
emulator directly pushes the provenance information
to the Karma service. For each state, a message is
published that details the activity information, e.g.,
service invocations, data transfers, and computational
messages. The Karma service listens to all relevant
messages and populates a database. The goal of this
plug-in is to create a large database representing
workflow execution messages. Using the failure
model in the emulator, we generate realistic
representations of the provenance data. The emulator
enables us to create a controlled execution
environment and use a minimal set of components to
generate data that then is useful in design and testing
of tools related to provenance collection and analysis
[12].

C. WORKFLOW ORCHESTRATION

Figure 4 shows the implementation details of the
handler that interacts with the orchestration system. In
this scenario, the task service interacts with a limited
subset of components and helps in the study of
workflow orchestration policies. In the first step, the
proxy service interacts with the workflow planner to
determine the resources on which the task must
execute. The orchestration components then interact
with the Virtual Grid Execution System (vgES) which
is a pluggable component for the emulator. The vgES
provides a uniform execution interface to query and
manage executions on grid and cloud resources. The
execution system relies on middleware such as Globus
for job submission and data transfer.

Next, the task is launched for execution on the
determined resources. The task simulation then waits
for the job completion. This particular implementation
has resources at a total of seven sites that include grid
and cloud deployments. More details of the

orchestration infrastructure can be found in previous
work [17].

This integrated infrastructure is an example of
managing workflow environments for demonstration
in conjunction with real resource sites. The emulation
environment enables us to experiment with specific
policies in a hybrid environment of workflow
emulation with real execution.

D. ADDING A WORKFLOW

In our implementation, we compose and deploy
about ten workflows from different domains with
varying complexity. However, we anticipate that users
will want to add new workflows. Any pre-composed
workflow that is WS-BPEL[5] compliant can be
directly deployed in the emulation framework. In
addition, existing tools can be used for composition of
new workflows. For our setup, we use Xbaya[6] to
compose workflows and export the required
documents.

E. CUSTOMIZED TASK SIMULATION

The basic interface for the task simulation defines
the functions for the states (Section IV.B) that will be

Figure 4. Orchestration system using the workflow

emulator.

public interface TaskSimulator{

 public void Task_started(long curtime)

 public void InputDataXfer_started(long curtime)

 public void InputDataXfer_completed(long

curtime)

 public void Pre_computation(long curtime)

 public void Computation(long curtime)

 public void Post_computation(long curtime)

 public void OutputDataXfer_started(long

curtime)

 public void OutputDataXfer_completed(long

curtime)

 public void Task_completed(long curtime) throws

}
 Table 2. Task State Execution Handler Interface.

 8

executed for each task. A customized task simulation
can overload one or more of the functions to emulate
different aspects of task execution. Table 2 shows the
interface for the application service emulation. There
is a function for each application state. For a specific
use case, a developer can implement a handler by
providing functionality to be performed for each of
the functions. In addition various types of handlers
can be extended to get hybrid behavior. For example,
the failure generation handler might also optionally
invoke the provenance generation handler thus
generating failures and appropriate notifications as
part of the emulation.

VII. EVALUATION

Figure 5. Workflow turnaround time for different workflows

and the total emulation time performed at the application

service emulation.

We perform a series of experiments to understand

the characteristics and performance of the emulator
framework in reproducing workflow execution.
Specifically we measure system overheads, the time
scaling factor and system scalability.

Workloads: Our experimental workload consists
of the workflows described in the earlier section. The
workflows vary in their degree of parallelism (in
hundreds) and the duration or length of the workflow
(from minutes to hours) enabling us to perform
extensive testing on the emulator. For scalability
testing and the time scale representation experiments
we select the lead workflow since it is representative
of the cyberinfrastructure workflows and additionally
we have large amounts of data of lead execution on
real systems for a meaningful comparison.

Machine configuration and Software setup: We
run the experiments on a machine with a Core 2 Duo
processor running at 2.4 GHz, 2GB RAM running
Ubuntu 9.04 (Jaunty Jackalope). The machine hosts

the modified Apache ODE 1.1 workflow engine
supported by a MySQL 5.0 server for its state. In
addition, the application emulation service runs with a
simple TestSimulator that logs messages for each of
the task’s states. This is a very simple implementation
of the TaskSimulator enabling us to understand the
overheads of the systems without external influences.

A. EMULATION TIME

First, we measure the turnaround time from the
emulator for execution of different workflows and the
total time spent in the emulator for emulating the tasks
of the workflow. For the motif workflow the results
are averaged across a total of 25 workflows (5
workflows in 5 concurrent threads launched
periodically). For other workflow types, the results are
averaged over 100 workflows (10 workflows in 10
concurrent threads launched periodically). Figure 5
shows the workflow turnaround time from the
emulation and the total emulation time spent at the
task service level. We see that the scoop, gene2life,
ncfs and lead workflows take between 4 to 8 seconds
per workflow and since the number of tasks and the
parallelism of these workflows is small, the time spent
in the task emulation is small (~1 to 2 seconds). The
animation workflow that has a higher degree of
parallelism (~ 20) takes about 13 seconds of
emulation time per workflow. The motif workflow is
one of our largest workflows with 138 tasks out of
which 135 run in parallel. The total workflow
turnaround time is about 3 minutes and the total
effective time spent is about 78 minutes. The motif
workflow would take hours to run in a current grid
system and the emulator enables us to test the
workflow at a larger scale with simplicity. This gives
us an understanding of the level of parallelism that the
workflow engine as well as the task service emulation
is able to handle.

Figure 6. Understanding the scalability and the impact on the

LEAD workflow turnaround time and time spent at the

emulator level.

B. SCALABILITY

Figure 6 shows the scalability impact on the
LEAD workflow. In this case we increase the number
of concurrent threads from 10 to 40 and repeat the
experiment with 10 workflows per thread and 20

 9

workflows per thread and measure turnaround time
per workflow. There is an initial startup cost
associated with the first few workflows and that gets
averaged out as we run more workflows resulting in
lesser average turnaround time when we run more
workflows per thread. There is no significant
difference in time spent in the application service
emulation. The workflow emulation takes longer if
there are 40 simultaneous clients taking around 25
seconds. However this is a small time for emulation
considering some of these workflows would run for
hours in a real environment. Running multiple
application emulation services and/or replicating the
workflow engine can achieve further scalability.

Figure 7. Comparison of the timestamps generated by the

simulator for workflow execution times with the actual

time taken to emulate the workflow. NOTE: The Y-axis is

in log scale

C. TIME SCALE

The workflow emulator supports a trace mode
where information about start times can be initialized
and used to generate appropriate workflow
completion time. We initialize the emulator with start
times for the workflows from a real trace from the
LEAD production system. Figure 7 shows the
projected completion time generated by the emulation
(which is the order of 5400 seconds) whereas the
actual time taken for the workflow execution in the
given environment is between 5 to 10 seconds. The
emulation is used for 100 workflows run over a period
of a month in the system and it takes about 15 minutes
to emulate the same set in our framework.

D. FAILURE GENERATION

The emulator enables us to configure a task level
failure model associating the failure levels for each
state. We configure the “Computation” state to have
different task failure levels from 10% to 50% and
measure the percentage of tasks that fail and the
percentage of workflows that fail for 100 (in 10
threads) and 300 (in 15 threads) workflows. As we see
in Figure 8(a) the failure task percentages closely
follow what we configured at the emulator. In Figure
8 (b) we see the corresponding percentage of
workflows that fail for each of the failure levels. As
we reach close to 40% task failure level greater than
90% of the workflows in our set fail. Thus even small
task failure levels can result in a large number of
workflows failing.

VIII. CONCLUSION

In this paper, we present WORKEM, a framework
that enables the representation and emulation of
workflow execution state. WORKEM includes a
powerful and flexible task state model that allows
users to accurately model different aspects of
application behavior in distributed systems. Our
evaluation shows that the emulator framework easily
scales to hundreds of workflows with minimal
overhead. The flexibility in the design of the
emulation container makes it a strong, low-cost and
low-overhead framework for testing and evaluating
workflow execution in grid and cloud environments.

IX. ACKNOWLEDGMENTS

The emulator work is funded in part by the
National Science Foundation under grant OCI-
0721674. An early version of the emulator was
developed under the Linked Environments for
Atmospheric Discovery funded by National Science
Foundation under Cooperative Agreement ATM-
0331480 (IU). This work was supported by the
Director, Office of Science, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
The authors thank Ai Zhang, Sribabu Doddapaneni,
You-Wei Cheah, Thilina Gunarathne, Chathura
Herath, Suresh Marru, Yogesh Simmhan, Girish
Subramanian and Bin Cao for discussion and

Figure 8. Understanding the failure model in the emulator

(a) shows the percentage of tasks that failed at different

failure levels b) percentage of workflows that failed at

different failure levels. The tests were conducted for 100

and 300 workflows

 10

implementation details of the provenance plugins,
Apache ODE and Xbaya.

REFERENCES

[1] D. Atkins, A Report from the U.S. National

Science Foundation Blue Ribbon Panel on

Cyberinfrastructure. CCGRID '02: Proceedings

of the 2nd IEEE/ACM International Symposium

on Cluster Computing and the Grid, 2002: p. 16.

[2] L. Ramakrishnan et al., Toward a Doctrine of

Containment: Grid Hosting with Adaptive

Resource Control. Proceedings of the ACM/

IEEE Conf. on High Performance Computing,

Networking, Storage and Analysis, 2006.

[3] K.K. Droegemeier et. al, Service-Oriented

Environments for Dynamically Interacting with

Mesoscale Weather. Computing in Science and

Engg., 2005. 7(6): p. 12-29.

[4] Apache ODE - http://ode.apache.org/.

[5] Web Services Business Process Execution

Language Ver. 2.0, Public review draft. 2006.

[6] S. Shirasuna, A Dynamic Scientific Workflow

System for Web Services Architecture.

Department of Computer Science, Indiana

University, 2007.

[7] J.Schopf and F. Berman, Performance Prediction

in Production Environments, 12th. International

Parallel Processing Symposium, 1998.

[8] L. Ramakrishnan and D.A. Reed, Performability

Modeling for Scheduling and Fault Tolerance

Strategies for Grid Workflows. ACM/IEEE

International Symposium on High Performance

Distributed Computing, 2008.

[9] W. Kramer and C. Ryan, Performance

Variability of Highly Parallel Architectures,

Computational Science — ICCS, 2003.

[10] Y. Huang, et al., WS-Messenger: A Web

Services-Based Messaging System for Service-

Oriented Grid Computing. Proceedings of the

Sixth IEEE International Symposium on Cluster

Computing and the Grid, 2006: p. 166-173.

[11] D. Leake and K.-M. Joseph, Towards Case-

Based Support for e-Science Workflow

Generation by Mining Provenance, in Proc of the

9th European conference on Advances in Case-

Based Reasoning. 2008.

[12] G. Kandaswamy and D. Gannon. A Mechanism

for Creating Scientific Application Services On-

demand from Workflows. Proceedings of the

2006 International Conference Workshops on

Parallel Processing, pages 25–32, 2006.

[13] S. Krishnan et al. Design and Evaluation of

Opal2: A Toolkit for Scientific Software as a

Service. IEEE Congress on Services

(SERVICES-1 2009), July, 2009.

[14] J. Wilkening et al. "Using Clouds for

Metagenomics: A Case Study," Preprint

ANL/MCS-P1665-0809, Aug 2009.

[15] Apache Hadoop http://hadoop.apache.org/

[16] Digital Data Provenance Project Website

http://www.dataandsearch.org/provenance/

[17] L. Ramakrishnan and et al. VGrADS: Enabling

e-Science Workflows on Grids and Clouds with

Fault Tolerance, The International Conference

for High Performance Computing, Networking,

Storage and Analysis, 2009.

[18] J. Dean and S. Ghemawat, “MapReduce:

Simplified Data Processing on Large Clusters,”

in Proceedings of OSDI ’04: 6th Symposium on

Operating System Design and Implemention,
San Francisco, CA, Dec. 2004.

[19] L. Ramakrishnan, D. Gannon, “A Survey of

Distributed Workflow Characteristics and

Resource Requirements”, Technical Report

TR671, Department of Computer Science,

Indiana University,Bloomington, Sept 2008,

[20] I.J. Taylor et al., eds. Workflows for e-Science:

Scientific Workflows for Grids, Springer-Verlag,

2006

[21] R. Buyya and M. Murshed, GridSim: A Toolkit

for the Modeling and Simulation of Distributed

Resource Management and Scheduling for Grid

Computing, The J. of Concurrency and

Computation: Practice and Experience, Volume

14, Issue 13-15, Wiley Press, Nov.-Dec., 2002.

[22] H. Casanova, Simgrid: A toolkit for the

simulation of application scheduling. Proc. 1st

IEEE/ACM International Symposium on Cluster

Computing and the Grid May, 2001.

[23] R. N. Calheiros, R. Ranjan, C. A. F. De Rose,

and R. Buyya, CloudSim: A Novel Framework

for Modeling and Simulation of Cloud

Computing Infrastructures and Services, Tech.

Report, GRIDS-TR-2009-1, The University of

Melbourne, Australia, March, 2009.

[24] Bin Cao, Beth Plale, Girish Subramanian, Ed

Robertson, Yogesh Simmhan, "Provenance

Information Model of Karma Version 3,"

Services, IEEE Congress on, pp. 348-351, 2009

Congress on Services - I, 2009.

