
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
WORKEM: Representing and Emulating Distributed Scientific Workflow Execution State

Permalink
https://escholarship.org/uc/item/7050q8mk

Author
Ramakrishnan, Lavanya

Publication Date
2011-05-10

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7050q8mk
https://escholarship.org
http://www.cdlib.org/


DISCLAIMER    

This  document  was  prepared  as  an  account  of  work  sponsored  by  the  United  States  

Government.  While  this  document  is  believed  to  contain  correct  information,  neither  the  

United  States  Government  nor  any  agency  thereof,  nor  the  Regents  of  the  University  of  

California,  nor  any  of  their  employees,  makes  any  warranty,  express  or  implied,  or  assumes  

any  legal  responsibility  for  the  accuracy,  completeness,  or  usefulness  of  any  information,  

apparatus,  product,  or  process  disclosed,  or  represents  that  its  use  would  not  infringe  

privately  owned  rights.  Reference  herein  to  any  specific  commercial  product,  process,  or  

service  by  its  trade  name,  trademark,  manufacturer,  or  otherwise,  does  not  necessarily  

constitute  or  imply  its  endorsement,  recommendation,  or  favoring  by  the  United  States  

Government  or  any  agency  thereof,  or  the  Regents  of  the  University  of  California.  The  views  

and  opinions  of  authors  expressed  herein  do  not  necessarily  state  or  reflect  those  of  the  

United  States  Government  or  any  agency  thereof  or  the  Regents  of  the  University  of  

California.  

  



 1 

WORKEM: Representing and Emulating 

Distributed Scientific Workflow Execution State 

Lavanya Ramakrishnan 

Lawrence Berkeley National 

Lab, Berkeley, CA 

LRamakrishnan@lbl.gov 

Dennis Gannon 

Microsoft Research,  

Redmond, WA 

dennis.gannon@microsoft.co

m

 

Beth Plale 

Indiana University 
Bloomington, IN 

plale@cs.indiana.edu 

Abstract - Scientific workflows have become an integral 

part of cyberinfrastructure as their computational 

complexity and data sizes have grown. However, the 

complexity of the distributed infrastructure makes 

design of new workflows, determining the right 

management policies, debugging, testing or 

reproduction of errors challenging. Today, workflow 

engines manage the dependencies between tasks of 

workflows and there are tools available to wrap 

scientific codes. There is a need for a customizable, 

isolated and manageable testing container for design, 

evaluation and deployment of distributed workflows. To 

build such an environment, we need to be able to model 

and represent, capture and possibly reuse the execution 

flows within each task of a workflow that accurately 

captures the execution behavior. In this paper, we 

present the design and implementation of WORKEM, 

an extensible framework that can be used to represent 

and emulate workflow execution state. We also detail 

the use of the framework in two specific case studies (a) 

design and testing of an orchestration system (b) 

generation of a provenance database. Our evaluation 

shows that the framework has minimal overheads and 

can be scaled to run hundreds of workflows in short 

durations of time and with a high amount of 

parallelism.   

Keywords – Scientific Workflows, workflow emulator, 

distributed systems. 

I. INTRODUCTION 

In the last few years, workflows and workflow 
tools have become an integral part of 
cyberinfrastructure [1]. Workflow tools allow 
scientists to compose and manage complex 
computation and data in distributed environments. 
Each task of a workflow is a legacy scientific code 
and cyberinfrastructure environments today use 
application web services to represent and manage the 
execution of each task. There are tools [11],[13] 
available today that help scientists wrap scientific 
codes with a web service frontend. The workflow 
systems interact with grid and cloud middleware 
including workflow planners, schedulers, web 
services, provenance systems and Globus services at 

the sites. For example, the LEAD system [3] has 
around thirty services deployed that support different 
parts of the infrastructure. In addition, the middleware 
interacts with other Globus services on TeraGrid sites. 
The scientific exploration process varies significantly 
and often has requirements that need to be resolved at 
runtime in conjunction with the variability associated 
with the underlying systems. These complex 
requirements drive the development and research to 
investigate and apply innovative techniques and 
mechanisms to manage these environments. The 
complexity and cost of these systems such as LEAD 
often makes it hard to experiment and test new 
mechanisms and policies during actual workflow 
execution. Often there is also a need to replay a 
workflow execution to generate, inspect and verify the 
sequence of events associated with workflow 
execution. Thus there is a need for a contained 
environment where it is possible to plug-and-play 
various workflow execution states to study, evaluate 
and develop new solutions to manage these complex 
environments. 

There are emulation or simulation frameworks 
associated with testing isolated components in the 
cyberinfrastructure [2]. However we have a limited 
understanding of the execution within each task of a 
workflow today. Each task has a complex execution 
flow that includes ingest of data products from 
distributed sources, interaction with diverse web 
services for data, resource and job execution 
management, transfer of output products to archives, 
other execution dependencies, etc. There are no tools 
available that abstract and represent the execution 
state of each task. The accurate abstraction of the 
states of each task would make development, 
customization, reuse and deployment of these services 
more generally accessible.  

There are few tools available today that provide an 
integrated environment that enables representation of 
the various task states and reproduce workflow 
execution state. In this paper, we describe WORKEM, 
a framework for representing and emulating 
distributed scientific workflow execution state. 
Specifically, WORKEM provides: 
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• a task state model that aims to capture the 
intricacies in the execution flow for each task 
and, 

• a workflow emulation container that uses the 
extensible task state model to allow a plug-
and-play framework.  

WORKEM is a web service based workflow 
emulation framework and serves as a benchmark 
platform to experiment with mechanisms and policies 
in a controlled environment. It is a minimalistic 
framework that can be configured with external event 
handlers to register the execution activities that might 
be of interest for a particular case study. WORKEM 
has been successfully deployed and used in two 
contexts for large-scale provenance data generation 
and testing and evaluating workflow orchestration 
strategies.  

The rest of the paper is organized as follows. First, 
we detail use cases and design principles in Section II 
and related work in Section III. We present an 
overview of the emulation architecture and task state 
model in Section IV. We describe the system 
components of the emulation framework in Section V. 
The implementation details and a discussion of the 
case studies using the emulation framework are 
provided in Sections VI. We discuss scalability of the 
emulation framework in our evaluation in Section VII. 
Finally, we present our conclusions in Section VIII  

II. BACKGROUND 

Distributed cyberinfrastructure environments 
consist of a multitude of web services, tools and 
resources. The complexity of these environments 
makes it hard to design, test and verify operation of 
various components. First, we detail our diverse set of 
use cases that motivates the design and 
implementation of WORKEM.  

A. USE CASES 

Workflows are being widely deployed in diverse 
scientific domains for use with distributed grid 
resources. More recently tools like Hadoop[15] are 
being tested to see their applicability for managing 
parameteric scientific studies[14] in cloud 
environments. We discuss here some use cases that 
demonstrate the need for contained debug and test 
emulation environments.  

Workflow Composition Verification. Users 
might want to test composed workflows for structure 
and logic validity before executing the workflow on 
distributed resources. This issue is important since 
users have to wait for access to resources that are 
often over-subscribed.  

Policy design and debugging. Workflow 
execution in distributed environments is complex and 
includes coordination of services and resources at 
distributed supercomputing centers. It is hard to 
debug, design new policies or solutions in these 
environments without significant overhead in system 

personnel time and resources. Thus we need a 
contained environment to emulate execution while 
enabling plug and play model for other system 
components. 

Provenance Data Generation. Digital data from 
scientific experiments are being generated every day. 
Tracking the origin of the data and determining the 
validity and quality of data is crucial for the scientific 
exploration process. The NSF funded Digital Data 
Provenance [16] project is building tools to collect 
and provide case-based reasoning on provenance data. 
There is a need for large amounts of data reflecting 
real-time workflow execution, both success and 
failures, to validate and test these tools.  

Workflow orchestration. Linked Environments 
for Atmospheric Discovery (LEAD) is a 
cyberinfrastructure for mesoscale meteorology. LEAD 
weather prediction workflows have many 
configurable parameters and computing an exact 
result is often impossible by a given deadline [19]. 
However, the confidence in the result can be 
improved by getting QoS guarantees on at least a 
minimal number of workflows completing by a 
deadline. This requires advanced workflow 
orchestration methods.  Experimentation and testing 
in the LEAD production environment is tedious given 
the multitude of services and components [3].  We 
need an isolated, but representative environment to 
test and demonstrate the various policy choices. 

Cloud MapReduce for Scientific Workflows. 
Cloud computing is a recent resource model that 
enables on-demand access to resources based on a 
pay-as-you-go model. The main programming model 
in cloud environments today is MapReduce [18]. 
Hadoop[15], an open source implementation is now 
increasingly used to manage parallel scientific 
computations.  The MapReduce model enables a high 
level definition of tasks (maps and reduces) that 
operate on data. The maps and reduces required for 
scientific workflows require a number of operations 
such as data management, data transfers and 
computations. Tools do not allow such fine-grained 
representation of execution state. Thus there is a need 
to be able to represent application execution state in 
this paradigm as well. 

B. DESIGN GOALS 

Based on our use cases, we use the following 
goals in the design and implementation of the 
emulation framework. 

Simple. Managing multiple setups (for 
development, testing and production) is cumbersome 
and a major administrative burden for site 
administrators and developers. A simple emulation 
framework is a good tool for early development and 
testing of system components if a developer can easily 
manage it on his or her desktop. This minimizes the 
resource and human overhead required for managing 
test environments. 
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Accurate. It is important that the emulation 
framework is an accurate depiction of the sequence of 
events that happen in the real system. An accurate 
representation of the execution then enables us to 
develop and test policies and new components in a 
realistic setting and also reduces the time for moving 
new components from development to production.  

Scalable. Scalability is inherent to most 
distributed systems. For large-scale research and 
analysis we need large amounts of data that mirror 
realistic execution of workflows. Hence, scalability of 
the emulation framework to scale to hundreds of 
workflows is a critical aspect of our design 

Customizable. Next-generation 
cyberinfrastructure environment needs tools to test 
and iterate various scenarios and policy choices. Thus 
the emulation framework is designed to be 

customizable with different parameters (e.g. failure 
levels) during execution allowing thorough testing 
and playback of various scenarios. 

Extensible. There is a need for tools that 
application users and middleware developers can 
customize for specific functionality and/or what-if 
scenarios. WORKEM enables an extensible 
framework that other users and developers can use for 
specific purposes.  

Repeatable. High variability is inherent to the 
nature of distributed systems. It is often a challenge to 
repeat the same experiment and it is almost 
impossible to replicate an identical sequence of 
events, making debugging and analysis very difficult. 
WORKEM is designed to be repeatable such that 
experiments would yield the same results enabling 
isolation for identifying problems and testing 
solutions. 

Portable. Emulation frameworks are useful for 
testing and debugging but it is critical to be able to 

quickly transfer the code and results to production 
environments. A state based task simulation 
environment allows easy portability of emulation code 
to real environments. 

III. RELATED WORK 

This paper describes a representation for execution 
state of scientific applications and an emulation 
framework for large-scale workflow execution and 
testing. We describe some related work in this section. 

Workflow engines [20] are used for representing 
task dependencies and controlling execution. Generic 
Application Factory (GFac)[11], Opal toolkit [13], etc 
provide tools to wrap legacy scientific application 
codes as web services. The wrapper handles grid 
security and interaction with other grid services for 
file transfer and job submission. However the 
execution logic state for each application has to be 
managed individually and there is no easy way to 
abstract out, customize and reuse policies (e.g., 
resource selection) or code (e.g., provenance 
instrumentation) across implementations.  

GridSim [21] and CloudSim [23] provide a 
simulator framework of grid and cloud resources 
enabling modeling of large grid and cloud resources. 
Simgrid [22] is a simulation toolkit that enables the 
study of scheduling algorithms for distributed 
applications. Mumak is a Hadoop based simulator that 
can be used with the real job and task trackers to 
simulate execution on thousands of nodes for testing 
and debugging [15]. These simulators represent and 
reflect various resource level properties and behavior. 
However these tools do not reflect application level 
execution intricacies that require extensive testing. 

IV. OVERVIEW 

We provide an overview of our emulation 
architecture and describe the task state model that is a 
central component of our architecture in greater detail. 

A. EMULATION ARCHITECTURE 

Figure 1 shows the workflow emulation 
architecture. It consists of a workflow engine that 
invokes an emulation service to recreate the execution 
flow. In normal execution an application service is 
invoked during execution for each step in the 
workflow or directed acyclic graph (DAG).  The 
engine invokes the emulation service in place of the 
application service. The application service emulation 
follows a state based execution flow that captures 
different stages of task execution including data 
transfer, computation, post-processing, etc. 

The specific information for a task such as 
execution time and data transfer details are retrieved 
from a local database during execution. The emulation 
service may also interact with external systems like a 
grid emulator [2] (that emulates application running 
on different resource provider sites) or other 

 
Figure 1. Workflow Emulation Architecture. The 

workflow engine invokes the application service 

emulation. The emulation uses the application information 

to determine what emulation needs to occur for the 

particular task. The application emulation interacts with 

other cyberinfastructure services or other distributed 

resources as required. 
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cyberinfastructure services [3] for specific functions 
(detailed in Section VI).  

B. TASK STATE MODEL 

The state diagram in Figure 2 depicts the 
application service execution flow. The flow captures 
the various states that a scientific application might 
traverse during its execution. The knowledge of the 
states a particular application might traverse is 
captured in the information model of the emulator 
(Section V.E) and stored in a database before 
execution. The state diagram shows the nine states 
defined in our system. The arrows in the diagram 
show the typical sequential flow between the different 
states for scientific application codes. However, 
applications might have specific characteristics that 
skip one or more states. For example, if there was no 
input data to be transferred after the task-started state, 
the pre-computing state would be invoked. Similarly 
an application with streaming input data might not 
have the input data transfer completed state. 

The service is configured to invoke the appropriate 
handler. The service might use multiple event 
handlers, e.g., for provenance generation and 
scheduling. The states are described below: 

Task Started.  This marks the start of an activity 
or task. This is the state that marks various 
initialization activities for task execution. For 
example, handlers might invoke a workflow planning 
component to get resource information and then 
retrieve the task information (e.g. list of input data 
files) based on the resource information.  

Input Data Transfer Started and Input Data 
Transfer Completed. These states are used to capture 
the data transfers that might be required for the 
particular task at hand. These steps will be repeated 
for each data product that might be required by the 
computation. These steps can also be skipped for 
special circumstances – e.g. if there are no input data 
transfers that are required or the input data transfer 
completed state might not be relevant for streaming 
input data. 

Pre-computation. In this state typically pre-
computation steps are invoked. For example, input 
data products might be registered with a meta-data 
catalog or specific resource based information for the 
computation might be retrieved 

Computation. In this state the emulation of the 
computation stage might be done. This could be a 
NOP (no operation) for the application execution time 
or an external grid emulator might be invoked.  

Post computation. This represents the post-
computation activities that might include data product 
registration 

Output Data Transfer Started and Output 
Data Transfer Completed. These states are used to 
capture the data transfers that might be required for 
the output data generated by the emulated task. These 
steps will be repeated for each data product that might 
be required by the computation. These steps can also 
be skipped if data transfers are not required for this 
task. 

Task Complete. This is the final state in a normal 
execution flow and the task result is sent back to the 
workflow engine, which then uses that to invoke the 
next task in the DAG.   

Failure. If a failure occurs in any of the above 
states, the execution flow transitions to a failure state. 
The failure state (not shown in the diagram) might be 
defined to perform remedial measures that might 
enable normal execution flow to be resumed.  

This generic state model enables us to accurately 
capture the execution flow resulting in a richer 
emulation framework. The state handler enables us to 
implement different handlers for specific policy 
choices and thus provides a customizable and 
extensible framework for application execution flow. 
In this paper, we describe how this state model is used 
to implement a framework for representing and 
emulating workflow execution state. However, the 
application state model has wider applicability and 
can be used as a model to represent execution flow in 
building application services that operate in grid and 
cloud environments. In addition as additional 
performance data on different stages of task execution 
become available, this base model can be expanded 
for more statistical characterization.  

V. SYSTEM COMPONENTS 

We describe the various system components in the 
container framework that enables the emulation of 
distributed workflows. 

A. WORKFLOW ENGINE 

We use an existing workflow engine - Apache 
ODE [4] which supports the WS-BPEL [5] 
specification, to support workflow execution. Using 
an existing workflow engine enables reuse of 
workflow descriptions and support of different 
workflow patterns as available in the WS-BPEL 
specifications.  

 
Figure 2. Application Service Emulation Execution Flow. A 

failure in any of the states would result in the application 

flow to result in the failure state (not shown in the figure). 
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Apache ODE operates as a web application in 
containers (such as Apache Tomcat) and supports 
Axis and JBI based communication layers. We 
configure ODE to use the MySQL database to store 
transaction information. The workflow documents 
(the BPEL file, the WSDL file and the ODE 
deployment descriptor) are deployed in a running 
instance of the workflow engine. These documents are 
identical to the original documents used in production 
environments except for one change. The service 
invocations are redirected to use the emulator’s proxy 
service instead of the original service locations. The 
proxy service simulates the task execution and returns 
a result back to the engine that then triggers the other 
activities.    

Apache ODE, designed primarily for business 
workflows, supports web-service based invocations 
that are run for short durations of time. Thus, ODE by 
default uses synchronous communication between the 
engine and the services. However scientific 
workflows can take anywhere from a few minutes to 
hours during execution [19]. Thus, in addition to the 
vanilla ODE version, we also support a modified 
ODE engine (originally used in the LEAD project). 
The asynchronous version also enables us to achieve 
higher levels of scalability. The patches support 
asynchronous communication that facilitates long 
invocations, and provenance notifications to track 
invocations from the engine.                                                                                                                                                                                                                                                                                         

B. APPLICATION EMULATION 

The application service emulation or the proxy 
service receives an invocation for each task in the 
workflow. The service is responsible for parsing the 
incoming input SOAP message and generating the 
appropriate output messages. Once the proxy service 
receives the input message, it invokes the task state 
simulation execution. Once the task simulation 
finishes execution, the proxy service generates the 
correct output types using the web service 
descriptions (i.e, WSDL files). The output is 
initialized with dummy data and control of workflow 
execution is transferred back to the workflow engine. 
The proxy service supports both synchronous and 
asynchronous responses back to the workflow engine. 
The proxy service also manages the emulation clock 
that is detailed in Section D. 

Our implementation works with BPEL and web 
services at the moment. However the application 
emulation design is general enough to work with other 
scenarios. The emulation service could be invoked by 
Hadoop to emulate map and reduce tasks. In addition, 
the emulator is powerful enough to handle scenarios 
where resources might be pre-selected for execution.  

C. INPUT MESSAGES 

Workflow tools need the ability to differentiate 
between different workflow instances. Workflow 
systems provide a methodology to identify and 

differentiate between different instances. In the LEAD 
production system, instance identification numbers 
are generated by the meta-workflow management 
tool, Xbaya[7]. Similarly in our emulation framework, 
the workflow engine client generates the instance 
identification. We use the LEAD header specification 
to pass this and other parameters through the 
workflow execution process. The LEAD header 
enables us to pass workflow instance and node 
identification.  

D. CLOCK 

The proxy service manages the clock for the 
simulation. It uses real system time or a trace file to 
determine the start time for the first task in the 
workflow at the first invocation time. This time is 
then handed to the task simulation execution, which 
generates appropriate time stamps for different task 
completion stages. This time is then used as the start 
time for the next task in the workflow.  

E. INFORMATION MODEL 

The emulator needs information about the 
application and its typical behavior to provide a 
realistic environment. We use the following sources 
of information for the same. 

State Transitions. The emulator maintains a state 
transition database for each task in the workflow. 
When the emulator is invoked for a task, it invokes 
the specified handler that handles execution of each of 
the states. 

Performance model. For each task, we also 
maintain timing information for each state. This 
performance information, captured from real 
workflow executions is used to track the task and 
workflow execution times.  

Data transfer. In addition to the running time of 
the application, it is important to consider the data 
transfer times between the tasks in the workflow. The 
data sizes for the workflow inputs, intermediate data 
products and workflow outputs are maintained. The 
bandwidth is then used to determine the data transfer 
time. We use a Pareto distribution to model bandwidth 
in these systems in conjunction with data captured on 
real systems [8]. 

Traces.  An important consideration for emulation 
is to realistically emulate submission time of 
workflows. In addition to the emulator clock that is 
used to track submission time of workflows, we 
enable a trace mode in the emulator. In the trace 
mode, the emulator is initialized with start times 
provided in a trace file for a set of workflows. On 
arrival of a workflow, the initialization table queried 
to determine submission time and execution time is 
managed relative to the specified time. This mode is 
useful for situations where real traces might need to 
be replayed for parameter studies.  
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F. AVAILABILITY AND FAILURE MODEL 

Availability variations and failures are inherent to 
distributed systems. An emulator has to capture this 
behavior for realistic representation of workflow 
execution. We model three availability properties in 
our emulator model that can be optionally enabled as 
required by the application.  

Performance Variance Generator. We provide a 
performance variance generator that uses a normal 
distribution to model application execution times. 
Previous studies show that variation in performance of 
application execution follows the normal distribution 
[9, 10].  

Failure Model. We provide a configurable failure 
model. The user of the emulator can set the failure 
percentage in each of the above states of the task 
handler i.e., there is a 50% probability that a task 
might fail in the computation stage. Similarly 
communication failures can be modeled as failure 
rates in the data transfer states. A failure in a 
particular state results in the workflow to fail. During 
execution, these specified values are used in a uniform 
distribution to model if a particular invocation must 
fail.        

Information Loss. Finally in real environments 
there are cases where a task will execute but 
information about the execution, such as a notification 
is lost due to communication failures. We model this 
behavior by allowing a user to specify the percentage 
of dropped messages in the system. Thus with the 
performance variation plug-in and the failure model, 
applications can realistically emulate variability in 
these environments. 

 

VI. IMPLEMENTATION 

The emulator framework has been used in the 
following context: a) gigabyte provenance database 
generation and, b) workflow orchestration across grid 
and cloud systems. These scenarios illustrate how the 
emulator can be used in design and development of 
workflows. In addition, the ability to compose and 
execute experiments in a controlled framework helps 
workflow composers and designers to debug 
workflow structures and execution characteristics.  

In this section, we present the workflow examples 
we have deployed in our system and the 
implementation details of the above use cases. We 
also discuss the design of the emulation framework 
that enables easy extension of the framework for a) 
adding new workflows b) customized task simulation. 

A. WORKFLOW EXAMPLES 

In previous work, we conducted a survey of 
scientific workflows from different domains[6]. We 
have modeled a subset of these workflows using 
Xbaya, a workflow composition tool [7]. Xbaya 
generates WS-BPEL documents that can then be 
deployed in the workflow engine used with the 

Description of 

workflow 

Structure of workflow 

LEAD Weather 

Prediction. weather 

forecasting 

initialized with 

terrain and 

observational data 

Small computational steps 

that operate on large sized 

data sets followed by a 

computationally intensive 

weather model 

Motif. Domain 

analysis of genome 

sized collections of 

input sequences 

A large sized workflow 

with about 140 tasks where 

sequences are processed in 

parallel and then fed to the 

motif analysis code 

SCOOP. Storm 

surge modeling 

ensemble 

A number of parallel 

model execution followed 

by a post processing that 

aggregates the results 

NCFS. Flood-plain 

modeling of the 

North Carolina cost 

Long running workflow 

that has use a large number 

of processors and takes 

about a day of execution 

time.  

Animation. Frame 

processing for 

animation 

A pre-processing step that 

launches parallel frame 

processing followed by a 

post-processing step 

Gene2Life. 

Molecular Biology 

analysis of DNA 

sequences 

Two parallel execution 

paths that are triggered 

with the same input. 

 
Table 1.  Examples of workflows deployed in the current 

implementation of the emulator 

 
Figure 3.  Gigabyte Provenance database generation using 

the workflow emulator 
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emulator. Table 1 provides a description of the 
workflows deployed in our implementation. The 
workflows are from diverse scientific domains and 
have different levels of parallelism and length or 
duration of the workflow.  

B. PROVENANCE DATABASE 

 In the provenance database use case we 
implement an emulator handler to publish provenance 
messages. Figure 3 shows the interaction of the 
application service emulation with the provenance 
system. Karma [24] is a tool that collects and manages 
provenance data. Karma has a modular architecture 
that supports multiple types of data sources for 
provenance data. Karma can listen to notifications on 
a messenger bus or receive messages synchronously 
and process the notifications to determine provenance 
information.  

The application service emulation supports both 
modes of operation. The Karma2.0 handler in the 
emulator publishes provenance messages to a WS-
messenger bus [11]. The Karma3.0 handler in the 
emulator directly pushes the provenance information 
to the Karma service. For each state, a message is 
published that details the activity information, e.g., 
service invocations, data transfers, and computational 
messages. The Karma service listens to all relevant 
messages and populates a database. The goal of this 
plug-in is to create a large database representing 
workflow execution messages. Using the failure 
model in the emulator, we generate realistic 
representations of the provenance data. The emulator 
enables us to create a controlled execution 
environment and use a minimal set of components to 
generate data that then is useful in design and testing 
of tools related to provenance collection and analysis 
[12]. 

C. WORKFLOW ORCHESTRATION 

Figure 4 shows the implementation details of the 
handler that interacts with the orchestration system. In 
this scenario, the task service interacts with a limited 
subset of components and helps in the study of 
workflow orchestration policies. In the first step, the 
proxy service interacts with the workflow planner to 
determine the resources on which the task must 
execute. The orchestration components then interact 
with the Virtual Grid Execution System (vgES) which 
is a pluggable component for the emulator. The vgES 
provides a uniform execution interface to query and 
manage executions on grid and cloud resources. The 
execution system relies on middleware such as Globus 
for job submission and data transfer.  

Next, the task is launched for execution on the 
determined resources. The task simulation then waits 
for the job completion. This particular implementation 
has resources at a total of seven sites that include grid 
and cloud deployments. More details of the 

orchestration infrastructure can be found in previous 
work [17].  

This integrated infrastructure is an example of 
managing workflow environments for demonstration 
in conjunction with real resource sites. The emulation 
environment enables us to experiment with specific 
policies in a hybrid environment of workflow 
emulation with real execution. 

D. ADDING A WORKFLOW 

In our implementation, we compose and deploy 
about ten workflows from different domains with 
varying complexity. However, we anticipate that users 
will want to add new workflows. Any pre-composed 
workflow that is WS-BPEL[5] compliant can be 
directly deployed in the emulation framework. In 
addition, existing tools can be used for composition of 
new workflows. For our setup, we use Xbaya[6] to 
compose workflows and export the required 
documents.  

E. CUSTOMIZED TASK SIMULATION 

The basic interface for the task simulation defines 
the functions for the states (Section IV.B) that will be 

 
Figure 4. Orchestration system using the workflow 

emulator. 

public interface TaskSimulator{ 

    public void Task_started(long curtime)  

    public void InputDataXfer_started(long curtime)  

    public void InputDataXfer_completed(long 

curtime) 

    public void Pre_computation(long curtime) 

    public void Computation(long curtime)  

    public  void Post_computation(long curtime)  

    public void OutputDataXfer_started(long 

curtime) 

    public  void OutputDataXfer_completed(long 

curtime) 

   public  void Task_completed(long curtime) throws  

} 
   Table 2. Task State Execution Handler Interface. 
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executed for each task. A customized task simulation 
can overload one or more of the functions to emulate 
different aspects of task execution. Table 2 shows the 
interface for the application service emulation. There 
is a function for each application state. For a specific 
use case, a developer can implement a handler by 
providing functionality to be performed for each of 
the functions. In addition various types of handlers 
can be extended to get hybrid behavior. For example, 
the failure generation handler might also optionally 
invoke the provenance generation handler thus 
generating failures and appropriate notifications as 
part of the emulation. 

VII. EVALUATION 

 

 
Figure 5. Workflow turnaround time for different workflows 

and the total emulation time performed at the application 

service emulation. 

 
We perform a series of experiments to understand 

the characteristics and performance of the emulator 
framework in reproducing workflow execution. 
Specifically we measure system overheads, the time 
scaling factor and system scalability. 

Workloads: Our experimental workload consists 
of the workflows described in the earlier section. The 
workflows vary in their degree of parallelism (in 
hundreds) and the duration or length of the workflow 
(from minutes to hours) enabling us to perform 
extensive testing on the emulator. For scalability 
testing and the time scale representation experiments 
we select the lead workflow since it is representative 
of the cyberinfrastructure workflows and additionally 
we have large amounts of data of lead execution on 
real systems for a meaningful comparison.  

Machine configuration and Software setup: We 
run the experiments on a machine with a Core 2 Duo 
processor running at 2.4 GHz, 2GB RAM running 
Ubuntu 9.04 (Jaunty Jackalope). The machine hosts 

the modified Apache ODE 1.1 workflow engine 
supported by a MySQL 5.0 server for its state. In 
addition, the application emulation service runs with a 
simple TestSimulator that logs messages for each of 
the task’s states. This is a very simple implementation 
of the TaskSimulator enabling us to understand the 
overheads of the systems without external influences. 

A. EMULATION TIME 

First, we measure the turnaround time from the 
emulator for execution of different workflows and the 
total time spent in the emulator for emulating the tasks 
of the workflow. For the motif workflow the results 
are averaged across a total of 25 workflows (5 
workflows in 5 concurrent threads launched 
periodically). For other workflow types, the results are 
averaged over 100 workflows (10 workflows in 10 
concurrent threads launched periodically). Figure 5 
shows the workflow turnaround time from the 
emulation and the total emulation time spent at the 
task service level. We see that the scoop, gene2life, 
ncfs and lead workflows take between 4 to 8 seconds 
per workflow and since the number of tasks and the 
parallelism of these workflows is small, the time spent 
in the task emulation is small (~1 to 2 seconds).  The 
animation workflow that has a higher degree of 
parallelism (~ 20) takes about 13 seconds of 
emulation time per workflow. The motif workflow is 
one of our largest workflows with 138 tasks out of 
which 135 run in parallel. The total workflow 
turnaround time is about 3 minutes and the total 
effective time spent is about 78 minutes. The motif 
workflow would take hours to run in a current grid 
system and the emulator enables us to test the 
workflow at a larger scale with simplicity. This gives 
us an understanding of the level of parallelism that the 
workflow engine as well as the task service emulation 
is able to handle. 

 

Figure 6. Understanding the scalability and the impact on the 

LEAD workflow turnaround time and time spent at the 

emulator level. 

 

B. SCALABILITY 

Figure 6 shows the scalability impact on the 
LEAD workflow. In this case we increase the number 
of concurrent threads from 10 to 40 and repeat the 
experiment with 10 workflows per thread and 20 
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workflows per thread and measure turnaround time 
per workflow.  There is an initial startup cost 
associated with the first few workflows and that gets 
averaged out as we run more workflows resulting in 
lesser average turnaround time when we run more 
workflows per thread. There is no significant 
difference in time spent in the application service 
emulation. The workflow emulation takes longer if 
there are 40 simultaneous clients taking around 25 
seconds. However this is a small time for emulation 
considering some of these workflows would run for 
hours in a real environment. Running multiple 
application emulation services and/or replicating the 
workflow engine can achieve further scalability. 

 
Figure 7. Comparison of the timestamps generated by the 

simulator for workflow execution times with the actual 

time taken to emulate the workflow. NOTE: The Y-axis is 

in log scale 

C. TIME SCALE 

The workflow emulator supports a trace mode 
where information about start times can be initialized 
and used to generate appropriate workflow 
completion time. We initialize the emulator with start 
times for the workflows from a real trace from the 
LEAD production system. Figure 7 shows the 
projected completion time generated by the emulation 
(which is the order of 5400 seconds) whereas the 
actual time taken for the workflow execution in the 
given environment is between 5 to 10 seconds. The 
emulation is used for 100 workflows run over a period 
of a month in the system and it takes about 15 minutes 
to emulate the same set in our framework. 

D. FAILURE GENERATION 

The emulator enables us to configure a task level 
failure model associating the failure levels for each 
state. We configure the “Computation” state to have 
different task failure levels from 10% to 50%  and 
measure the percentage of tasks that fail and the 
percentage of workflows that fail for 100 (in 10 
threads) and 300 (in 15 threads) workflows. As we see 
in Figure 8(a) the failure task percentages closely 
follow what we configured at the emulator. In Figure 
8 (b) we see the corresponding percentage of 
workflows that fail for each of the failure levels. As 
we reach close to 40% task failure level greater than 
90% of the workflows in our set fail. Thus even small 
task failure levels can result in a large number of 
workflows failing.  

VIII. CONCLUSION 

In this paper, we present WORKEM, a framework 
that enables the representation and emulation of 
workflow execution state. WORKEM includes a 
powerful and flexible task state model that allows 
users to accurately model different aspects of 
application behavior in distributed systems. Our 
evaluation shows that the emulator framework easily 
scales to hundreds of workflows with minimal 
overhead. The flexibility in the design of the 
emulation container makes it a strong, low-cost and 
low-overhead framework for testing and evaluating 
workflow execution in grid and cloud environments. 
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Figure 8. Understanding the failure model in the emulator 

(a) shows the percentage of tasks that failed at different 

failure levels b) percentage of workflows that failed at 

different failure levels. The tests were  conducted for 100 

and 300 workflows 
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implementation details of the provenance plugins, 
Apache ODE and Xbaya.  
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