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Abstract

This paper deals with the stabilization of Takagi-Sugeno
models (T-S) using state feedback controllers. New
sufficient stability conditions are given for both continuous
and discrete T-S models. The stability conditions,
formulated in term of bilinear matrix inequalities (BMIs),
are based on a piecewise quadratic Lyapunov function and
the use of the so-called S-procedure. A method of
linearisation, applied on the obtained BMIs conditions, is
presented.
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1 Introduction

The issue of stability, the design of state feedback
controller as well as the design of state observer for
nonlinear systems described by multiple models [17] have
been considered actively during the last decade. This
approach includes the T-S models [5][15] and can be seen
also as Polytopic Linear Differential Inclusions (PLDI)
[16].

Many works have been carried out to investigate the
stability analysis of T-S models using a quadratic
Lyapunov function and sufficient conditions for the
stability and stabilization have been established
[2][3][11][12][22]. The stability mainly depends on the
existence of a common positive definite matrix

guarantying the stability of all local submodels. These
stability conditions may be expressed in linear matrix
inequalities (LMIs) form [16]. The obtaining of a solution
is then facilitated by using numerical toolboxes for solving
such problems. Nevertheless, restriction to the class of
quadratic Lyapunov function candidate may lead to
significant conservativeness. To overcome this limitation,
stability conditions relaxing previous constraints have been
established using a piecewise quadratic Lyapunov function
and the S-procedure [1][13][14]. While in [13], the
continuity of Lyapunov function is carried out by requiring
additional constraints, in [1][14] the Lyapunov function
can be discontinuous. Another class of Lyapunov function
candidate called polyquadratic is also studied for both
continuous and discrete T-S systems [4][6][7][18][19]. For
Linear Parameter Varying (LPV) systems, to reduce the
conservativeness, quadratic parameter dependant
Lyapunov functions are used [8][9][20][21]. However, as
it is known, embedding nonlinear systems, and by the
same way the T-S model, into LPV framework will lead to
conservative results [1][4].

In this paper, the design of state feedback controller for
T-S models is considered. New sufficient conditions for
global asymptotic stabilization are obtained using a
nonquadratic Lyapunov function and the so-called S-
procedure. The proposed method is proved to be less
conservative compared to those derived via quadratic
stability analysis.

The paper is organized as follows. The section 2 is
dedicated to the description of the continuous T-S model.



In section 3, firstly, previous stability conditions are
recalled and, secondly, we establish the main results for
which a method of linearisation of the obtained BMIs
conditions is proposed. In section 4, the proposed
synthesis is extended to discrete T-S models.

Throughout the paper, the following useful notation is
used: XT  denotes the transpose of the matrix X , X > 0
X ≥ 0a f denotes symmetric positive definite (semidefinite)

matrix, r  is the number of submodels simultaneously
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2 T-S continuous model

A continuous T-S model is based on the interpolation
between several LTI local models as follows:
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where n is the number of submodels, x t p( ) ∈r  is the state
vector, u t m( ) ∈r  is the input vector,
A Bi

p p
i

p m∈ ∈r r. .,  and z t q( ) ∈r  is the decision
variable vector.

The choice of the variable z ta f  leads to different classes
of models. It can depends on the measurable state
variables, be a function of the measurable outputs of the
system and possibly on the input. In this case, the system
(1) describes a nonlinear system. It can also be an
unknown constant value, system (1) then representing a
PLDI.

The normalized activation function µ i z t( ( ))  in relation
with the ith submodel is such that:
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The global output of T-S model is interpolated as
follows:

y t  z t C x ti i
i

n
( ) ( ( )) ( )=

=
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1
(3)

where y t l( ) ∈r  is the output vector and Ci
l p∈r . . More

detail about this type of representation can be found in
[2][19].

3. Stabilization of T-S models: Previous results

3.1.  Analysis

Consider the following unforced continuous T-S
model:
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Sometimes, it is possible to prove the stability of a T-S
model (4) using a quadratic Lyapunov function

V x t x t Px tT( ) ( ) ( )a f = , P > 0 (5)

So, if there exists a common symmetric positive
definite matrix P such that

A P PA i Ii
T

i n+ < ∀ ∈0 (6)

then the T-S model (4) is globally asymptotically stable.

Inequalities (6) give a sufficient condition for ensuring
stability of (4). However, it is well known that in a lot of
cases, a common positive definite matrix P does not exist
whereas the T-S model is stable. To reduce the
conservatism of (6), a sufficient condition for global
asymptotic stability of T-S model (4) is established by
using the S-procedure lemma (see Annex) and a
nonquadratic Lyapunov function candidate of the form [1]:

V x t V x t V x t V x ti na fb g a fb g a fb g a fb gd i= max ,.., ,..,1 (7)

where V x t x t P x t P i Ii
T

i i na fb g a f a f= > ∀ ∈, ,0

Theorem 1 : Suppose that there exists symmetric matrices
Pi > 0  and scalars τijk ≥ 0  such that ∀ ∈i j In,a f 2 :

A P P A P Pi
T

j j i ijk
k

n
j k+ + − <

=
∑τ

1
0d i (8)

Then the T-S model (4) is globally asymptotically stable.

Proof: see [1].

3.2.  Synthesis

With the PDC (Parallel Distributed Compensation)
control law:

u t z t K x ti i
i

n
( ) ( ( )) ( )= −

=
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1
(9)



the closed loop continuous T-S model obtained from (1)
becomes
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where

G A B Kij i i j= − (11)

Using a quadratic Lyapunov function (5), sufficient
stability conditions for (10) are given by theorem 2 and for
more relaxation by theorem 3.

Theorem 2 : Suppose that there exist symmetric matrices
P > 0  and Q ≥ 0 such that∀ ∈ <i j I i jn, ,a f 2 :

G P PG r Qii
T

ii+ + − <( )1 0 (12a)
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0 (12b)

and µ µi jz t z t( ( )) ( ( )) ≠ 0. Then the closed-loop T-S model
(10) is globally asymptotically stable.

Proof: see [2].

Theorem 3 : Suppose that there exists symmetric matrices
P > 0  and Qij  such that ∀ ∈ <i j I i jn, ,a f 2 :

G P PG Qii
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and µ µi jz t z t( ( )) ( ( )) ≠ 0. Then the closed-loop T-S model
(10) is globally asymptotically stable.

Proof: see [3].

The control design problem is to find the feedback
gains Ki  such that the closed loop system (10) is stable.
The conditions (12) and (13) are not convex in P and Ki .
In order to convert them into an LMI problem, these
inequalities are multiplied in the left and the right by P−1

with the variable change Y P Ki i= −1 .

However, it is well known that in a lot of cases, a
common positive definite matrix P does not exist whereas
the T-S model (10) is stable. In the following section, we
propose to relax the quadratic stabilization conditions (12)
and (13) by using the piecewise quadratic Lyapunov
function (7) and the S-procedure lemma.

4. Nonquadratic stabilization of T-S models

4.1.  Continuous case

Knowing that the nonquadratic Lyapunov function (7)
decreases the conservativeness of the result with regard to
the quadratic Lyapunov function (5), this type of
Lyapunov function candidate already used to derive
relaxed stability conditions [1], can also be considered for
the synthesis of control laws.

It is possible to substitute the matrices A i Ii n, ∈  by
G i j Iij n, ,a f∈ 2  directly in the theorem 1. However for more
relaxation, the idea is to exploit the results of theorem 2
and theorem 3. The following theorems give sufficient
stability conditions of (10).

Theorem 4 : Suppose that there exists symmetric matrices
Pi > 0 , Q ≥ 0 and scalars τijkl ≥ 0  such that

∀ ∈ <i j k I i jn, , ,a f 3  :
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and µ µi jz t z t( ( )) ( ( )) ≠ 0. Then the T-S model (10) is
globally asymptotically stable.

Proof: Considering the Lyapunov function candidate (7), it
follows that

V x V xka f a f=     if V x V x k l Ik l na f a f a f≥ ∀ ∈, , 2 (15)

Consequently if V x V x k l Ik l na f a f a f≥ ∀ ∈, , 2  :
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So, if the following conditions are satisfied
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then from (16) we ensure 
dV x t

dt
k Ik

n
a fb g

< ∈0,  ∀ ≠x ta f 0

and the system (10) is globally asymptotically stable.
Finally, constraints (14) are obtained by applying the S-
procedure lemma to (17). Q

Theorem 5 : Suppose that there exists symmetric matrices
Pi > 0  and Qij  and scalars τijkl ≥ 0  such that
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and µ µi jz t z t( ( )) ( ( )) ≠ 0. Then the T-S model (10) is
globally asymptotically stable.

Proof: The proof is obtained as in theorem 4, by using the
Lyapunov function (7) and the S-procedure lemma. Q

In the particular case where the input matrices are
linearly dependent (i.e. ∃ ∈B p mr .  and α i ni I> ∈0,  such
that B Bi i= α ), the following control law could be
considered instead of the PDC controller (9):
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z t K
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i

n
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Consequently, by substituting (19) into (1), the closed-
loop T-S system (1) becomes
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where G i Iii n, ∈  is defined in (11). The following theorem
gives sufficient conditions in LMIs form to ensure
asymptotic stability of (20).

Theorem 6 : Suppose that there exists symmetric matrices
Pi > 0  and scalars τij ≥ 0 such that ∀ ∈i j In,a f 2  :

G P P G P Pii
T

j j ii ijk
k

n
j k+ + − <

=
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1
0d i (21)

Then the T-S model (20) is globally asymptotically stable.

Proof: The proof is obtained directly from theorem 1, by
substituting Ai  by Gii . Q

Remark 1 : It should be noted that the quadratic conditions
(12) and (13) are included in conditions derived in (14)
and (18). So when P P i Ii n= ∀ ∈,  we have P Pj k− = 0

and V x t V x t x t Px t
i I

i
T

n

a fb g a fb gd i a f a f= =
∈

max . Then conditions

(14) and (18) become those of the quadratic case, i.e. (12)
and (13).

Remark 2 : The same result can be obtained by using the
nonquadratic Lyapunov function

V x t V x t
i I

i
n

a fb g a fb gd i=
∈

min (22)

where V x ti a fb g is defined in (8).

Remark 3 : The use of the S-procedure lemma and the
nonquadratic Lyapunov function (8) leads to a non convex

problem (14) with n
n2 1

2
+a f  BMIs to satisfy.

4.2.  BMIs linearisation

We know that BMI problem is not convex and may
have multiple local solutions. However, many control
problems that require the solution of BMIs can be
reformulated as LMIs, which may be solved very
efficiently. Unfortunately, the LMI formulation is very
difficult in our case.

In this paper, we use the path-following method,
developed in [10], for solving BMI problem. This method
utilises a first order perturbation approximation to linearize
the BMI problem. Hence, the BMIs (14) and (18) are
converted into a series of LMIs iteratively solved until a
desired performance is achieved.

Let Pk0 and K j0 be initial values of the unknown P and
K  such that

(17)



P P P K K Kk k k j j j= + = +0 0δ δ, (23)

then

P G P P A B K Kk ij k k i i j j= + − +0 0δ δb g d ie j (24)

Thus, by neglecting the second order terms δ δP B Kk i j ,
the matricial product (24) can be linearised with regard to
the increment variables δPk  and δK j .

P G P P A P P B K P B Kk ij k k i k k i j k i j≈ + − + −0 0 0 0δ δ δb g b g
Using this approximation, the BMIs (18) can be

transformed into LMIs that can be solved simultaneously
with the following constraints: δ ζP Pk k< 0  and

δ ζK Kj j< 0 , 0 1< <<ζ , necessary to ensure the
validity of the linear approximation.

Next, an iterative method modifying the τijkl

parameters can be applied. The major weakness of this
method is the choice of initial values guaranteeing the
existence of a solution, if any.

4.3.  Extension to discrete T-S models

A discrete T-S model is based on the interpolation
between several LTI local discrete models as follows:

x k z k A x k B u ki i i
i

n
( ) ( ( ))( ( ) ( ))+ = +

=
∑1

1
µ (25)

where n is the number of submodels, x k p( ) ∈r  is the
state vector, u k m( ) ∈r  is the input vector,
A Bi

p p
i

p m∈ ∈r r. .,  and z k q( ) ∈r  is the decision
variable vector.

The closed loop model of (25) with the control law

u k z k K x ki
i

n
ia f a fb g a f= −

=
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1
 is :

x k z k z k G x ki j ij
j

n

i

n
( ) ( ( )) ( ( )) ( )+ =

==
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11
µ µ (26)

where Gij  is defined in (11).

To prove the stability of the unforced T-S model (26),
sufficient conditions are derived using a quadratic
Lyapunov function (5) [2]. To reduce the conservativness
of the quadratic method, a sufficient condition for the
computation of the piecewise Lyapunov function of the
form (7) is given in the following part.

Theorem 7 : Suppose that there exists symmetric matrices
Pi > 0  and Q ≥ 0 and scalars τijkl ≥ 0  such that

∀ ∈ <i j k I i jn, , ,a f 3  :

G P G P r Q P Pii
T

k ii k ijkl
l

n
k l− + − + − <

=
∑1 0

1
a f b gτ (27a)

G G P G G P Q P Pij ji
T

k ij ji k ijkl
l

n
k l+ + − − + − <

=
∑d i d i b g4 4 0

1
τ (27b)

and µ µi jz t z t( ( )) ( ( )) ≠ 0. Then the T-S model (26) is
globally asymptotically stable.

Proof : The proof is obtained as in theorem 1, by using the
nonquadratic Lyapunov function (7) and the S-procedure
lemma. Q

We can prove easily that the quadratic conditions are
included in the derived conditions by substituting
P i Ii n, ∀ ∈ , by P.

The conditions (27) are non convex and difficult to
linearise. However the method presented in section 4.2 can
be used after applying the Schur complement [19].

5. Conclusion

In this paper, the stabilization of nonlinear model
described by T-S model is considered. Using the S-
procedure and a piecewise quadratic Lyapunov function
candidate, sufficient conditions for the global asymptotic
stability are derived. Despite the fact that the obtained
conditions are not convex, it is proved that the derived
stability conditions allow to improve the results obtained
by the quadratic method. A method of linearisation is
proposed for the derived BMIs conditions.

Annex

Lemma 1 (S-Procedure, [16]):

Let F x t F x tq0 a fb g a fb g,...,  be quadratic functions of the

variable x t pa f∈r .

If there exists scalars τ τ1 0 0≥ ≥, .., q  such that

F x t F x ti
i

q
i0

1
0a fb g a fb g− ≤

=
∑τ

then F x t0 0a fb g ≤  for all x ta f  such that
F x t i Ii qa fb g ≤ ∀ ∈0, . Q
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