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Abstract— This paper considers a network of collaborating
agents for local resource allocation subject to nonlinear model
constraints. In many applications, it is required (or desirable)
that the solution be anytime feasible in terms of satisfying the
sum-preserving global constraint. Motivated by this, su�cient
conditions on the nonlinear mapping for anytime feasibility
(or non-asymptotic feasibility) are addressed in this paper. For
the two proposed distributed solutions, one converges over
directed weight-balanced networks and the other one over
undirected networks. In particular, we elaborate on uniform
quantization and discuss the notion of ε-accurate solution,
which gives an estimate of how close we can get to the exact
optimizer subject to di�erent quantization levels. This work,
further, handles general (possibly non-quadratic) strictly convex
objective functions with application to CPU allocation among a
cloud of data centers via distributed solutions. The results can
be used as a coordination mechanism to optimally balance the
tasks and CPU resources among a group of networked servers
while addressing quantization or limited server capacity.
Index Terms— multi-agent systems, sum-preserving re-

source allocation, distributed optimization, anytime feasibility

I. Introduction

Allocation of resources and utilities over a multi-agent
network is considered in this paper. This problem �nds
application in di�erent control scenarios ranging from
coverage control and task allocation to electricity power
scheduling [1]–[4]. The general idea is to optimally de-
termine the allocated amount of resources from a �xed
total among a group of users or agents. Recently, the
emergence of Internet-of-Things (IoT) has motivated dis-
tributed solutions over networks, where agents locally solve
the problem in their neighborhood with no direct knowl-
edge of distant agents or global information. In many
large-scale applications, localized processing, and cloud
computing motivate such distributed resource allocation
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strategies instead of traditional centralized solutions. Ex-
ample applications include managing the balance between
energy resources and energy demand over the smart grid,
allocating the �xed amount of tasks over a multi-agent
network, or assigning the amount of computing load to
the network of data servers [5]–[7]. In the context of re-
source management in Cloud infrastructures, we particu-
larly focus on the latter application where some networked
data centers (computing nodes) need to be assigned by
CPU cycles (resources) in a distributed fashion. The total
sum of resources is limited and �xed and the computing
nodes follow a distributed algorithm to locally balance
the CPU utilization by local information-exchange with
other nodes. In general, in CPU scheduling the jobs are
allocated in quantized (or discrete) values. Further, other
than quantized CPU allocation and in general applications,
the data-sharing setup is typically involved with bandwidth
e�ciency and limited capacity concerns, and thus, man-
dates quantized information exchange. This quantization
issue needs to be addressed in general networked scenarios.

A. The problem

The problem of sum-preserving resource allocation is
in the following standard form,

min
x

F(x) = ∑n
i=1 fi(xi) (1)

s.t. ∑n
i=1 xi = b, xi ∈ Xi

with xi, b ∈ R, fi : R → R, and Xi ⊆ R representing
a range of admissible values for states xi. The latter
represents the so-called box constraints for xi ∈ R in the
form xi ∈ [mi Mi]. As discussed later, the problem can be
extended to the case where xi ∈ Rdi and Xi ⊆ Rdi where
the local constraints are de�ned in the form [8],

Xi = {x ∈ Rdi : gj
i(x) ≤ 0, j = 1, . . . , pi} (2)

with gj
i : Rdi → R as convex and twice-di�erentiable

functions on Xi. In general, the sum-preserving global
constraint can be also of higher-order form with xi, b ∈
Rm.

Among the existing solutions, other than the classic
linear ones [1]–[3], [9], the work by [8] suggests a local
reallocation optimization algorithm at every iteration to
address all-time feasibility. On the other hand, there exist
many primal-dual solutions that do not guarantee primal-
feasibility (or anytime-feasibility), but instead asymptot-
ically reach feasibility [10], [11]. Many existing works
focus on linear solutions with ideal communication and
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actuation at the node dynamics. However, in reality, multi-
agent systems (e.g., mobile robotic networks, connected
generators over the smart grid, or collaborating distributed
data centers) are subject to practical nonlinearities. For
example, the shared information for task/CPU scheduling
among data centers (or servers) are quantized [6] or
robot actuators performing coverage allocation are subject
to saturation [12]. The work by [13] further addresses
the notion of ε-accuracy over star multi-agent networks,
i.e., the number of communication bits needed to reach
the ε-neighborhood of the exact optimizer. In the same
line of research, Ref. [14] considers unconstrained dis-
tributed optimization via single-bit information-exchange
over limited-capacity communication networks. Other
than the mentioned nonlinearities imposed by the na-
ture of the actuation and communication, other kinds of
nonlinearities are added for the purpose of improving
the convergence rate or to reach the optimal value in
(prescribed) �xed-time [15] or �nite-time [14]. These
further motivate the nonlinear model consideration in this
paper.

B. Main Contributions

In this paper, the main contributions are: (i) we ad-
dress possible nonlinearities in the dynamics of the agents
due to imperfect actuation and limited communication
capabilities. This is motivated, for example, by limited
and/or quantized range of action in actuators and, simi-
larly, possible clipping and quantization in communication
channels. Other node-based and link-based nonlinearities
are further applicable to address, for example, robust-
ness to disturbances and pre-de�ned (or �xed) conver-
gence time. Some examples regarding nonlinear consen-
sus protocols are discussed in [16]–[18]. In this paper,
we discuss convergence subject to both sector-based and
non-sector-based nonlinearities, for example, logarithmic
quantization and uniform quantization. (ii) We show exact
convergence under sector-based nonlinearities, while for
uniform quantization (as an example of non-sector-based
nonlinearity) we prove convergence to the ε-neighborhood
of the optimizer. In the latter case, the concept of ε-
accuracy is considered. This notion implies the quan-
tization level to ensure reaching ε-neighborhood of the
optimal point. On the other hand, for a given quantization
level (or the number of bits) one can address the best
ε-accurate solution that can be achieved while satisfying
the feasibility constraint at all times. In particular, (iii)
we discuss the application in resource allocation and CPU
scheduling over networked servers [6]. (iv) Unlike some
works restricted to quadratic costs [6], this work can ad-
dress general strictly (and strongly) convex cost functions
(possibly non-quadratic) due to, e.g., the use of di�erent
barrier functions and penalty functions addressing the local
constraints to advance the quadratic cost model in [6]. The
results can further address di�erent types of practical non-
linearities imposed on the coordination mechanism among
the servers, for example, saturated capacity, quantization

scheme of di�erent sizes, and fast sign-based solutions.
Further, (v) we advance the assumption in [6], [8] by
considering uniform-connectivity over time instead of all-
time connected networks.

C. Some Preliminary Concepts

Following the Karush-Kuhn-Tucker (KKT) condition,
the following lemma �nds the condition on the optimizer
x∗ as the solution of (1) . De�ne the gradient vector ∇F =
[∂x1 f1(x1); . . . ; ∂xn fn(xn)].

Lemma 1. The optimizer x∗ as the solution of (1) is in the
form ∇F ∈ span(1n), i.e., ∂xj f j(x∗j ) = ∂xi fi(x∗i ) for all i, j.

See the proof and more details in [16], [17]. Note that
the above lemma holds for the equality-constraint problem
(1) without local constraints (2) . The box constraints (di =
1) are addressed by additive penalty terms discussed later
in Section II-A. One can reformulate the problem and
extend it to weighted-sum-preserving constraints as follows,

min
y

F̃(y) = ∑n
i=1 f̃i(yi) (3)

s.t. ∑n
i=1 aiyi = b, yi ∈ Yi

By change of variable in the form aiyi = xi, the above
problem takes the form (1) and follows similar solution.
Notice that ais need to satisfy composition conditions [19,
Section 3.2.4] to ensure convexity of the local sets Xis
after change of variables (as a composition of Yis and linear
transformation aiyi = xi).

D. The Assumptions

The following assumptions on the cost functions hold
throughout the paper:

1) The local cost functions fi are strictly (or strongly)
convex and smooth1.

2) The feasible solution set of problem (1) is non-empty
and compact.

The �rst assumption allows to address the unique op-
timizer via KKT conditions and is widely considered
in the literature. The second assumption is particularly
challenging if there are di�erent local constraints xi ∈ Xi
and the combination of these Xis and the sum-preserving
constraint ∑n

i=1 xi = b needs to be feasible. Algorithms
are proposed in [1], [8] to render feasible initialization for
such cases.

The following assumptions (for the proof of conver-
gence) hold on possible nonlinearities on the agents’ dy-
namics:

(i) The nonlinearities satisfy 0 < α ≤ h(z)
z ≤ α (sector-

based), i.e., they are strongly sign-preserving and
monotonically non-decreasing nonlinear mapping.

(ii) h(z) is an odd mapping, i.e., h(−z) = −h(z) and
h(0) = 0.

1For the proof of convergence only strict convexity is used. In order to
determine the rate of convergence v-strongly convex assumption is adopted.



The following are standard assumptions on the multi-
agent network (or the graph topology) in the consensus
literature:

(I) The network is undirected with symmetric weights.
(II) The network is uniformly-connected or B-

connected, i.e., the union of the networks over
every time-interval B is connected.

Note that for some special cases we relax the assump-
tion (I) to general weight-balanced directed networks. In
terms of network connectivity, Assumption (II) advances
existing solutions [8], [13] to dynamic (possible discon-
nected) networks, i.e., the cases for which the network
might be disconnected during some time instances but
their union is connected over a �nite time interval B. This
occurs in mobile multi-agent applications with limited
communication resources where the links over the network
come and go as the agents (e.g., robots) move in and out
of the communication range of the other agents.

E. Paper Organization

The rest of the paper is as follows. Section II introduces
the distributed solutions subject to possible nonlinearities.
In Section III, the convergence of uniform quantization
(as a non-sector-based nonlinearity) and the notion of
ε-accurate solution are discussed. Section IV provides
an example application in CPU scheduling and related
simulations. Finally, Section V concludes the paper.

II. Nonlinear Distributed Solutions

Two nonlinear distributed gradient-Laplacian solutions
are considered in this paper. The continuous-time (CT)
solutions are in the form,

ẋi = η ∑
j∈Ni

Wji(t)h(∂xj f j(t)− ∂xi fi(t)), (4)

ẋi = η ∑
j∈Ni

Wji(t)(h(∂xj f j(t))− h(∂xi fi(t))), (5)

The CT solutions �nd application, e.g., in economic dis-
patch problem and power generation scheduling, see [16],
[17]. In discrete-time (DT),

xi(k + 1) = xi(k) + η ∑
j∈Ni

Wji(k)h(∂xj f j(k)− ∂xi fi(k)), (6)

xi(k + 1) = xi(k) + η ∑
j∈Ni

Wji(k)(h(∂xj f j(k))− h(∂xi fi(k))),

(7)

with h(·) representing possible node-based or actuation
nonlinearity (protocols (4) and (6) ) or link-based or
communication nonlinearity (protocols (5) and (7) ) at
the agents’ dynamics. This nonlinear function could be
either (i) imposed by the nature of the agents’ dynamics,
e.g., due to control saturation and/or quantization, or (ii)
added purposefully by the designer, e.g., to improve the
convergence rate and/or robustness properties with respect
to noise and disturbances by using sign-based solutions.

Lemma 2 (Convergence) . Let the assumptions in Section I-
D hold. The continuous-time solutions (4) -(5) and discrete-
time solutions (6) -(7) converge to the exact optimizer x∗ as the
solution of problem (1) .

The detailed proof for convergence and uniqueness of
the solution under CT dynamics (4) -(5) are given in [16],
[17] assuming general strictly convex cost functions. The
proof can be extended to the DT case using the following
lemma.

Lemma 3. Let Assumptions (1)-(2) hold. Consider two points
x1, x2 ∈ Rn, and δx := x1 − x2. There exist 0 < α < 1 and
x̂ = αx1 + (1− α)x2 such that,

F(x1) = F(x2) +∇F(x2)
>δx +

1
2

δx>∇2F(x̂)δx. (8)

Then,

F(x1) ≥ F(x2) +∇F(x2)
>δx + vδx>δx, (9)

F(x1) ≤ F(x2) +∇F(x2)
>δx + uδx>δx. (10)

De�ne the Lyapunov function as the residual F(k) =
F(x(k)) − F(x∗). For two consecutive (feasible) states
x(k + 1), x(k) de�ne δx(k) := x(k + 1)− x(k). To satisfy
F(k + 1) ≤ F(k), from Lemma 3 one can prove that,

∇F>δx + uδx>δx ≤ 0. (11)

Recall that for a weight-balanced connected graph G
and its associated Laplacian matrix Lg = D −W with
D = diag[∑j∈Ni

Wji] = diag[∑j∈Ni
Wij], de�ne λn, λ2 as

the largest and smallest non-zero eigenvalue of Lg. For

x ∈ Rn and x := x− 1>n x
n 1n,

x>Lgx = x>Lgx, (12)

λ2‖x‖2
2 ≤ x>Lgx ≤ λn‖x‖2

2 (13)

Using (12) -(13) and substituting δx from Eq. (6) -(7) ,
further assume strongly convex functions satisfying 2v ≤
∂2

x fi(xi) ≤ 2u and sector-based nonlinearities satisfying
α ≤ h(z)

z ≤ α. Then, similar Lyapunov analysis as in [16],
[17], one can prove convergence for any step-rate η > 0
satisfying,

η ≤ 2αλ2

uλ2
nα

. (14)

Then, the linear convergence rate follows as,

F(k + 1)
F(k)

≤ 1− ηv(αλ2 −
u
2

λ2
nαη). (15)

The proof can be easily extended to B-connected graphs
with Lg as the Laplacian matrix of the union graph over

the time-interval B, i.e., considering F(k+B)
F(k)

in the above
formula. See [16], [17] for more information.

Remark 1. In problem (3) , following the KKT conditions, the
optimizer satis�es ∇F̃(y∗) ∈ span(a).



A. The Local Constraints

The local constraints xi ∈ Xi can be addressed via
adding penalty functions [20] or barrier functions [8] to
the local costs fi. Some commonly used penalty functions
to address the box-constraints are discussed here. The cost
function is updated as,

f c
i (xi) = fi(xi) + c[xi −Mi]

+ + c[mi − xi]
+ (16)

with [u]+ = max{u, 0} and c > 0 penalizing the deviation
from the admissible range of values. It is known that the
solution of this penalized case can become arbitrary close
to the exact optimizer by choosing c su�ciently small
[21]. This non-smooth function can be substituted by the
following smooth equivalents [21], [22],

L(u, µ) = =
1
µ

log(1 + exp(µu)) (17)

[u]+κ = ([u]+)κ , κ > 1, κ ∈N (18)

It can be shown that the maximum gap between the two
functions [u]+ and (17) inversely scales with µ, i.e.,

L(u, µ)− [u]+ ≤ 1
µ

and the two can become arbitrarily close by selecting µ
su�ciently large [23]. In general, for local constraints in
the form (2) , the penalty functions can be written as
c ∑

pi
j=1[g

j
i(x)]

+. Similarly, some barrier functions B j
i (xi)

are proposed in the literature [8], [24] to be added to the
local costs in the form f c

i (xi) = fi(xi) + c ∑
pi
j=1 B

j
i (xi).

Following (2) , B j
i (xi) is de�ned real valued for xi ∈ Xi,

i.e., gj
i(xi) < 0, and following Assumption (1),

1) The barrier function needs to be convex and smooth.
2) If gj

i(xi) → 0− (i.e., the function approaching zero
from negative values), then B j

i (xi)→ ∞.
Some standard example barrier functions are given as [24],

B j
i (xi) = − log(−gj

i(xi)) (19)

B j
i (xi) =

−1

gj
i(xi)

(20)

These are respectively known as logarithmic and inverse
barrier functions.

B. The global Constraint: Anytime Feasibility

As mentioned in the introduction, many applications
mandate solution feasibility at all times, i.e., the global
constraint ∑n

i=1 xi = b hold at all times along the solution
dynamics. This implies that at any termination time, the
resulting outcome x of the proposed anytime-feasible
protocols (4) -(7) satisfy ∑n

i=1 xi = b. In application, e.g.,
the economic dispatch problem, this means that the pro-
duced power and the demand are balanced at all times to
avoid system break-down [1], [8]. Similarly, in balancing
the CPU utilization among a group of data centers, the
algorithm needs to be feasible at all times such that the

allocated CPU resources meet the workloads required by
the servers [6], [7].

Lemma 4 (Anytime Feasibility) . Suppose that Assump-
tion (2), Assumption (ii), and Assumption (I) hold. By any
feasible initialization, the state of agents remain feasible under
the CT dynamics (4) -(5) for all t > 0 and under the DT
dynamics (6) -(7) for all k ≥ 1.

The proof for CT case over uniformly-connected undi-
rected graphs is discussed in [16], [17]. For the DT
case, the proof similarly follows. First, note that from
Assumption (2), the feasible solution exists. For protocol
(6) ,

n

∑
i=1

xi(k + 1) =
n

∑
i=1

xi(k)

+ η
n

∑
i=1

∑
j∈Ni

Wji(k)h(∂xj f j(k)− ∂xi fi(k)), (21)

Following Assumption (ii) and Assumption (I), the last
term is equal to zero. This is because for two neighboring
agents i, j, we have Wij = Wji and

h(∂xj f j(k)− ∂xi fi(k)) = −h(∂xi fi(k)− ∂xj f j(k)).

The feasibility proof of (7) for undirected graphs sim-
ilarly follows. For link-based nonlinearities (5) and (7)
one can extend the proof even to weight-balanced directed
graphs.

Corollary 1. For protocols (5) and (7) over a weight-balanced
graph,

n

∑
i=1

xi(k + 1) =
n

∑
i=1

xi(k)

+ η
n

∑
i=1

∑
j∈Ni

Wji(k)h(∂xj f j(k))− h(∂xi fi(k)), (22)

Recall that for a weight-balanced graph G and its asso-
ciated Laplacian matrix Lg, we have 1>n Lgz = 0, where
z ∈ Rn and 1n as the vector of 1s. Now considering
z = [h(∂x1 f1(k)); . . . ; h(∂xn fn(k))], the last term in (22)
is zero and Corollary 1 follows.

III. Quantization and ε-Accuracy

In this section, we compare the convergence for
two cases: sector-based nonlinearities satisfying Assump-
tion (i)-(ii), and sign-preserving (but not strongly) odd
nonlinear mapping. Note that the main di�erence of the

two cases is that for the second case
dh
dx

(0) = 0 while

for the �rst case
dh
dx

(0) > 0. In particular, we consider
logarithmic quantization versus uniform quantization re-
spectively as examples of the �rst and second case. Fol-
lowing Lemma 2, for sector-based nonlinearities the exact
convergence is achieved, i.e., substituting the strongly sign-

preserving function h(z) = sgn(z) exp
(

q
[

log(|z|)
q

])
in

(4) -(7) the solution reaches the exact optimizer of (1) .



In contrast, for uniform quantization, one can de�ne ε-
accuracy as a trade-o� between the quantization level and
convergence to the ε-neighborhood of the exact optimizer
x∗. We consider nonlinear CT protocol (5) and DT

protocol (7) with h(∂xi fi(k)) = q
[

∂xi fi(k)
q

]
with [·] as

rounding to the nearest integer and q as the quantization
level. Note that, from the de�nition, for xi satisfying
−0.5q ≺ ∂xi fi− ∂xi f ∗i ≺ 0.5q we have h(∂xi fi) = h(∂xi f ∗i )
and for the optimizer we have ∂xj f ∗j = ∂xi f ∗i . De�ne a

new variable ξ(x) := ∇F(x) − ∑n
i=1 ∂xi fi

n 1n. Then, from
the de�nition,

∇F−∇F∗ = ξ +
∑n

i=1 ∂xi fi

n
1n −∇F∗ (23)

= ξ +
∑n

i=1 ∂xi fi

n
1n −

∑n
i=1 ∂xi f ∗i

n
1n (24)

where we simpli�ed the notation as ∇F(x∗) = ∇F∗ and
∂xi fi(x∗i ) = ∂xi f ∗i . Recall the following lemma.

Lemma 5. For z ∈ Rn, z := z− 1>n z
n 1n, and laplacian

matrix L of a weight-balanced graph: z>Lz = z>Lz.

Putting L = In and z = ∇F−∇F∗ in the above lemma
along with (24) ,

ξ>ξ = (∇F−∇F∗)>(∇F−∇F∗). (25)

For |∂xi fi − ∂xi f ∗i | < 0.5q (or |∂xi fi − ∂xj f j| < q) we have,

ξ>ξ < 0.25q21>n 1n = 0.25nq2. (26)

From Lemma 3, substituting x1 = x and x2 = x∗ we
get,

δx>∇F∗ + vδx>δx ≤ F ≤ δx>∇F∗ + uδx>δx (27)

It is clear that for any two feasible states δx>1n = 0 and,

δx>∇F∗ = δx>ξ(x∗) = 0, (28)

since ξ(x∗) = 0n from the de�nition. Further, following
the results in [1] one can show that for any feasible state
the residual F(x) = F(x)− F(x∗) satis�es,

1
4u

ξ>ξ ≤ F ≤ 1
4v

ξ>ξ (29)

where we dropped the dependence on x for notation
simplicity. Eq. (28) -(29) along with Lemma 3 result in
the following.

Lemma 6. Let Assumptions (1)-(2) hold and 2v ≤
∂2

x fi(xi) ≤ 2u. Then,

v‖x− x∗‖2
2 ≤ F ≤ u‖x− x∗‖2

2, (30)
‖ξ‖2

2u
≤ ‖x− x∗‖2 ≤

‖ξ‖2

2v
. (31)

From (31) and (26) and given quantization level q,

‖x− x∗‖2 ≤
‖ξ‖2

2v
<

√
nq

4v
= ε. (32)

This gives an estimate that how close we can get to the
optimizer x∗ for uniform quantization with level q, i.e.,
the so-called ε-accuracy. For a given demanded accuracy
level ε, any quantization level q > 4vε√

n may not guarantee
such ε-accuracy and should be redesigned. One can �nd
similar ε-bound for the node-based CT protocol (4) and
DT protocol (6) following the same line of reasoning.

Remark 2. Note that the proposed nonlinear solutions are not
limited to the quadratic cost model discussed in [6]. In general,
any cost function satisfying Assumption (1) is valid in this work.
Therefore, although the consensus-based solution in [6] reaches
the exact optimizer for quadratic costs, it is not applicable for
general non-quadratic costs. Further, the proposed solutions can
address penalty and barrier functions discussed in Section II-
A which are non-quadratic in general. On the other hand, the
proposed protocols (4) -(7) can address other types of sector-based
nonlinearities with exact optimality. Solutions based on �xed-
time convergent algorithms can also be discussed as in [15],
[17].

IV. Possible Applications and Simulations

A. CPU Scheduling in Data Centers

Consider the problem of balancing the CPU utilization
over a cloud of n = 12 data servers in order to optimally
assign the CPU resources to the workloads [5], [6]. The
CPU costs at each node follow the quadratic form,

fi(xi) =
1
2

πi(xi −
ρi + ui

πi
)2 (33)

with scalar πi > 0 representing the capacity of node i, ρi ∈
R as the number of CPU cycles needed, and ui ∈ R as
the number of occupied cycles due to predicted or known
utilization from already running tasks on the server i (see
more details in [5], [6]). For the simulation we choose
πi = 2, random ρi, ui ∈ [0 50] and assume scalar box
constraints on the workloads/jobs at each node as,

mi = 0 ≤ xi ≤ 100 = Mi (34)

These constraints are addressed via quadratic penalty func-
tion (18) with κ = 2. Each node locally computes the
optimal proportion of its workload out of b = ∑n

i=1(ρi +
ui) = 563. The communication network is considered as
a simple undirected cyclic network. Let assume admissible
quantization level q = 0.125. Substituting v = 1 in
Eq. (32) , the solution under the nonlinear (uniformly-
quantized) protocol (6) (for su�ciently small η) is guar-
anteed to reach the ε-neighborhood of the optimizer x∗

satisfying,

‖x− x∗‖2 <
0.125

√
12

4
= ε. (35)

Comparison between logarithmic quantization and uni-
form quantization is shown in Fig. 1.
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Fig. 1. The residual under two quantization approaches: (left) uniform,
and (right) logarithmic quantization with level q = 1. Logarithmic
quantizer as a sector-based nonlinearity is ”strongly” sign-preserving as
limz→0

h(z)
z ≥ (1 − q

2 ) > 0 and the residual converges to zero. In
contrast, the uniform quantizer with h(z)

z = 0 for − h
2 < z < h

2 results in
steady-state residual and converges to the ε-neighborhood of the exact
optimizer de�ned by Eq. (32) and represented by the red dashed line
on the left �gure.

B. Non-Quadratic Cost Model

As mentioned in the introduction, in contrast to
consensus-based solutions that only consider quadratic
cost functions [6], the proposed nonlinear solution in this
paper can solve resource scheduling with non-quadratic
cost models. As an example, the cost function can be in
the form [25],

n

∑
i=1

fi(xi) =
n

∑
i=1

ωi(xi − αi)
4 (36)

with random αi ∈ [−2 4], ωi ∈ [0 1]. Further, the box
constraints −2 ≤ xi ≤ 5 can be addressed by non-
quadratic (logarithmic) penalty functions (17) with µ = 1.
For this simulation, actuation saturation (protocol (6) ) is
compared with the linear solution in Fig. 2(left). Such
clipping may occur due to the maximum capacity at nodes,
for example, because of some resource utilization due
to previous tasks still being processed. In general, linear
dynamics to solve the resource allocation converge slowly
and asymptotically. To improve the convergence rate and
to reach �xed-time convergence, sign-based solutions can
be adopted. It is known that nonlinear dynamics in the
form ż = sgnµ1(z)+ sgnµ2(z) converge to the equilibrium
in �xed (or prescribed) time [15]. Choosing nonlinear
function h(z) = sgnµ1(z) + sgnµ2(z) one can improve
the convergence rate of the proposed protocols (4) -(7)
to reach faster convergence as compared to the existing
linear solutions [9]. The simulation results are shown
in Fig. 2 for two cases with µ1 = 0.5, µ2 = 1.3 and
µ1 = 0.3, µ2 = 1.7 for protocol (6) along with the single-
bit protocol by [14] (with η = 3 × 10−5). Due to non-
Lipschitz continuity of the sign-based solutions, in discrete-
time, the steady-state residual is biased (known as the so-
called chattering phenomena). This bias can be reduced by
decreasing the step rate η.

V. Discussions and Concluding Remarks

This paper considers node-based and link-based nonlin-
earities on the agents’ dynamics to optimally solve resource
allocation subject to global sum-preserving constraints and
local box constraints. In particular, the application to CPU
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Fig. 2. (left) This �gure compares the evolution of the residuals under
the linear solution and the node-based protocol (6) subject to saturation
level equal to 20. (right) The solution under linear and di�erent nonlinear
sign-based solutions are shown. Adding sign-based nonlinearities can
improve the convergence rate as compared to the linear and single-bit
solutions.

scheduling subject to logarithmic quantization (sector-
based nonlinearity) and uniform quantization (non-sector-
based nonlinearity) are compared and for the latter ε-
accuracy is addressed. As an extension and future research
direction, the higher-order state dimension at agents can
be considered as,

min
y

F̃(y) = ∑n
i=1 f̃i(yi) (37)

s.t. ∑n
i=1 Aiyi = b

yi ∈ Yi

with yi ∈ Rdi , b ∈ Rm, f̃i : Rdi → R, Yi ⊆ Rdi , and
Ai ∈ Rm×di as a full row-rank matrix. Note that the
feasibility constraint ∑n

i=1 Aiyi = b is the summation
of some local constraints (of higher dimension). One
point to notice is the convexity of the local constraints
to admit certain composition conditions as discussed in
[19, Section 3.2.4]. Such extensions based on the results
of [8] can be addressed as a promising direction of future
research.
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